
A PHP/MATLAB BASED E-LEARNING SYSTEM FOR
EDUCATION IN ENGEINEERING MATHEMATICS AND

IN MODELING AND SIMULA TION

Günther Zauner1, 2, Nikolas Popper1, Felix Breitenecker2

1”die Drahtwarenhandlung” Simulation Services, Neustiftgasse 57-59, 1070 Wien
2Vienna University of Technology, Institute for Analysis and Scientific Computing,

1040 Vienna, Wiedner Hauptstraße 8-10 , Austria

Guenther.zauner@drahtwarenhandlung.at

Abstract

The goal of this work is to present an e-learning tool based on the MATLAB Webserver
technology. We offer an adaptive PHP framework which can be used for interactive learning
in lessons and in project practices, as well as for web presentations of computer algebra
solutions made in MATLAB (e.g. nonlinear fit problems for medical data). All
mathematical/numerical solutions of the tasks are done in MATLAB. Another basic of the
concept is not only to show the students the solution of a problem via internet for several
different functions or parameters, but also to offer them the source code. The students can
download the code and test other features and learn programming of mathematical solutions
with a computer numeric/algebra package. An explanation of the detailed structure of the PHP
– framework is given.
The main focus of this paper lies on model attempts for
physiological systems. An example of a simple infusion
model is used for interactive learning and system
testing.
In several parts the way from a poor data interpolation
to a data model with exponential functions up to a
solution with transfer functions and parameter
optimization is described. The outlook concerns the
expandability of the defined framework, and will also
focus on the restrictions of the system and how to deal with them.

Keywords: e-learning, MATLAB, open code fragment, interactive learning.

Presenting Author’s biography

Günther Zauner. He has earned a degree in mathematics with
specialization in “mathematical computer science”. With an
interdisciplinary background based on higher technical school he has
experience in the application and the development of numerical methods
and different modeling approaches.
Current work focuses on simulation and modeling techniques, in this
context especially model structure dynamics. Another main field of
interest is the development of e-learning systems based on simulation
environments.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 General

At Vienna University of Technology a very similar
problem like in other technical schools/universities in
presenting lectures dealing with modeling and
simulation basics, as well as summing up the
necessary mathematical theory occurs: How to present
the theory of modeling and simulation of special tasks
based on examples, so that the students can follow it
easily and thereby learn the most important basics?

As known from theory “learning by doing” is one of
the best options. That is why the department for
analysis and scientific computing designed the
following structure for education. One of the main
goals is to present dynamical models with a praxis
interrelationship, which will be explained during the
lessons, but should be also available via a web
interface for advanced learning at home. Another
principle is based on mathematics and computer
numeric. For example it is much more
comprehensible for students that the associative and
distributive laws working with floating point numbers
are hurt, when the conclusion is confirmed by
interactive examples. In this case it is also important
to show the programmed code in an easy readable
language or with pseudo code.

This leads to the next benefit of the defined structure:
the algorithmic part of the examples is all done in
MATLAB and MATLAB/Simulink. This computer
algebra/numeric package including the symbolic math
toolbox is also used in the lessons “Einführung in das
Programmieren für technische Mathematiker” and
“Computermathematik”. Therefore the main part of
the visitors of the lessons, where the Webserver
applications are included, are familiar with reading
MATLAB code.

2 Background of MATLAB Webserver

In general, as the examples are all realized in the
MATLAB Release 2006a, the MATLAB Webserver
application [1] needs an additional Webserver to act as
server in client/server web architecture. In our case we
use an Apache Webserver [2]. The interface used for
input or input/output representation is defined by
standard HTML (Hypertext Markup Language) [3]
frames, which interact with MATLAB via a CGI –
script.

In our case we decided to use PHP and interconnect
the files directly with the Webserver. This has the
following benefits:

• The system becomes more stable, because we
have only two layers left instead of three.

• After defining the structure once, the whole
system acts in modular concepts, which
means that we can adapt examples and add
new ones, without any code writing in PHP
or HTML.

