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Abstract 

New trends for the structure of simulation systems support hybrid modelling and structural dy-
namic systems. The paper first discusses discrete elements in the CSSL Standard, and - in more 
detail - classification of ‘classic’ state events. There, structural-dynamic systems are generated by 
state events, changing the dimension of the state space. The paper continues with recent develop-
ments caused by Modelica and VHDL-AMS, which introduce non-causal modelling on a high 
level, including implicit models and state events associated with boundary conditions. Both new 
standards extend the CSSL standard, with emphasis on continuous systems; but especially Mode-
lica allows defining pure discrete model constructs based on events, state charts, and Petri nets.  

 

The main chapters concentrate on further extensions for the CSSL frames, mainly in order to han-
dle hybrid and structural-dynamic systems properly. There, features of two competing ‘philoso-
phies’ are sketched, maximal state space versus hybrid decomposition. In order to allow a high 
flexibility at modelling level, state events are characterised as ‘internal state events’ (I-SE) or ‘ex-
ternal state event’ (E-SE). An I-SE is handled in a classic way: detecting, localising, event han-
dling, and restart of integration. An E-SE is detected and localised, but then it terminates the simu-
lation of the (previous) model; the event itself is managed outside the model(s), and simulation of 

the same or of another model is started. Both types of event can 
be described by state charts (se at left); implementation is the 
simulator’s task. Finally, simulators being able to implement 
both state event types are reviewed: Modelica/Dymola, Mosilab, 
AnyLogic, ModelVision, and MATLAB/Simulink/ Stateflow. 
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1 Introduction 
Since early times of simulation, attempts were made 
to standardise digital simulation programs by means 
of a self standing structure for simulation systems. 

There were some unsuccessful attempts, but in 1968 
the CSSL Standard (The CSSL Report commissioned 
by the Simulation Council Inc - SCI) became the mile-
stone in the development: it unified the concepts and 
language structures of the available simulation pro-
grams, it defined a structure for the model, and it de-
scribes minimal features for a runtime environment. 

In principle, this basic CSSL structure standard has 
been a standard for almost four decades, although a lot 
of extensions and other concepts have been developed 
and discussed. Also modern simulation systems, like 
Dimple, follow in principle an extended CSSL stan-
dard. Mainly these extensions deal with discrete 
model parts, and with DAE modelling (discussed in 
Sections 4).  

An alternative standardised structure on basis of sys-
tem theory is Zeigler’s hybrid extension of the DES 
formalism (Discrete Event Systems). Unfortunately 
this approach is not familiar in the area of continuous 
system modelling, and prototype implementations put 
emphasis on the discrete world. 

Since three years a new challenge is discussed in 
combined continuous / discrete modelling and simula-
tion, the challenge of structural dynamic 
systems. 

In principle, structural dynamic systems can 
be modelled and simulated in CSSL struc-
tures, but main problem is the fixed state 
space, as well in the CSSL structure as well 
as in hybrid DES. 

In any case, state events are bridging the gap 
between the continuous world and the dis-
crete world. On the one side, continuous 
modeling views state events as interruption 
of the continuous course of the system, 
which has to be handled properly, in order to 
continue continuously. On the other side, 
discrete system theory puts state events in 
the foreground, which update states and 
which control switching between different 
update algorithms (static algorithmic up-
date, stochastic update base on event 
mechanisms, or also ODEs and DAEs). 

Coming from side of continuous simulation, state 
events may be viewed in an ambivalent manner. They 
may cause discontinuous changes within a running al-
gorithm updating the states (ODE solver), or they may 
cause a termination of the current update algorithm 
(ODE solver), and starting a new update algorithm 
(ODE solver) with same or with another model. There, 
the second view would allow easy modelling and 
simulation of structural dynamic systems. 

It is worth to develop the fore-mentioned idea on basis 
of a structure with internal state events and external 
state events, discussed in chapter 5. 

Interestingly, this idea of a distinction of state events is 
related to the development of Modelica, where external 
state events are discussed as basis for model switching 
based on state charts. Furthermore, since about five 
years simulation systems try to implement features for 
dynamic structures, switched by state events. First, this 
development used the backdoor by means of simulator 
coupling, now generic extensions and new systems are 
available (discussed in chapter 6). 

