
OPTIMISATION OF SCHEDULING PROBLEMS
BASED ON TIMED PETRI NETS
Thomas Löscher1, Gašper Mušič2, Felix Breitenecker1

1Vienna University of Technology, Institute for Analysis and Scientific Computing
1040 Vienna, Wiedner Hauptstrasse 8-10, Austria

2University of Ljubljana, Faculty of Electrical Engineering
1000 Ljubljana, Tržaška 25, Slovenia

tloescher@osiris.tuwien.ac.at(Thomas Löscher)

Abstract

This paper deals with modelling and simulation of scheduling and sequencing problems based
on Petri Nets. In particular, Timed, Coloured, and Stochastic Petri Nets are used to model and
implement specific scheduling problems in the field of production processes and other discrete
event systems. The Petri Net models are simulated over the time domain and a simulation-based
optimisation is implemented to optimise the input sequences. In this work a new conflict reso-
lution is implemented and a sophisticated way of defining firing sequences is developed. This
new approach offers the possibility to model queuing, sequencing or scheduling problems being
independent of the appearance of any conflicts. The optimisation of sequencing and scheduling
problems works by automated changing and evaluating of the used sequences and parameter
specifications. This kind of optimisation problem is too complex to be solved to optimality. A
promising alternative is to use heuristics, like genetic algorithms, simulated annealing or thresh-
old accepting. All these methods are implemented in the so called MATLAB PetriSimM tool-
box which offers the capability of modelling, simulation, and optimisation of Timed, Coloured,
and Stochastic Petri Nets. In case of stochastic processes the comparison of alternative system
configurations is a highly sophisticated problem. In this work a sequential paired t-test and
variance reduction techniques are used and implemented to solve the stochastic optimisation
for sequencing and scheduling problems. All the implemented features, functionalities and ca-
pabilities are compared and tested in two case studies including the modelling, simulation and
optimisation of a production cell and the well-known travelling salesman problem.

Keywords: Petri Nets, Optimisation, Manufacturing, Scheduling

Presenting Author’s Biography
Thomas Löscher was born in Horn, Austria and went to the Vienna Univer-
sity of Technology, where he studied technical mathematics and obtained
his degrees in 2004 and 2007. He worked for the ARC Seibersdorf re-
search company in the field of discrete event simulation. He is member of
the ARGESIM group and his PhD thesis deals with the simulation-based
optimisation of scheduling problems based on timed Petri Nets. His e-mail
address is: tloescher@osiris.tuwien.ac.at.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
Petri Nets basically model processes on a very low
level. Up to now a lot of extensions of Petri Nets ex-
ist. The introduction of time delays makes it possible
to simulate over the time domain. The use of colours
simplifies the graphical description and due to this fact
models of greater complexity can be defined and used.
In this work another interesting and important extension
is developed to get the capability of modelling schedul-
ing problems. This means that it is possible to build
up Petri Nets based on the description of scheduling
problems. All conditions and constraints are realised
by the basic properties of Petri Nets. The input parame-
ters are characterised by different firing sequences of
the selected Petri Net corresponding to sequences of
the present scheduling problem. On this account sys-
tem configurations can be easily changed by the use of
different input sequences. All properties of scheduling
problems are now described by the use of Petri Nets
and the evaluation of a chosen schedule is reduced to a
single simulation run of the Petri Net based on the used
input sequences.

Starting from this development an automated optimi-
sation can be implemented based on several heuristic
methods. The scheduling problem is reduced to a sim-
ple combinatorial problem. The objective function is
defined by the evaluation of the Petri Net simulation
over the time domain. Another aspect of this work is
given by the use of stochastic time delays. In this case
the stochastic optimisation results in a highly sophisti-
cated problem.

All these extensions and functionalities are developed
and implemented in the so called MATLAB PetriSimM
toolbox where the user can model, simulate and opti-
mise scheduling problems based on Petri Nets.

2 Petri Nets and Scheduling
Scheduling deals with the allocation of resources
to activities over time, by respecting precedence,
duration, capacity and incompatibility constraints, in
order to achieve the optimal use of resources or the
optimal accomplishment of tasks. Scheduling involves
the arrangement, coordination, and planning of the
utilisation of resources to achieve an objective. Of the
resources available, time is becoming an important
commodity. Time is the resource most often planned
and is present in all scheduling. In its simplest form,
the overall time cycle required for production or
completion is the most usual scheduling situation
[1]. Scheduling problems arise in domains like man-
ufacturing, transportation, computer processing and
production planning. Many well defined problems like
job-shop, flow-shop problem or scheduling used in
flexible assembly systems can be found in literature
[2, 3].
There exists special classifications of scheduling
problems [4, 5, 6] which leads to different approaches
of modelling and algorithms. This work provides a
general framework for modelling, simulation, analysis
and optimisation of scheduling problems based on

Timed Petri Nets. No special definitions are given for
the scheduling problem besides of some restrictions for
the underlying Timed Petri Net. The sequence orders
are the only parameters used. All other conditions and
specifications are determined by the basic properties of
Timed Petri Nets. Simulation is an appropriate tool for
evaluating and analysing scheduling problems based on
Timed Petri Nets to get the needed performance mea-
sures [7]. With respect to the optimtisation problem
this work is focused on the overall cycle time as main
interest of the performance measures. But using Petri
Nets offers a lot of possibilities to get other interesting
parameters of the system. For example, utilisation and
allocation of the resources can be easily measured and
shown by Gantt Charts.

2.1 Definition

The class of scheduling problems which can be mod-
elled as Timed Petri Nets is defined by the following
criteria:

• same initial marking - Each scheduling prob-
lem has to start with the same initial marking.
This means that different system configurations
can only realised by changing the sequence param-
eters.

• sequences assigned to transitions - The sequence
parameters are assigned to the transitions and they
correspond to the firing sequences of the transi-
tions.