To get a general reusable system we have to define a
global concept, capable to support the most important
features for education in mathematics, modeling and
simulation. Thus, we will get some restrictions in
graphical representation and/or textual representation,
but on the other hand a well defined structure supports
easy model implementation and illustrating special
content of teaching, which is not that easy explained
in the common way at a blackboard.

The main part of the work is to create the basic
structure. We chose the following frame definition, as
shown in Fig. 1.

Fig. 1 the general framework of the user interface
including the first example

The upper left part of our input/output interface is the
title of the chapter and a short explanation of the
context, this part is dealing with.

In the same frame, beginning in the middle until the
right side, there is the list of the examples
corresponding to the chapter/block. This part has place
for three columns with up to five rows providing the
links to the specific examples. The lower part of the
website, which is split into two frames, has an empty
right side at the beginning of an example. On the left
part a short description of the actual model is given.
Under this part the definition and the settings of the
selectable variables and parameters are placed.

3 Detailed structure

As already explained a general network is important to
make an easy useable structure and to allow the fast
growth of the system after a one-time detailed
structural definition and implementation.

This is done in PHP with some special features. For
fast transformation of the poor MATLAB m-file code
into an MATLAB Webserver application we have to
define some restrictions for the right side of the lower
frame. This frame represents the output part of the
system. As MATLAB allows different types of
outputs and our system has restrictions in place and
abilities for data representing (e.g. no rotation of 3d –
graphics possible), we have to define strict rules for
output creation and representation.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

3.1 The three different output structures

In many cases of data transformation and in modeling
and simulation, the user or developer is only interested
in a textual form of the output. As known MATLAB
can easily organize textual output to the command
window (e.g. commands disp or print) or to a file. For
our structure we define the synonym retstr as standard
return value. This can be set to a string beginning with
‘TEXT’ and then filled with the return text, in which
standard HTML commands, like
 or <i>, can be
implemented. The originated text is then transformed
to standard HTML text in the output frame after
executing the m-file.

The second sort of output is the classical plotting
window. This is in our structure a so called ‘IMAGE’
– structure and therefore the retstr return value is set
to this string. The implementation of such a structure
needs a few extra code lines. An implementation of a
graphical output can be done for example like this:

Pic = figure(’visible’,’off’);
… % in this part the plot is defined in the same way

% as this is done in standard MATLAB notation

drawnow;
wsprintjpeg(Pic,
instruct.mlimgfilename);
retstr = ’IMAGE’;

The third output class is the so called ‘ERROR’ –
class. To define the return value we first have to
define what we consider to be an error. The first part
where this class occurs is, when a MATLAB internal
error arises. This can be for example because of wrong
dimensions of input vectors or singularity of matrices.
In these cases the original error message from
MATLAB should be displayed via the web interface.
The second sort of error message is the developer
defined case. Such error messages are more or less
equivalent to the work/usage of the TEXT construct
and are in many cases used for programmer defined
breaks before a MATLAB internal bug can occur.

3.2 Types of input variables

As everybody who is handling IO – interfaces for user
applications knows, it is very hard to define a structure
in which the user has a broad field of testing
potentials, but concurrent catching all parameter
settings and structures which are not allowed because
this takes a lot of programming effort. Therefore we
define special data types in PHP and perform the basic
checks for the range directly in the definition part of
the class.

The following code fragment shows all types of
variables. The detailed explanation can be found
below.

<?php
$pageVars['ml_mfile']='example_ergo3';
$form = new Form();
 $form->addField(new
ComboField('var1', 'paramter to

optimize:, 1,array(1 =>'TI',2 =>'KI',3
=>'TB',4 =>'KB')));
 $form->addField(new
FloatField('var2', 'starting value:',
0.1, 0.0001, 60));
 $form->addField(new
IntegerField('var3', 'Number of steps:',
5, 1, 30));
 $form->addField(new
TextField('var4,'Answer:', 'Optim.'));
$pageVars['form'] = &$form;
?>

The second code line defines the coupled MATLAB
file, which runs within the defined structure. The
following lines define examples for the four different
input types: ComboField, FloatField, IntegerField and
TextField.