2 CSSL Standard 
The CSSL standard suggests structures and features 
for a model frame and for an experimental frame. This 
distinction is based on Zeigler’s concept of a strict 
separation of these two frames. Model frame and ex-
perimental frame are the user interfaces for the heart 
of the simulation system, for the simulator kernel or 
simulation engine. The simulation engine drives the 
calculations in the time domain. This basic structure 
of a simulator - due to CSSL standard – is illustrated 
in Figure 1. 

This basic structure does not include any features for 
discontinuous changes, so that very soon at least time 
event features were incorporated. 

3 Discrete elements and events in  
       continuous simulation 
The CSSL standard defines segments for discrete ac-
tions, first mainly used for modelling discrete control. 
So-called DISCRETE regions or sections manage the 
communication to and from the continuous world and 
compute the discrete model parts.  

These discrete section model discrete events, sched-
uled by time-dependent inputs (time events), or sched-
uled by state-dependent threshold functions (state 
events). 

Fig.1  Basic structure of a simulation language  
due to CSSL standard 
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3.1 Time Events 

In the graphical model description discrete controllers 
and the time delay could be modelled by a z-transfer 
block. If a discrete action is more complex, graphical 
descriptions have problems. SIMULINK offer for this 
purpose triggered submodels, which can be executed 
only at one time instant, controlled by a logical trigger 
signal. New versions of MATLAB also integrate a 
state machine (State Flow) for event control. Recently 
(2006) event control is supported in MATLAB/ Simu-
link by the SimEvent Blockset, offering also the entity 
concept.  

In any case, the simulation engine must handle an 
event list, representing the time instants of discrete ac-
tion and the calculations associated with the action, 
where in-between consecutive actions the ODE solver 
are to be called (see Figure 2, extended structure of a 
simulator due to CSSL standard). 

3.2 State Events 

Much more complicated, but defined in CSSL, are the 
so-called state events. Here, a discrete action takes 
place at a time instant, which is not known in advance, 
it is only known as a function of the states, described 
by a threshold function. This discrete action (‘time-
less’ action) may simple change an input – or the 
structure of a system. 

As example we consider the pendulum with con-
straints. If the pendulum is swinging, it may hit a pin 
positioned at angle  ϕp  with distance lp from the point 
of suspension. After hit case the pendulum swings on 
with the position of the pin as the point of rotation and 
the shortened length ls = l - lp. and the angular veloc-
ity  dϕ/dt  is multiplied at position  ϕp   by  l/ ls  , etc. 

These discontinuous changes are state events, because 
they depend on the state ϕ . For state events the classi-
cal state space description is extended by the state 
event function h(x), the zero of which determines the 
event: 
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The example involves two different events: change of 
parameter (length), and change of state (angular veloc-
ity). Generally, state events can be classified in four 
types:  

• type 1: parameter change - SE-P 
• type 2: one or more inputs change  

discontinuously - SE-I 
• type 3: one or more states change  

discontinuously - SE-S 
• type 4: the dimension of the state vector 

changes discontinuously - SE-D 
 

Fig. 2  Extended structure of a simulation system with discrete elements (events) 
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State Events Type 1 (SE-P) could also be formulated 
by means of IF-THEN-ELSE constructs and by 
switches in graphical model descriptions, without syn-
chronisation with the ODE solver. The necessity of a 
state event formulation depends on the accuracy 
wanted. Big changes in parameters may cause prob-
lems for ODE solvers with stepsize control.  

State Events Type 2 (SE-I) are no real state events, 
they are time events – and listed here due to historic 
reasons. 

State Events Type 3 (SE-S) are essential state events. 
They must be located, transformed into a time event, 
and modelled in discrete model parts. In principle, 
these types of state events cannot exist, because a state 
variable cannot jump; jumps in states are caused by 
simplified modelling approaches. 

In case of the pendulum, in reality the hit at the pin is 
not an event changing the velocity; it is a short physi-
cal process different to the oscillation process. The 
whole process may be seen as sequence of different 
processes: oscillation of long pendulum (differential 
equations) – hit at pin (event or differential equation) - 
oscillation of short pendulum (differential equations) – 
leave from pin (event or differential equation) - oscil-
lation of long pendulum (differential equations) – , 
etc. 