• conflicts solved - All conflicts have to be resolved
and determined at the beginning.

• bounded - The TPN has to be bounded.

• not reversible - The TPN must not be reversible.
In this case reversibility is extended with the de-
fined firing sequences. This means that it is not al-
lowed to come back to a home state including the
current state and position of sequence parameters.

• all transitions not live - No transition is allowed
to be live.

• terminating simulation - Because of the previous
criterion the simulation of the Timed Petri Net is
terminating.

2.2 Priority

The resolution of all conflicts is an important criterion
of scheduling problems modelled as Timed Petri Nets.
For this purpose a priority ranking can be established
for the firing of the transitions. A priority value can
be set to each transition. This value has to be greater
or equal than one and defines the priority of the tran-
sition. The highest priority is given to 1. If there is
a conflict between at least two transitions the transition
with the highest priority will always fire. If two or more
transitions have the highest priority value it will be ran-
domly decided which transition fires. Figure 1 shows a

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

p
1

t
1

t
2

t
3

p
2

p
3

p
4

p
1

t
1

t
2

t
3

p
2

p
3

p
4

Fig. 1 Petri Net with priority

small Petri Net with defined priorities before and after
firing. In this example transition t1 has the highest pri-
ority equal to 1 and transitions t2 and t3 have both the
priority equal to 2. Place P1 contains two tokens and
therefore a conflict occurs because all three transitions
are enabled but only two of them can fire. Transition t1
fires in any case. Transitions t2 and t3 have the same
priority and the firing is randomly decided. In this case
transition t2 fires but it is also possible that transition t3
fires instead of t2 after restarting the simulation.

2.3 Sequence

Next to the definition of a priority Petri Nets need an-
other important extension to get the capability of mod-
elling scheduling problems. The main input parame-
ters of scheduling problems are represented by the se-
quences of different tasks. A change of the input pa-
rameters leads to a different system configuration and
to different results. These sequences can be directly
implemented and defined to the transitions of the Petri
Net. Disjoint groups of transitions can be selected and
to each group a firing rule can be assigned. The tran-
sitions are numbered within the group starting from 1
to the selected group length. Now a firing list can be
defined for the group of transitions. This list consists of
the assigned numbers of the transitions. The values of
the list correspond to the firing of the transitions. All
transitions of the group are deactivated instead of the
transition represented by the first number of the firing
list. This means that all deactivated transitions are not
able to be enabled by any tokens of the input places. Af-
ter the firing of the selected transition the next value of
the list is taken. If the end of the firing list is reached all
transitions are activated again and they behave like nor-
mal transitions not controlled by a firing list. Figure 2

p
1

p
2

p
3

t
1

t
2

p
1

p
2

p
3

t
1

t
2

p
1

p
2

p
3

t
1

t
2

Fig. 2 Petri Net with sequence

shows the firing of a Petri Net with a defined sequence.
In this example the sequence (1, 2) is assigned to the
transitions t1 and t2. In the left Petri Net transition t1 is
enabled and transition t2 is deactivated due to the firing
list. The middle Petri Net shows the marking after fir-
ing of transition t1. Transition t2 is activated again and
now enabled whereas transition t1 is deactivated in this
step. The final marking is shown in the right Petri Net

of figure 2 after firing of transition t2.
On the one hand transitions can be selected to assign
priorities and on the other hand transitions can be added
to groups to define firing lists. These two possibilities
are disjoint. This means that either a transition can have
a priority or a transition can be member of a sequence
group. If a priority is needed for sequence transitions
a sequence priority can be defined. This sequence pri-
ority controls the behaviour of conflicts between transi-
tions of different sequence groups. Priorities are neces-
sary if conflicts between transitions should be solved in
a special way. The following ranking and hierarchy is
used for the interacting of the different kinds of transi-
tions:

1. Sequence: Transitions which are members of a
sequence group always have the highest prior-
ity. Conflicts inside sequence transitions are de-
termined by the sequence priority.

2. Priority: Transitions with priority get the second
highest priority.

3. Normal: Transitions without any priorities or se-
quences are defined as normal transitions. Con-
flicts of normal transitions are solved through the
strategies mentioned in the previous section.

2.4 Deadlock

The termination of the simulation is an important and an
essential criterion for modelling scheduling problems
based on Timed Petri Nets. Depending on the selected
input sequences each system configuration leads to dif-
ferent simulation results. The end of a simulation cor-

p
1

p
2

p
3

t
1

t
2

Fig. 3 Sequence deadlock

responds to a final marking of the reachability graph.
The final markings are reached during the simulation
through a desired natural deadlock. Because of the se-
quence extensions of Timed Petri Nets a new kind of
deadlock can occur during the simulation. If the tran-
sition activated due to the firing list is not able to be
enabled and no other transition is enabled in the cur-
rent simulation step a sequence deadlock happens. This
sequence deadlock represents an invalid system config-
uration and it can be separately detected.
Figure 3 shows this new kind of deadlock. Transition
t1 and t2 are added to a sequence group containing the
firing list (1, 2). Transition t1 is activated but not en-
abled and therefore a sequence deadlock occurs and the
simulation stops.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