The ComboField is a classical combo box (see also
Fig. 2) as defined in several GUIs (General User
Interface). In the example above the user can switch
between four cases, which are than in MATLAB
represented as numbers one to four.

The next part is the definition of a FloatField. The
MATLAB name of the corresponding variable stands
first and is the string var2. The next part separated by
comma is the name the user will see in the interface.
The third part is the default setting followed by the
minimum value and the maximum, which can not be
reached. The testing, if the defined value is valid, is
executed by PHP, and in case it is not the input name
is highlighted in red color and furthermore an error
message occurs.

The definition of an IntegerField is done in a similar
way as the FloatField. It is implemented because in
many cases it does not make sense to define
everything as floating point number. Moreover it
improves the data filtering for the m-file.

The fourth example is a standard TextField. Compared
to the IntegerField construction in this structure the
last two parts of definition are missing. That is
because a string does neither have a minimum value
nor maximum value.

If we save this definition in the so called initialize text
document, we get a system like depicted in Fig. 2.

Fig. 2 graphical output corresponding to the code
fragment on the left side of the page.

After explanation of the different data types the
definition of the structure for the other components
has to be done.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

3.3 Input structure

We distinguish two different levels of our structure.
This is done to ensure the reusability of the system
and allow other staff, after a very short instruction
period, to define new chapters and Webserver
examples after defining the appropriate MATLAB
code.

The main layer is the so called chapter level. The
folder for one layer includes subfolders with the
examples and four text files (There are several other
files which are not important for the developer of new
examples. These files include PHP code.). The first
one, description, contains the text which is then
represented in the top frame at the left side. This text
can be defined in a standard editor using basic HTML
commands.

The second, headline, is self-explanatory.

The third text file includes a few PHP commands in
which the user can define a number for sorting the
chapters. This part is optional and is only
implemented for advanced system definition and
extension for chapters in a higher hierarchical order.

The last file in the folder, navigationLabel, defines the
chapter number. This block is also optional if we
focus on only one chapter as a web application.

Now we have already defined the structure of an
example chapter. One thing missing until now is the
structure of the examples included in such a package.
But as we will see the structure is quite similar and
that is why the user does not have to learn many
things before starting the implementation of examples.

Again we have a text file called description, where the
short explanation of the file is created in textual form
or with a few HTML additions. The initialize part is
explained in detail in section 2.2.

The navigationLabel text file includes the name of the
example. This name shows up as an entry in the link
list in the upper frame of our example. Summing up
this description we see, that after the user has written
the mfile, only the input variables have to be set in
PHP, all the rest is only writing text in an editor.

4 Application for transfer functions

After the definition of the whole framework – which
is the main part of the work – we can go a step
forward and show the structure and its
benefits/restrictions within an application in the field
of modeling and simulation in education.

In many cases it is easier for the students to
understand system behavior of a class of problems
using an example. Therfore a simple infusion model is
chosen to explain the way from data measures up to a
dynamic model structure.

4.1 Assignment of tasks

Backgrounds for the considerations in our model are
physiological and metabolic processes

• which are observed over a time interval and
for which measurements are available,

• which are influenced by factors from
outside(e.g. medicine) and are reacting in a
special way,

and

• systems where the attitude can be focused on
relatively isolated from the surrounding, this
means that the reaction to an excitation is not
depending on other physiological
components.

In the center of interest is the time dependent
coherence between input and model reaction. The
model has to be able to

• describe the time dependent characteristics in
a mathematical comprehensible form,

• solve the problem with good correlation
between input and output,

• reflect the physiological and biological
coherence qualitatively well,

• to define the individual quantitative reaction
only by parameter finding,

• fit the measurements as good as possible,

and

• predict the process reaction also with other
conditions (e.g. changed excitation).