State Events of Type 4 (SE-D) are essential ones and 
indicate a structural change in the model. In mechani-
cal systems, they indicate a change of degrees of free-
dom.  

Very often the threshold function switches between 
different algebraic constraints, so that these state 
events are coupled with differential-algebraic equa-
tions. In principle, these events may occur frequently, 
so that the system is called structural-dynamic, be-
cause the dimension of the systems changes quasi-
dynamically. 

Two philosophies are found in handling these struc-
tural dynamic problems: a hybrid decomposition of 
the process, or making use of frozen states (combined 
with index reduction algorithms). 

3.3 Handling of State Events 

In principle, the service (handling) of a state event re-
quires four steps:  

1. Detection of the event: usually by checking the 
change of the signum-function of h(x). 

2. Localisation of the event: algorithms make use of 
either iterative techniques, or of interpolation 
techniques for determining the time instant of the 
event with sufficient accuracy. 

3. Service of the event: calculating / setting new  
parameters, inputs and states; switching to  
new equations  

4. Restart of the ODE solver (in a ‘maximal’ state 
vector), or starting another model  
(hybrid decomposition) 

 
State events are facing simulators with severe prob-
lems. Up to now the simulation engine had to call in-
dependent algorithms, now a root finder for the state 
event function h(x) needs results from the ODE solver, 
and the ODE solver calls the root finder by checking 
the sign of h.  

Figure 2, an extension of Figure 1, shows the now 
more complex structure of calls between model frame, 
experimental frame, simulation engine and libraries. 
In principle, the kernel of the simulation engine has 
become an event handler, managing a complex event 
list with feedbacks. Furthermore it has to be noted, 
that not only classic time domain analysis by ODE 
solvers is offered, but also linear analysis by means of 
eigenvalue algorithms. Figure 2 also shows an inter-
esting relation to discrete simulation: an event list 
manager has to be implemented, which can handle 
also pure discrete systems without any differential 
equations.  

In case of a structural change of the system equations 
(SE-D) simulators usually can manage only fixed 
structures of the state space (‘maximal’ state space 
with frozen states in case of loss of degrees of free-
dom). 

In textual model description the DISCRETE construct 
allows to define events of any type, in graphical model 
descriptions calculations at discrete time instants are 
difficult to formulate within the continuous in-
put/output form. 

3.4 Classic implementations of Constrained  
Pendulum model 

The example Constrained Pendulum involves state 
events of type 1 (SE-P: discontinuous change of pen-
dulum length) and of type 3 (SE-S: change of angular 
velocity). Table 1 presents a classic ACSL model de-
scription, which works with two discrete sections hit 
and leave, representing the two different modes. 
These sections model the events, which are scheduled 
by the SCHEDULE statement in the dynamic model de-
scription. ACSL makes use of an iterative state event 
finder based on regula falsi.  

In pure graphical model descriptions we are faced 
with the problem that calculations at discrete time in-
stants are difficult to formulate. For the detection of 
the event SIMULINK provides the Hit Crossing block 
(Figure 3). This block starts state event detection (in-
terpolation method) depending on the input, the state 
event function, and outputs a trigger signal. Recent 
versions of SIMULINK offer an implicit use of such 
hit crossing facilities in all blocks with switching fea-
tures. 
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For restarting the integration with new values for the 
angular velocity, a formulation going back to the 
times of analog computation is used: the integrator 
block is extended by a logical reset signal input; as 
this signal triggers, the integration is restarted with 
initial values fed into the initial value input, which is 
the angular velocity after the hit. In the implementa-
tion given, the new angular velocity is calculated con-
tinuously, while needed only at the hit event.  

A more event-oriented implementation would make 
use of a triggered subsystem, which is executes only 
when the trigger from the hit crossing activates the 
event, calculating new angular velocity and providing 
new pendulum length.. 