3 Optimisation
3.1 Introduction

Scheduling problems basically belong to the field of
combinatorics. A set of tasks should be ordered to
build an optimum corresponding to certain constraints.
An optimum can be both a maximum and a minimum.
Therefore the optimisation of a scheduling problem can
be a minimising or maximising problem. In this work
all constraints and specifications of scheduling prob-
lems are determined by the basic properties of Timed
Petri Nets. The sequence orders are the only parame-
ters used. All possible permutations of these sequences
build the solution space of the scheduling problem. In
general a so called objective or fitness function is de-
fined which assigns a certain value to each solution of
the solution space. This fitness value is used to define
the quality of the selected solution. In this case the ob-
jective function is determined through the underlying
Timed Petri Net. The evaluation of the fitness value is
performed by simulation resulting in the overall cycle
time of the system. For maximising problems this value
should be as great as possible and respectively for min-
imising problems it should be as small as possible. But
both problem types are equivalent. The multiplication
of the objective value of a minimising problem by −1
results in a maximising problem and vice versa. Thus,
in the following only minimising problems are consid-
ered.
In principle there are two possibilities to solve such
optimisation problems. On the one hand exact solu-
tions can be computed forming an exact optimum of
the selected problem. Scheduling problems belong to
the class of NP-hard problems [4] and therefore expo-
nential run-time would be needed to compute an exact
solution. On the other hand it is possible to apply ap-
proximation algorithms like heuristic algorithms [4, 8].
These algorithms have polynomial run-time and pro-
duce solutions that are guaranteed to be within a fixed
percentage of the actual optimum. Any approach with-
out formal guarantee of performance can be considered
a heuristic. Such approaches are useful in practical sit-
uations if no better methods are available [4].

3.2 Local Search

Local search is an iterative procedure which moves
from one solution in the search space S to another as
long as necessary. In order to systematically search
through S, the possible moves from a solution s to
the next solution should be restricted in some way. To
describe such restrictions a neighbourhood structure
N : S → 2S is introduced on S. For each s ∈ S,
N(s) describes the subset of solutions which can
be reached in one step by moving from s. The set
N(s) is called the neighbourhood of s. Usually it is
not possible to calculate the neighbourhood structure
N(s) beforehand because S has an exponential size.
To overcome this difficulty, a set AM of allowed
modifications F : S → S is introduced. For a given
solution s, the neighbourhood of s can be defined by
N(s) = {F (s) |F ∈ AM}.
Using these definitions, a local search method may be

described as follows. Each iteration starts with a solu-
tion s ∈ S and choose a solution s′ ∈ N(s) or a modi-
fication F ∈ AM which provides s′ = F (s). Based on
the values of the objective function f : S → R, f(s)
and f(s′) , the starting solution of the next iteration
is chosen. According to different criteria used for the
choice of the starting solution of the next iteration
different types of local search techniques are arisen [4].
The iterative improvement algorithm takes the solution
with the smallest value of the objective function and
can be formulated as follows:

Algorithm Iterative Improvement:
begin

choose initial solution s ∈ S
repeat

generate neighbour solution s′ ∈ N(s)
if f(s′) ≤ f(s) then

s := s′

until f(s′) ≤ f(s), ∀ s′ ∈ N(s)
end

3.3 Simulated Annealing

Local search algorithms are simple to implement and
quick to execute, but they have the main disadvantage
that they terminate in the first local minimum which
might give an objective function that deviates substan-
tially from the global minimum. The reason why a lo-
cal search algorithm terminates in the first local mini-
mum it encounters is that only transitions correspond-
ing to a decrease in the objective function are accepted
by the algorithm. Alternatively, an algorithm should be
considered which attempts to avoid becoming trapped
in a local minimum by sometimes accepting transitions
corresponding to an increase in the objective function.
Simulated Annealing is an example of the latter ap-
proach where in addition to cost-decreasing transitions,
cost-increasing transitions are accepted with a non-zero
probability which decreases gradually as the algorithm
continues its execution [9].
Simulated Annealing (SA) exploits an analogy between
the way in which a metal cools and freezes into a min-
imum energy crystalline structure (the annealing pro-
cess) and the search for a minimum in a more general
system. The algorithm is based upon that of Metropolis
et al. [10], which was originally proposed as a means
of finding the equilibrium configuration of a collection
of atoms at a given temperature. Kirkpatrick et al. [11]
proposed in 1983 that the Metropolis algorithm forms
the basis of an optimisation technique for combinatorial
and other problems.
The pseudo-code of the local search algorithm is ex-
tended for the Simulated Annealing algorithm in the
following way:

Algorithm Simulated Annealing:
begin

generate initial solution s ∈ S
i := 0
repeat

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

generate neighbour solution s′ ∈ N(s)
if f(s′) ≤ f(s) then

s := s′

else if min(1, exp(f(s)−f(s′)
ci

)) > rnd([0, 1]) then
s := s′

ci+1 := g(ci)
i := i + 1
until termination criterion

end
Simulated Annealing is a method which seeks to avoid
being trapped in a local minimum. It is a randomised
method because:

• s′ is chosen randomly from N(s)

• in the i− th step s′ is accepted with probability

min(1, exp(
f(s)− f(s′)

ci
))

where (ci) is a sequence of positive control param-
eters with limi→∞ ci = 0.

The interpretation of this probability is as follows. If
f(s′) ≤ f(s), then s is replaced by s′ with probabil-
ity one. If, on the other hand, f(s′) > f(s), then s
is replaced by s′ with some probability. This probabil-
ity decreases with increasing i. In other words, a local
minimum can be left, but the probability for doing so
will be low after a large number of steps. In the Simu-
lated Annealing algorithm rnd[0, 1] denotes a function
which yields a uniformly distributed random value be-
tween 0 and 1. Furthermore, the sequence (ci) is cre-
ated by a function g, i.e. ci+1 = g(ci) ∀ i [4].

3.4 Threshold Accepting

The Threshold Accepting algorithm (TA) is one of
the youngest heuristic algorithms. Dueck and Scheuer
[12] proposed Threshold Accepting as a variance of
Simulated Annealing in 1990. The essential difference
between SA and TA consists of the different acceptance
rules. TA accepts every new configuration which is
not much worse than the old one whereas SA accepts
worse solutions only with rather small probabilities.
An apparent advantage of TA is its greater simplicity.
It is not necessary to compute probabilities or to make
random decisions. The pseudo-code for the Threshold
Accepting algorithms can be defined in the following
way:

Algorithm Threshold Accepting:
begin

generate initial solution s ∈ S
i := 0
repeat

generate neighbour solution s′ ∈ N(s)
if f(s′) ≤ f(s) then

s := s′

else if f(s′)− f(s) < ti then
s := s′

ti+1 := g(ti)
i := i + 1

until termination criterion

end

A newly generated solution s′ ∈ N(s) is now ac-
cepted if the difference f(s′) − f(s) is smaller than
some non-negative threshold t. The threshold t is a
positive control parameter which is gradually reduced
in an analogue way to the temperature of the Simulated
Annealing algorithm. The neighbourhood functions
defined in the previous section can also be used for
the TA algorithm. Further, the cooling strategies for
the temperature can be used for the threshold. The TA
algorithm also has the same termination criteria as the
SA algorithm.