4.2 The model definition

The basic experimental structure of the model [4] is
given by the following (virtual) assumptions:

An infusion with 500 ml of a substance over one hour
is leading to an increase of the concentration of a well
defined substance in the blood. Measurements ci
showing the increment of the substance in the blood
are available at all time points ti (every 15 minutes).
Also important for the modeling point of view is what
happens before the simulation starts. This is pointed
out with two extra measurements half an hour and 15
minutes before the infusion starts. Fig. 3 shows the
basic system.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

Fig. 3 model assumption

4.3 Data approach

The general question in the first iteration is, if there
exist a mathematical model (formula) which can
interpret the increase of concentration by a function
which is at the measurement time close to the
measured values. In the simplest case we are searching
for an interpolation function f(t) with

 },...,1{)(nictf ii ∈∀= (1)

One of the easiest ways to handle this is to make a
polynomial interpolation. This is a classical data
approach and therefore it is implemented as the first
example in our MATLAB Webserver system. The
modeling environment looks like the screenshot in
Fig. 4. The students have the possibility to test the
model with different compensation polynoms and with
the interpolation polynom of order twelve.

Fig. 4 MATLAB Webserver example for a polynomial
interpolation of the task defined in chapter 3.2

The students see the problems that occur when
someone adds an extra measurement and that the
interpolation is good in the data points, but outside it
tends towards infinity. Also the problematic of the
impossibility to handle other input functions and make
a feasible model with the polynomial function can be
shown. From modeling point of view this model is not
appropriate because our system description acts with
physiological impossible (negative) values.

The main problem of the function f(t) is, that it does
not depend on the input function. It tries to handle the
output, whereby the measurements are the only used
knowledge. The infusion is never taken into account.

To sum it up we can see that all of this interpolation
methods (polynom interpolation, splines,…) just build
a data model – the model does exclusively represent
the measurements ci.

4.4 Exponential function approach

The next step towards an universally valid model is
established on basic considerations:

From physiological point of view we know, that the
function should be relatively smooth over time.
Furthermore we see coherence between the input
function defined as a rectangular by the infusion input.

The coherence between infusion and the system
reaction is described by exponential functions. The
first time before the infusion starts to flow into the
blood we assume the zero function as only valid
solution. When the infusion starts, the output function
tries to come up to a fixed level. In general this is
explained by formular (2).

 ℜ∈−= −− cbaebatf ottc ,,*)()(
 (2)

In the end of the infusion time the input function
jumps to zero. Afterwards the measured data seems to
follow this function. This can be modelled again with
a negative exponential function.

Summing up these results, we get a function which
describes the output behaviour of the physiological
system with three general exponential functions,
whereby the first part, the zero function, is trivial.

The implementation of this model assumption is
shown in Fig. 5. In this model the extra possibility of
parameter variation for the third part can be done.

Fig. 5 MATLAB Webserver implementation for the
exponential model assumption

As can be seen, the model output fits the
measurements ci very good. But what has to be taken
into account is, that this model is no interpolation with
exponential functions because the exponential
functions used in the model act on different intervals.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

A big disadvantage of the structure is that a change in
the activation function (infusion) changes the whole
reaction function. Nevertheless this model is not any
more a simple data model because the input influences
the output structure (defines when to switch between
the different exponential functions).

4.5 Transfer function approach

As we want to use our MATLAB Webserver in
education to teach the students to handle simple
physiological examples, the solutions we give until
now are not good enough. That is the reason why we
make the next step towards a general system
description.

Control theory leads to an appropriate model
description between the input u(t) and the output x(t)
in a structural-graphical, as well as in a mathematical-
formulary way. The general structure is depicted in
Fig. 6.

Fig. 6 structural-graphical representation of the

relation; input u(t)/output x(t), general model (top) and
first order function as for the infusion model(down)

To get a feeling for the work of a transfer function and
how to handle a system in an adequate way with this
control structure we implemented several examples on
the MATLAB Webserver. The solutions for the first
order activation function and a parameter combination
for a second order system with real zero points of the
denominator are shown in Fig. 7.

Fig. 7 first order and second order with real zero
points

The PT1 – element is plotted as dashed red line, in the
representation of the second order transfer function the

turning point of the function is visualized as a blue
star.