 
Table 1: ACSL textual model description  

for Constrained Pendulum Example 
 

 
PROGRAM constrained pendulum 
CONSTANT m = 1.02, g = 9.81, d =0.2 
CONSTANT lf=1, lp=0.7 
DERIVATIVE dynamics 
  ddphi = -g*sin(phi)/l – d*dphi/m 
  dphi  = integ ( ddphi, dphi0) 
  phi   = integ ( dphi, phi0) 
  SCHEDULE hit   .XN. (phi-phip) 
  SCHEDULE leave .XP. (phi-phip) 
END ! of dynamics 
 
DISCRETE hit 
  l = ls; dphi = dphi*lf/ls 
END ! of hit 
 
DISCRETE leave 
  l = lf; dphi = dphi*ls/lf 
END ! of leave 
 
END ! of constrained pendulum 
 

4 From CSSL to physical 
object-oriented modelling 
and state chart modelling 
 
In the 1990s, a lot of attempts have 
been made to improve and to extend 
the CSSL structure, especially for 
the task of mathematical modelling. 
The basic problem was the state 
space description, which limited the 
construction of modular and flexible 
modelling libraries. Two develop-
ments helped to overcome this prob-
lem. On modelling level, the idea of 
physical modelling gave new input, 
and on implementation level the ob-
ject oriented view helped to leave 
the constraints of input/output rela-
tions. Furthermore, UML – the Uni-
fied Modelling Language – gave 
new inputs for hybrid modelling. 

4.1 Physical modelling in Modelica and VHDL-AMS 

In physical modelling, a typical procedure for physical 
modelling is to cut a system into subsystems and to 
account for the behaviour at the interfaces. Each sub-
system is modelled by balances of mass, energy and 
momentum and material equations. The complete 
model is obtained by combining the descriptions of 
the subsystems and the interfaces. This approach re-
quires a modelling paradigm different to classical in-
put/output modelling. A model is considered as a con-
straint between system variables, which leads 
naturally to DAE descriptions. The approach is very 
convenient for building reusable model libraries. 

In 1996, the situation was thus similar to the mid 
1960s when CSSL was defined as a unification of the 
techniques and ideas of many different simulation pro-
grams. An international effort was initiated in Sep-
tember 1996 for the purpose of bringing together ex-
pertise in object-oriented physical modelling (port 
based modelling) and defining a modern uniform 
modelling language. The language is called Modelica. 
Modelica is intended for modelling within many ap-
plication domains such as electrical circuits, multi-
body systems, drive trains, hydraulics, thermodynami-
cal systems, and chemical processes etc. It supports 
several modelling formalisms: ordinary differential 
equations, differential-algebraic equations, bond 
graphs, finite state automata, and Petri nets etc. Mode-
lica is intended to serve as a standard format so that 
models arising in different domains can be exchanged 
between tools and users.  

Modelica is a not a simulator, Modelica is a modelling 
language, supporting and generating automatically 
mathematical models in physical domains.  

Fig.3  SIMULINK model of Constrained Pendulum example 
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When the development of Modelica started, also a 
competitive development, the extension of VHDL to-
wards VHDL-AMS was initiated. Both modelling 
languages aimed for general purpose use, but VHDL-
AMS mainly addresses circuit design, and Modelica 
covers the broader area of physical modelling; model-
ling constructs such as Petri nets and finite automata 
could broaden the application area, as soon as suitable 
simulators can read the model definitions.  

Modelica offers a graphical model frame, where the 
connections are bidirectional physical couplings, and 
not directed flow. An example demonstrates how 
drive trains are handled. The drive train consists of 
four inertias and three clutches, where the clutches are 
controlled by input signals (Figure 4).  