3.5 Genetic Algorithms

Genetic algorithms (GA) are numerical optimisation
algorithms inspired by both natural selection and nat-
ural genetics. The method is a general one, capable of
being applied to an extremely wide range of problems.
Genetic algorithms were developed by John Holland
[13] in the late sixties. They combine survival of the
fittest among string structures with a structured yet
randomised information exchange to form a search
algorithm with some of the innovative flair of human
search. In the original definition the different solutions
of the search space are represented and encoded in
binary strings but also other encodings are possible.
Especially for combinatorial and scheduling problems
the solutions can be encoded directly. This means
that the sequence of tasks can be directly used in the
algorithm. In the GA lingo all used terms and elements
have special names. A solution of the problem is called
individual or phenotype and its representation is called
genome, chromosome or genotype. In case of schedul-
ing problems those two definitions are coincided.
The search space of the selected problem is called
fitness landscape and the objective function is called
fitness function. Compared to Simulated Annealing or
Threshold Accepting Genetic algorithms are initialised
with a population of individuals which are usually
random and be spread throughout the search space. A
typical algorithm then uses three operators, selection,
crossover, and mutation to direct the population over a
series of time steps or generations towards convergence
at the global optimum [14, 15]. The pseudo-code for a
GA can be defined in the following way:

Algorithm GA:
begin

i := 0
generate initial population P (i)
evaluate individuals in P (i)
repeat

i := i + 1
select P (i) from P (i− 1)
recombine individuals in P (t)
evaluate individuals in P (t)

until termination criterion
end

Genetic algorithms are suitable for problems with
an unknown search space and for cases where no other
methods can be used. The algorithm and its operators

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

do not need any problem specific information. There-
fore scheduling problems can be solved and optimised
by the use of Genetic algorithms [16, 17, 18].

3.6 Due-date Scheduling

In many scheduling problems, e.g. production systems,
the finishing times of certain tasks play an important
role concerning the optimisation of the overall cycle
time. In the deterministic case each simulation run of
a certain system configuration yields exactly the same
result. Hence in this work it is possible to extend de-
terministic scheduling problems with the capability of
due dates for certain and interesting tasks because the
excess of the due dates is significant for each differ-
ent system configuration. If the defined due dates are
exceeded during the simulation a penalty time will be
added to the overall cycle time at the end of the sim-
ulation. Now the objective or fitness function of the
scheduling problem represents the overall cycle time
plus the cumulative penalty time of the due dates. The
new value of the fitness function can be used for the
direct optimisation of the scheduling problems and the
simultaneous indirect optimisation of the due dates.

3.7 Stochastic Optimisation

The analysis and the comparison of the output data of
terminating simulation models using random numbers
and stochastic distribution functions is a highly sophis-
ticated problem. The difficulty is that the simulation
output data are stochastic, so comparing two different
system configurations on the basis of only a single run
of each is a very unreliable approach. The results of
one simulation run are not significant and in general a
certain number of replications should be done to avoid
making serious errors leading to fallacious conclusions
and poor decisions [19].

3.7.1 Sequential paired t-test

In this work the comparison of different system con-
figurations is reduced to a pairwise comparison. For
stochastic simulation models it is difficult to get ex-
act comparable and significant results for many differ-
ent system configurations. Therefore only two different
system configurations are taken into account to decide
which one of the two alternatives is better. On this ac-
count the stochastic optimisation is only implemented
for Simulated Annealing and Threshold Accepting. The
comparison is effected by forming a sequential confi-
dence interval for the difference in the two expectations
to see whether the observed difference is significantly
different from zero. If the confidence interval misses or
contains zero the test for the difference is accepted or
rejected, respectively [19].

3.7.2 Variance Reduction

Variance reduction techniques try to reduce the variance
of the sample mean. Depending on the selected prob-
lem there exist many different variance reduction tech-
niques. In this case Common Random Numbers (CRN)
are used [19, 20]. This technique is applied when two or
more alternative system configurations are compared.

4 PetriSimM toolbox
4.1 Introduction

MATLAB, the classical engineering tool, does not re-
ally offer tools to handle discrete event systems based
on Petri Nets. One commercial tool can be obtained by
the MATLAB Connections Program [21, 22]. There are
few Petri Net tools based on MATLAB which are free
but these tools are rudimentary and can handle only the
basics of Petri Nets. A lot of other tools exist for anal-
ysis, modelling and simulation of discrete event sys-
tems using the advantages of Petri Nets [23, 24] but all
these tools cannot handle the optimisation of schedul-
ing problems.
In this work an open source MATLAB toolbox for Petri
Nets is presented and introduced. The so called MAT-
LAB PetriSimM toolbox is based on a basic toolbox
[25] which deals with analysis, supervisory control syn-
thesis, and non-timed simulation. This basic toolbox
is programmed in MATLAB version 5.3 and is there-
fore adapted to MATLAB version 7.2 (R2006a) to form
the MATLAB PetriSimM toolbox. The toolbox is em-
bedded in the MATLAB environment and its usage re-
quires version 7.0 or higher. Furthermore the toolbox
is extended with the capability of Timed Petri Nets and
timed simulation using the holding durations principle
[26, 27, 28]. In another step Coloured Petri Nets are
developed for the use in the MATLAB PetriSimM tool-
box. The enabling duration principle is added as a sec-
ond approach of implementing time into Petri Nets. A
new way of defining firing sequences is found to be
able to model scheduling problems being independent
of the occurrence of any conflicts [29, 30]. Finally the
toolbox is extended with the optimisation of schedul-
ing problems containing heuristic algorithms like Simu-
lated Annealing, Threshold Accepting and Genetic Al-
gorithms. In case of stochastic processes a sequen-
tial paired t-test and variance reduction techniques are
used and implemented to solve the stochastic optimisa-
tion for sequencing and scheduling problems. To sum
up, the sophisticated MATLAB PetriSimM toolbox of-
fers the capabilities of analysis, modelling and simula-
tion of Petri Nets. Furthermore it is possible to opti-
mise scheduling problems based on Timed, Coloured,
and Stochastic Petri Nets. The open source MATLAB
PetriSimM toolbox can be used for education in a grad-
uate level and for modelling and simulating real life
processes of discrete event systems in equal measure.