The students can test optimization algorithms and for
all the examples they have the button view mfile in the
lower left corner of the example definition and
parameter frame. This leads to another benefit of our
system. The people working with this interface learn
about modelling and simulation and, furthermore, by
using this simple example they can advance their
knowledge about programming in the computer
numeric/algebra package MATLAB, which is in a
wide area more or less the standard.

The next class of functions to be focussed on are the
complex second order transfer functions. In this
context the characteristic parameters are damping and
frequency. A composition of all three systems (first
order, second order real and second order complex)
for our infusion model is shown in figure 8. The
output functions are all coloured red, whereby the
dashed line shows the PT2 – real model and the dotted
one represents the first order transfer function.

Fig. 8 three different transfer function approaches for
the system from chapter 3.2

For all of these transfer function models we see, that
we are now (far) away from the poor data model. Our
system can now handle the dynamic features of this
model and the solution which is generated with this
method is capable to react in an adequate way to input
changes.

5 Fourier series application

Another often used application in techniques is the
approximation of a periodic function by a sum of
trigonometric functions. The theory behind is called
Fourier series [5] and is a part of teaching in all
technical branches of study at Vienna University of
Technology. For this reason additional blocks with
examples are implemented on the MATLAB
Webserver.

One class of examples starts with a picture of a
predefined example function. A sample is shown in
Fig. 9.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

Fig. 9 setting of a standard task on our interface.

The students first have to answer questions and then
go on with the solution of the system. The focus
hereby does not only lie on the mathematical solution
of the task into an indefinite sum, but also to explain
effects like Gibbs phenomena and to communicate the
feeling how many elements are necessary to get an
effective solution for further calculations.

The approximation of the input function with a
defined number of elements can be calculated. The
solution for the function defined in Fig. 9 is shown in
Fig. 10. Also the formulas for the coefficients of the
sinus and cosinus function are returned.

Fig. 10 solution with eight elements to the example

defined like in figure 9.

The last questions discussed in the block are the
frequency and absolute value spectra. This
representation explains again the behavior of the
absolute value for higher number of summing index.

For the discussed example the solution of the block is
shown in Fig. 11.

Fig. 11 the upper plot shows the amplitudespectra of
the an, which means the coefficients of the cos part.
The lower plot depicts the coeff.of the sin elemts.

Within these two plots the students can see on of the
necessary conditions for convergence of the sum of
trigonometric functions: the coefficients have to be a
null sequence. The coefficients of a convergent
majorant series can be chosen to depict the knowledge
graphical. Therefore the symbolic math toolbox is used
again.

6 Outlook

As pointed out in sections 4 and 5 the MATLAB
Webserver solution is compatible for use in modeling
applications. Two main goals are of interest:

• Easy handling parameter/function-variation
for given examples, and thus, supporting
learning by doing

and

• the possibility to have a look at the source
code in every step and make further work
with it in the own MATLAB workspace.

The shown system is a tool which is not only used to
present tasks in modeling and simulation, but also to
impart the students in special fields of mathematics,
where the graphical view combined with the formal
solution helps a lot to understand the theory (e.g.
Fourier Series, higher dimensional extreme value
analysis, Taylor Polynom, Interpolation, …).

One of the most interesting next steps will be the
implementation of a state flow simulation
environment based on the MATLAB Webserver.

7 References

[1] http://www.mathworks.com/

[2] http://httpd.apache.org/

[3] M. Lubkowitz. Webseiten programmieren und
gestalten – HTML, CSS, JavaScript, PHP, Perl,
MySQL, SVG. Galileo Press, Bonn 2003, ISBN-
10: 3898423131.

[4] F. Breitenecker, H .Ecker and I. Bausch-Gall.
Simulation mit ACSL : eine Einführung in die
Modellbildung, numerischen Methoden und
Simulation . Braunschweig : Vieweg, 1993. - XI,
399 S

[5] H. Amann, J. Escher. Analysis II. Basel Bosten
Berlin, Birkhäuser, 1999

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