 

 
 

Figure 4  Graphical Modelica model for coupled 
clutches 

 

The graphical model layout corresponds with a textual 
model representation, shown in Table 2 (abbreviated, 
simplified): 

 
Table 2: Textual Modelica model for  

coupled clutches 
 

 
encapsulated model CoupledClutches  
  "Drive train with 3 dynamically coupled 
clutches" 
  parameter SI.Frequency freqHz=0.2  
      ……………………………………………… 
  Rotational.Inertia J1( J=1, phi(start=0), 
w(start=10)); 
  Rotational.Torque torque; 
  Rotational.Clutch clutch1(peak=1.1, 
fn_max=20); 
  Sources.Sine sin1(amplitude={10}, 
freqHz={5}); 
     …………………………………….. 
  Rotational.Inertia J3(J=1); 
  Rotational.Clutch clutch3(peak=1.1, 
fn_max=20); 
      …………………………………… 
equation  
  connect(sin1.outPort, torque.inPort); 
  connect(torque.flange_b, J1.flange_a); 
  connect(J1.flange_b, clutch1.flange_a); 
      …………………………………….. 
  connect(clutch3.flange_b, J4.flange_a); 
  connect(step2.outPort, clutch3.inPort); 
      ……………………………………….. 
end CoupledClutches; 
 

 
 

Modelica can handle very different modelling ap-
proaches, not only ODEs and DAEs, but also finite 
state automata, and Petri nets. By means of state 
automata or state charts, conditions can be described 
more clear and transparent (see later). 

The translator from Modelica into the target simulator 
must not only be able to sort equations, it must be able 
to process the implicit equations symbolically and to 
perform DAE index reduction.  

Up to now – similar to VHDL-AMS – two simulation 
systems understand Modelica, Dymola from Dynasim, 
and MathModelica from MathCore Engineering. At 
present (2006/2007) the University of Lyngby devel-
ops and provides a Modelica simulation environment, 
the Open Modelica System, and Fraunhofer Gesell-
schaft develops a generic simulator, which under-
stands Modelica models and supports variable dy-
namic structures. 

As Modelica defines also graphical model elements, 
the user may choose between textual modelling, 
graphical modelling using elements from an applica-
tion library. Furthermore, graphical and textual model-
ling may be mixed in various kinds. Figure 5 shows a 
graphical model for a double pendulum, consisting of 
two revolute joints (one with damper), and two masses 
modelling the rods. For joints and masses equations 
are predefined and sorted together during compilation. 

 

 
 

Figure 5 Graphical Modelica model for double  
pendulum 

 
 
The model for the constrained pendulum can be for-
mulated in Modelica textually as a physical law for 
angular acceleration. The event with parameter change 
is put into an algorithm section, defining and sched-
uling the parameter event SE-P (Table 3). As instead 
of angular velocity, the tangential velocity is used as 
state variable, the second state event SE-S ‘vanishes’. 
In principle, one could use also graphical modelling 
for joint and mass using elements as in Figure 5, but 
the change of length must be formulated textually in 
an algorithm section.  

 

Table 3: Textual Modelica model for  
Constrained Pendulum 

 
 
equation /*pendulum*/ 
  v = length*der(phi);  
  vdot = der(v); 
  mass*vdot/length + mass*g*sin(phi)  
                   +damping*v = 0; 
algorithm 
if (phi<=phipin) then length:=ls; end if; 
if (phi>phipin) then length:=l1; end if; 
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4.2 Modelling events by state charts in AnyLogic 

In the end of the 1990s, computer science put the de-
velopment forward. The Unified Modelling Language 
(UML) is one of the most important standards for 
specification and design of object oriented systems. 
This standard was tuned for real time applications in 
the form of a new proposal, UML for Real-Time 
(UML-RT). By means of UML-RT objects can hold 
the dynamic behaviour of an ODE. There exist a lot of 
discrete simulation libraries for discrete simulation, 
based on the UML notation (class diagrams, state 
charts, etc). They allow for convenient modelling and 
simulation of DEVS – Discrete Event Systems.  

In 1999, a simulation research group at the Technical 
University of St. Petersburg used this approach in 
combination with a hybrid state machine for the de-
velopment of a hybrid simulator, from 2000 on avail-
able commercially as simulator AnyLogic. The model-
ling language of AnyLogic is an extension of UML-
RT; the main building block is the active object. Ac-
tive objects have internal structure and behaviour, and 
allow encapsulating of other objects to any desired 
depth. Relationships between active objects set up the 
hybrid model.  