4.2 GUI

Figure 4 shows a screenshot of the graphical user in-
terface (GUI) of the PetriSimM toolbox. The GUI is
divided into a menu bar, a button bar and an axes area.
In the menu bar different modes can be chosen. The
user can switch between analysis, non-timed simula-
tion, timed simulation based on the holding durations
principle, and timed simulation based on the enabling
durations principle. Furthermore models can be saved,
loaded, exported and printed. For each type of simula-
tion several parameters can be set. Another important
part of the menu bar is the options menu where the pri-
ority wizard and Gantt chart wizard can be started. Next

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

to the options menu the optimisation menu is placed.
There several parameters and modes for the optimisa-
tion can be changed and selected. The button bar con-
tains several buttons for building, changing, zooming,
simulating and analysing the Petri Net models. In the
axes area the Petri Net models can be created, simulated
and the so called token game can be shown. Figure 4
also contains the Petri Net model of a production cell
which is later used for the otpimisation.

Fig. 4 Graphical User Interface

4.3 Analysis

The PetriSimM toolbox offers several features for the
analysis of the modelled Petri Net. In the analy-
sis section interesting properties like P-invariants, T-
invariants, reachable sets, cover-ability tree, marking
bounds and dead markings can be derived. Further-
more supervisory control methods can be used. All
these analysis and control features are developed in the
previous version of the toolbox [25] and are not further
treated in this context. In this work they are only men-
tioned for the sake of completeness.

4.4 Simulation

The simulation is a main part of the PetriSimM toolbox.
It is separated into non-timed simulation, timed simula-
tion using holding durations and timed simulation us-
ing enabling durations. For all three simulation modes
an animation of the token game can be visualised. But
this feature is only used for educational purposes be-
cause through the animation the simulation speed is
highly increased. It is possible to change the anima-
tion speed in the parameter section and for the optimi-
sation the animation is deactivated. Another interesting
parameter for non-timed simulation is the firing prob-
ability. This parameter controls the firing of enabled
transitions. This means that it is randomly decided if
an enabled transition can fire or not depending on the
defined firing probability. For timed simulation time
delays can be assigned to the transitions which can be
deterministic or stochastic. This means that any proba-
bility distribution function can be defined to each tran-
sition. For this purpose, any MATLAB m-file can be
written resulting to a single positive value, or existing
MATLAB probability distribution functions, which can
be used to model stochastic time delays. Only the pos-
itive part of the used function is taken. If the result of

the used stochastic function is negative the time delay
is set to zero and a warning is displayed.

5 Case Studies
In this work two case studies are processed to test
and compare the implemented optimisation algorithms.
The first case study contains the modelling, simulation,
and optimisation of a special type of production cell
[31, 32]. The Petri Net model of this problem con-
sists of many conflicts and therefore the holding dura-
tions principle is used to model the production cell. All
used time delays are deterministic and due dates and
arrival times are therefore assigned for selected prod-
ucts. This is a second reason for choosing holding du-
rations because the arrival times can be easily realised
by the use of initial unavailable tokens. The modelling,
simulation, and optimisation of the well-known travel-
ling salesman problem [33] is done in the second case
study. Maybe Petri Nets are not really the best solution
for modelling this problem but it is very useful to show
the capabilities of the MATLAB PetriSimM toolbox.
The conflicts of the underlying Petri Net are disabled
by the definition of the sequence list and therefore no
real conflicts have to be considered. For this reason the
enabling durations are used to model this problem to re-
duce the computational duration of the optimisation. In
this case the time delays of the transitions are modelled
by stochastic distribution functions. Variance reduction
is used to speed up the stochastic optimisation and se-
lected benchmarks are done to show the advantage of
the implemented technique.

5.1 Production Cell

In this production cell different types of products can be
processed. Each product type requires a special fixture
and for each type exist only one fixture. This fixture
is used to fix the product into the suitable position for
processing. Platforms are used to move and shift the
products inside the production cell. The process flow is

processing dismounting of
products

platform

product

fixture

setup of products

platform

product

fixture

platform

product

fixture

setup of fixtures

platform

fixture

dismounting of
fixtures

platform

fixture

Fig. 5 Process Flow of Production Cell

separated into five different production steps (figure 5):
Setup of fixtures: If the fixture for the next product is
not mounted onto a platform it has to be mounted onto
an empty one. This procedure takes the setup-time for
the fixture. Otherwise the platform with the fixture for
the next product is taken without loosing time.
Setup of products: Products are mounted onto the fix-
tures. For this step the setup-time for the product is
needed.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

Processing: In this step the product is processed au-
tomatically and computer controlled. This procedure
takes the processing time for the product and the pro-
cessing is characterised by long process times.
Dismounting of products: After the processing step
the products are dismounted from the fixture. For this
process part the dismounting time for the product is
needed.
Dismounting of fixtures: Fixtures are dismounted de-
pending on the sequence order of the products. If the
fixture is dismounted it takes the dismounting time for
the fixture. Otherwise the platform with the fixture on
it is waiting for setup the product.

The processing of the products is automated and is in-
dependent of any restrictions. By contrast, one resource
is shared by the four other process steps of the process
flow. This means that the process steps have to be oper-
ated one after another. Therefore the following prioriti-
sation is used and implemented to optimise the process
flow:

1. dismounting of fixtures

2. dismounting of products

3. setup of products

4. setup of fixtures

5.1.1 Due Dates

In case of due dates selected products have given arrival
and finishing times. After the products have passed the
processing part of the production cell they are finished.
If the desired finishing times are exceeded a penalty
time will be added to the overall cycle time of the pro-
duction.

5.1.2 Implementation

The Petri Net model of the production cell is automat-
ically generated by the use of a programmed template.
The function productioncell() creates all needed places,
transitions, tokens and colours whereas the following
input parameters can be used: names of the products,
the number of platforms, the initial sequence order of
the products, and the time delay matrix. The model

fixture

platform

products

storage

empty platformsnext

free resource

setup fixture dismount fixture

setup product process product dismount product

12

36

5

Fig. 6 Model of Production Cell

(figure 6) is separated into the five parts of the process
flow. The sharing of the resource is implemented as a
conflict of the place ”resource” and its connected tran-
sitions (setup fixture, dismount fixture, setup product

and dismount product). The different colours represent
the different product types and fixtures. In this case an
additional colour is used to model the empty platforms,
the availability of the resource and all other constraints.
The determination of the optimal dismounting sequence
for the fixtures is a highly sophisticated problem. Usu-
ally there are less platforms than fixtures available in the
production cell. On this account the fixtures have to be
dismounted on time. On the one hand, a deadlock can
occur if the fixtures are not dismounted because then
all platforms are occupied and no new fixture can be set
up. On the other hand, needless time consuming steps
are done if the fixtures are dismounted too early. A user
defined sequence function called platformsequence() is
used and implemented to solve this problem. The dis-
mounting sequence of the fixtures is calculated depend-
ing on the current sequence of the products and the
number of used platforms.

5.1.3 Results

In this case study a production cell is considered where
15 different products can be processed. The batch size
for each product is defined from 2 to 4 resulting in 45
processed products and a Petri Net model consisting of
224× 135 sized input and output matrices.
150 iterations are performed for the Simulated Anneal-
ing and Threshold Accepting algorithm to optimise the
production sequence. The implemented cooling strate-
gies and neighbourhood functions are compared. For
the Genetic algorithm three different population sizes
are considered and 20 generations are derived. Selected
parameter specifications are tested and the different im-
plemented crossover functions are compared. Finally,
the results for all algorithms are compared and shown.
Figure 7 shows the Gantt chart for the initial sequence

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Prod 1
Prod 2
Prod 3
Prod 4
Prod 5
Prod 6
Prod 7
Prod 8
Prod 9
Prod 10
Prod 11
Prod 12
Prod 13
Prod 14
Prod 15

Fig. 7 Gantt Chart of Initial Solution

of the products representing the initial solution of the
optimisation problem. The coloured vertical lines stand
for the desired finishing times of the selected products.
In the initial sequence not all products are available on
time and therefore additional gaps are created in the
present Gantt chart.

Comparison

Figure 8 shows the results of the comparison for Simu-
lated Annealing, Threshold Accepting and the Genetic
Algorithm. All three heuristic algorithms lead to very
good and similar results. Table 1 contains the needed
computational times for each optimisation algorithm
and the calculated duration of the production. In this
example the Genetic algorithm produced the best result
but 2000 simulation runs are needed for 20 generations

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

SA
TA
GA

Fig. 8 Comparison of SA, TA and GA

using a population of 100 individuals. Therefore the
computational effort for GA amounts to about fourteen
times as much as that for 150 iterations of the two other
algorithms. The TA algorithm performs the optimisa-
tion in the fastest way. The Gantt chart of the optimised

SA TA GA
Comp. Times 133.9 129.4 1775.4

Results 9976 9984 9949

Tab. 1 Comparison of Duration - SA, TA and GA

sequence representing the best solution of the optimi-
sation problem is shown in figure 9. Now all products
are available on time and therefore no additional gaps
are created in the present Gantt chart. Furthermore, all
products are finished on time and therefore no penalty
times are added to the overall cycle time of the produc-
tion. Table 2 shows the additional penalty values for the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Prod 1
Prod 2
Prod 3
Prod 4
Prod 5
Prod 6
Prod 7
Prod 8
Prod 9
Prod 10
Prod 11
Prod 12
Prod 13
Prod 14
Prod 15

Fig. 9 Gantt Chart of Best Solution

initial and best solution. If the defined due dates are ex-
ceeded the difference of the real and desired finishing
times is multiplied by the factor 100. Hence, the cu-
mulative penalty time for the duration of the production
amounts 2942 time units. The second results shown in
the table 2 are the so called setup times for the initial
and best solution. In this example the setup time means
the time when no product is in the processing part of the
production cell. The optimised solution brings in about
89 per cent improvement for the setup time.

5.2 Travelling Salesman Problem

The well-known Travelling Salesman Problem (TSP)
asks for the shortest route to visit a collection of cities
and return to the starting point. In this work the sym-
metric version of the TSP is treated. This means that,
for any two cities A and B, the distance from A to B is
the same as that from B to A. The costs for each con-
nection are derived depending on the distance and the

Initial Best
Penalty 294200 0

Setup time 4.39 % 0.49 %

Tab. 2 Comparison of Penalty and Setup Times

average speed of the salesman. In this case the average
speed is modelled as stochastic distribution function.