 

 
Fig.6  Active objects with connectors  

exchanging discrete messages (rectangle ports)  
and continuous signals (triangle ports) 

 
Active objects interact with their surroundings solely 
through boundary objects: ports for discrete commu-
nication, and variables for continuous communication. 
The activities within an object are usually defined by 
statecharts (extended state machine). While discrete 
model parts are described by means of statecharts, 
events, timers and messages, the continuous model 
parts are described by means of ODEs and DAEs in 
CSSL-type notation and with state charts within an 
object.  

The following AnyLogic implementation of the 
Bouncing Ball example shows a simple use of state-
chart modelling (Figure 7). The equations are defined 
in the active object ball, together with the state chart 
ball.main. This state chart describes the interruption of 
the state flight (without any equations) by the event 
bounce (SE-P and SE-S event) defined by condition 
and action. 

 
Equations 
d(y)/dt=vy 
d(vy)/dt=-g 
 
 
 

 

 
Change event 
y<=0 && vy < 0 
 
Action 
vy = - k * vy; 

 
Fig.7  AnyLogic model for the Bouncing Ball 

 
An AnyLogic implementation for the Constrained Pen-
dulum may follow the implementation for the bouncing 
ball. A (main) active object ‘holds’ the equations for the 
pendulum, together with a state chart switching be-
tween short and long pendulum. The state chart nodes 
are empty, the arcs define the events (Figure 8). 

 
 
Equations 
d(alpha)/dt = omega 
d(omega)/dt =  
   (-g*sin(alpha)- 
     mu*omega)/l 
x = l*sin(alpha) 
y = l*cos(alpha) 

 
 
Change eventLong 
(alpha>=alphaN)|| 
(alpha<=alphaN) 
 
Action 
l=ll 
omega=omega*ls/ll 

 
Fig.8  AnyLogic model for Constrained Pendulum, 

simple implementation 

 

5 Hybrid and structural-dynamic  
       systems 
Continuous simulation and discrete simulation have 
different roots, but they are using the same method, 
the analysis in the time domain. During the last dec-
ades a broad variety of model frames (model descrip-
tions) have been developed.  

In continuous and hybrid simulation the explicit or 
implicit state space description is used as common de-
nominator. This state space may be described textu-
ally, or by signal-oriented graphic blocks (e.g. SIMU-
LINK), or by power-based block descriptions 
(Modelica, VHDL-AMS). In discrete simulation we 
meet very different techniques for the model frame.  
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Application-oriented flow diagrams, network dia-
grams, state diagrams, etc. allow describing complex 
behaviour of event-driven dynamics. Usually these 
descriptions are mapped to an event-based description. 

On the other side, the simulator kernel is similar for 
discrete and continuous simulators. The model de-
scription is mapped to an event list with adequate up-
date functions of the states within state update events. 
In discrete simulation the states are usually the status 
variables of servers and queues in the model, and state 
update is simple increase or decrease by increments; 
complex logic conditions may accompany the sched-
uling of events.  

In continuous simulation the state space is based of 
various laws used in the application area, and usually 
defined by differential-algebraic equations. DAE 
solvers generate a grid for the approximation of the 
solutions. This grid drives an event list with state up-
date events using complex formula depending on the 
chosen DAE solver and on the defined DAE. Addi-
tional time events and state events are inserted into the 
global event list. 

Hybrid systems often come with together with a 
change of the dimension of the state space, then called 
structural-dynamic systems. The dynamic change of 
the state space is caused by a state event of type SE-D. 
In contrary to state events SE-P and SE-S, states and 
derivatives may change continuously and differenti-
able in case of structure change.  

In principle, structural-dynamic systems can be seen 
from two extreme viewpoints. The one says, in a 
maximal state space, state events switch on and off al-
gebraic conditions which freeze certain states for a 
certain periods. The other one say that a global dis-
crete state space controls local models with fixed state 
spaces, whereby the local models may be also discrete 
or static.  

These viewpoints derive two different approaches for 
structural-dynamic systems, the maximal state space, 
and the hybrid decomposition. 

5.1 Maximal State Space for structural-dynamic  
systems – internal events 

Most implementations of physically-based model de-
scriptions support a big monolithic model description, 
derived from laws, ODEs, DAEs, state event functions 
and internal events. The state space is maximal and 
static, index reduction in combination with constraints 
keep a consistent state space. Dymola, OpenModelica, 
and VHDL-AMS follow this approach. 