5.2.1 Implementation

Many approaches and algorithms exist to model and to
solve the Travelling Salesman Problem. Maybe Petri
Nets are not really the best and fastest solution but the
TSP can be easily modelled and optimised by the use
of the MATLAB PetriSimM toolbox. Figure 10 shows
the Petri Net model for the TSP which is automatically
generated by the use of a programmed template. The
function tspsym() creates all needed places, transitions
and tokens whereas the following input parameters can
be used: number of the cities, the initial sequence order
of the visits, and the distance matrix. In this case only

cities

50

Fig. 10 Model of Travelling Salesman Problem

one colour is used to model the different cities. The
symmetric TSP consists of n2−n

2 different transitions
representing all possible movements for n cities. The
arising conflicts of the Petri Net are deactivated by the
use of a sequence list. The input sequence contains only
the city numbers and therefore a user defined sequence
function (tspsequence()) is implemented to transform
the input sequence to the corresponding sequence list
for the transitions.

5.2.2 Results

In the stochastic case the average speed of the sales-
man is modelled by the use of stochastic distribution
functions. The stochastic optimisation is only possible
for Simulated Annealing and Threshold Accepting al-
gorithms because two different system configurations
are always compared. Basically a certain number of
simulation runs are needed to get significant results.
In this example 20 cities are taken into account to re-
alise the Travelling Salesman problem for stochastic
time delays. 150 iterations are done for each optimi-
sation algorithm. Figure 11 shows the plan of the cities
and their connections representing the initial solution
of the problem. Figure 12 shows the comparison of
Simulated Annealing and Threshold Accepting. Af-
ter 150 iterations the TA algorithm leads to better re-
sults. Table 3 contains the comparison of the duration
for both algorithms and presents the time improvement
achieved by the use of variance reduction. It can be seen
that the variance reduction highly reduces the compu-
tational effort for the stochastic optimisation. In both
cases about 70 percent of time can be saved. The de-
crease of the computational effort accompanies the re-

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

Fig. 11 Plan of Initial Solution

0 50 100 150
6

7

8

9

10

11

12

13
x 10

4

SA
TA

Fig. 12 Comparison of SA and TA

duction of needed simulation runs. Table 4 shows the
difference for both optimisation algorithms. The use of
variance reduction techniques decrease the number of
needed simulation runs in an essential way. About 80
percent of runs can be saved in both cases. Figure 13
shows the plan of the cities containing the optimised
route of the TSP.

Fig. 13 Plan of Best Solution

6 Conclusion
This work provides a general framework for modelling,
simulation and optimisation of scheduling problems
based on Petri Nets. The basic definitions of Petri Nets
are extended with the capability of time delays to en-
able the simulation over the time domain. Two dif-
ferent approaches of adding time to Petri Nets are im-
plemented. The holding durations and enabling dura-
tions principles provide a suitable basis for modelling
time dependent problems. Coloured Petri Nets offer
an easier graphical description for building more com-
plex models. Stochastic Petri Nets introduce the use of
stochastic time delays realised by stochastic distribu-
tion functions. Petri Nets are extended with the capa-
bility of modelling scheduling problems whereas arbi-
trary firing sequences can be defined. If all conflicts are
solved beforehand the scheduling problem is modelled
by the use of the basic properties of Petri Nets.
All features and functionalities are developed and im-
plemented in the open source MATLAB PetriSimM

Duration Normal VR Difference %
TA 6555.7 1416.1 5139.6 -78.40%
SA 2543.1 898.3 1644.8 -64.68%

Tab. 3 Time Improvement of Variance Reduction

Runs Normal VR Difference %
TA 138598 23834 114764 -82.80%
SA 53318 14857 38461 -72.14%

Tab. 4 Reduction of needed Simulation Runs

toolbox which is embedded in the powerful MATLAB
environment. The toolbox is suitable for educational
purposes as well as for modelling, simulation, and op-
timisation of real life processes. Several results can be
shown and all produced data can be used for internal
or external post-processing. Only two steps have to be
done by the user of the toolbox. The first one is the
development of the Petri Net model, which is build-
ing all needed conditions and constraints of the present
scheduling problem. The second step is the choice of
the best optimisation method and the correct and op-
timal specification of the needed parameters for the ot-
pimisation algorithm. Three different heuristic methods
are implemented and can be selected. Simulated An-
nealing, Threshold Accepting, and Genetic algorithms
are forming the choice for realising the optimisation of
scheduling problems. Depending on the present prob-
lem each optimisation algorithm has its advantages and
disadvantages. No general proof can be done to decide
which algorithm fits the best for all problems. Many
optimisation studies and runs have to be processed to
get significant results because in this case randomness
plays a certain role. Furthermore, the search for the
optimal and best suited parameters is a highly sophisti-
cated problem and mainly depends on the present prob-
lem specification. The heuristics are implemented to
form and offer a wide spread basis for the optimisa-
tion of scheduling problems. All methods can be easily
extended with further functionalities and functions and
new algorithms can also be implemented to the open
source toolbox.
The implemented methods and functionalities are tested
a case study. The optimisation leads to good and similar
results for all three algorithms and no significant differ-
ence can be determined. Threshold Accepting is the
fastest algorithm because of the simpler definition. No
randomness is needed to check and to decide if a worse
solution is accepted or not. Genetic algorithms are the
most extensive method because the computational ef-
fort of each generation depends on the population size.
The stochastic optimisation is time-consuming because
in this case the number of needed simulation runs is
modelled by a random number. If the difference of two
alternative system configurations is nearby zero, basi-
cally a lot of simulation runs are needed to get a sig-
nificant decision. The use of variance reduction shows
a high decrease of computational time because many
simulation runs can be saved for each comparison.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

7 References
[1] James J. O’Brian. Scheduling Handbook.

McGraw-Hill Book Company, 1969.
[2] Tadeusz Sawik. Production Planning and

Scheduling in Flexible Assembly Systems.
Springer-Verlag Berlin Heidelberg, 1999.

[3] Joze Balic, Yannis A. Phillis, Nikos
Tsourveloudis, and Ivo Pahole. Flexibility
in Manufacturing - Models and Measurement.
University of Maribour, Technical University of
Crete, 2002.

[4] Peter Brucker. Scheduling Algorithms. Springer-
Verlag Berlin Heidelberg, 2001.

[5] Simon French. Sequencing and Scheduling. Ellis
Horwood Limited, 1982.

[6] B. Griffer and G. L. Thompson. Algorithms for
Solving Production-Scheduling Problems. Oper-
ations Research, 8(4):487–503, 1960.

[7] Christian Kelling. Simulationsverfahren für zeit-
erweiterte Petri-Netze. PhD thesis, Technische
Universität Berlin, 1995.

[8] Dirk C. Mattfeld. Evolutionary Search and the
Job Shop. Physica-Verlag Heidelberg, 1996.

[9] René V. V. Vidal, editor. Applied Simulated An-
nealing. Springer-Verlag Berlin Heidelberg, 1993.

[10] N. Metropolis, A. Rosenbluth, M. Rosenbluth,
A. Teller, and E. Teller. Equation of State Cal-
culations by Fast Computing Machines. Journal
of Chemical Physics, 21:1087–1092, 1953.

[11] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by Simulated Annealing. Science,
220(4598):671–680, 1983.

[12] Gunter Dueck and Tobias Scheuer. Threshold Ac-
cepting: A General Purpose Optimisation Algo-
rithm Appearing Superior to Simulated Anneal-
ing. Journal of Computational Physics, 90:161–
175, 1990.

[13] John H. Holland. Adaptation in natural and arti-
ficial systems. The MIT Press, 1992.

[14] David E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addision-
Wesley Publishing Comp., Inc., 1989.

[15] David A. Coley. An Introduction to Genetic Algo-
rithms for Scientists and Engineers. World Scien-
tific Publishing Co. Pte. Ltd., 1999.

[16] Lawrence Davis, editor. Handbook of Genetic Al-
gorithms. International Thomsen Computer Press,
1996.

[17] Mituso Gen, Yasuhiro Tsujimura, and Erika Kub-
ota. Solving Job-Shop Scheduling Problems by
Genetic Algorithm. Proc. 16th International Con-
ference on Computers and Industrial Engineering,
Ashikaga, Japan, 1994, pp. 576-579.

[18] D. Goldberg and R. Lingle. Alleles, Loci and
the Travelling Salesman. Proc. of the First Inter-
national Conference on Genetic Algorithms and
their Applications, San Matteo, Italy, 1985.

[19] Averill M. Law and W. David Kelton. Simula-
tion Modelling and Analysis. McGraw-Hill, Inc.,
1991.

[20] Paul Brately, Bennet L. Fox, and Linus E.
Schrage. A Guide to Simulation. Springer-Verlag
Berlin Heidelberg, 1987.

[21] The MathWorks Inc. Matlab connec-
tions – third party products and services.
http://www.mathworks.com/products/connections,
2006.

[22] M.-H. Matcovschi, C. Mahulea, and O. Pastra-
vanu. Petri Net Toolbox for MATLAB. Proc.
MED 2003 Conf., Rhodes, Greece.

[23] TGI group. Petri nets world. University of Ham-
burg, Germany, 2006, http://www.informatik.uni-
hamburg.de/TGI/PetriNets/.

[24] McLeod Institute of Simulation Sci-
ences Hungarian Center. Cassandra 3.0.
http://itm.bme.hu/mcleod/cassandra.html, 2002.

[25] Gašper Mušič, Borut Zupančič, and Drago Matko.
Petri Net Based Modelling and Supervisory Con-
trol Design in Matlab. Proc. EUROCON 2003
Conf., Ljubljana, Slovenia, 362-366.

[26] Thomas Löscher, Felix Breitenecker, and Gašper
Mušič. Petri Net Modelling and Simulation in
Matlab – A Petri Net Toolbox. Simulation News
Europe, Issue 43, July 2005, 20-21.

[27] Thomas Löscher, Felix Breitenecker, Gašper
Mušič, and Dejan Gradišar. A Matlab-based Tool
for Timed Petri Nets. Proc. ERK 2005 Conf., Por-
torož, Slovenia, 273-276.

[28] Thomas Löscher, Dejan Gradišar, Felix Breite-
necker, and Gašper Mušič. Timed Petri Net Sim-
ulation in Matlab: A Production Cell Case Study.
Proc. MATHMOD 2006 Conf., Vienna, Austria.

[29] Thomas Löscher and Felix Breitenecker. Petri
Net Modelling and Simulation of Production Pro-
cesses with PetriSimM, a MATLAB-based Tool-
box. Proc. 12. ASIM - Fachtagung Simulation in
Produktion und Logistik 2006, Kassel, Germany,
313 - 319.

[30] Gašper Mušič, Thomas Löscher, and Dejan
Gradišar. An Open Petri Net Modelling and Anal-
ysis Environment in Matlab. Proc. IMM 2006
Conf., Barcelona, Spain, 123-128.

[31] Thomas Löscher. Simulationsbasierte opti-
mierung zur verbesserung der produktionsabläufe
in einer flexiblen fertigunszelle. Master’s thesis,
Technische Universität Wien, 2004.

[32] Thomas Löscher, Markus Klug, and Felix Breit-
enecker. Simulation-based Optimization of Pro-
duction Plans for a Production Cell using Heuris-
tic Methods - Comparison of Tabu Search, Simu-
lated Annealing and Threshold Accepting. Proc.
EUROSIM 2004 Conf., Paris, France.

[33] E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy
Kan, and D. B. Shmoys. The Traveling Salesman
Problem: A Guided Tour of Combinatorial Op-
timization. John Wiley & Sons Ltd, New York,
1985.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 11 Copyright © 2007 EUROSIM / SLOSIM