This approach can be classified with respect to event 
implementation. The approach handles all events of 
any kind (SE-P, SE-S, and SE-D) within the ODE 
solver frame, also events which change the state space 
dimension (change of degree of freedoms) - conse-
quently called internal events.  

Using the classical state chart notation, internal state 
events I-SE caused by the model schedule the model 
itself, with usually different  re-initialisations (depend-
ing on the event type I-SE-P, I-SES, I-SE-D; Figure 9). 

Modelica, VHDL-AMS, and Dymola follow this ap-
proach, handling also DAE models with index higher 
than 1; discrete model parts are only supported at 
event level. MATLAB / Simulink generates also a 
maximal state space.  

5.2 Hybrid Decomposition for structural-dynamic 
systems – external events 

The hybrid decomposition approach makes use of ex-
ternal events (E-SE), which control the sequence and 
the serial coupling of one model or of more models. A 
convenient tool for switching between models is a 
state chart, driven by the external events – which itself 
are generated by the models. Following e.g. the UML-
RT notation, control for continuous models and for 
discrete actions can by modelled by state charts. Fig-
ure 10 shows the hybrid coupling of two models, 
which may be extended to an arbitrary number of 
models, with possible events E-SE-P, E-SE-S, and E-
SE-D. As special case, this technique may be also 
used for serial conditional ‘execution’ of one model – 
Figure 11 (only for SE-P and SE-S). 

 

 
 

Fig.10 State chart control 
for external events for 

two models 

Fig.11  State chart con-
trol for external events 

for one models 

Model2
External
State 
Event

Model1

External
State 
Event

Model2
External
State 
Event

Model1

External
State 
Event

Model

External
State 

Events:
E-SE-P
E-SE-S

Model

External
State 

Events:
E-SE-P
E-SE-S

Model

Internal
State 

Events:
I-SE-P
I-SE-S
I-SE-D

Model

Internal
State 

Events:
I-SE-P
I-SE-S
I-SE-D

Fig.9  State chart control for 
internal events of one model 
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This approach additionally allows not only dynami-
cally changing state spaces, but also different model 
types, like ODEs, linear ODEs (to be analysed by lin-
ear theory), PDEs, etc. to be processed in serial or also 
in parallel, so that also co-simulation can be formu-
lated based on external events. 

This approach allows handling all events also outside 
the ODE solver frame. After an event, a totally new 
model can be started. This procedure may make sense 
especially in case of events of type SE-D and SE-S. 
As consequence, consecutive models of different state 
spaces may be used. 

Figure 12 shows a structure for a simulator supporting 
this hybrid approach. Some work has to be investi-
gated into extension of e.g. Modelica for using this ex-
ternal control of models. The figure summarises the 
outlined ideas by extending the CSSL structure by 
control model, external events and multiple models.  

Clearly, not only ODE solver can make use of the 
model descriptions (derivatives), but also eigenvalue 
analysis and steady state calculation may be used, and 
other analysis algorithms. Furthermore, complex ex-
periments can be controlled by external events sched-
uling the same model in a loop. 

Fig. 12  Structure for a simulation system with external state events E-SE and  
classical internal state events I-SE for controlling different models. 
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5.3 Mixed approach with internal and external 
events 

A simulator structure as proposed in Figure 12 is a 
very general one, because it allows as well external as 
ell as internal events, so that hybrid coupling with 
variable state models of any kind with internal and ex-
ternal events is possible (Figure 13). Both approaches 
have advantages and disadvantages. The classical 
Dymola approach generates a fast simulation, because 
of the monolithic program. But the state space is 
static. Furthermore, Modelica centres on physical 
modelling.  

A hybrid approach handles separate model parts and 
must control the external events. Consequently, two 
levels of programs have to be generated: dynamic 
models, and a control program – today’s implementa-
tions are interpretative and not compiling, so that 
simulation times increase - but the overall state space 
is really dynamic. 

A challenge for the future lies in the combination of 
both approaches. The main ideas are: 
 

• Moderate hybrid decomposition 
• External and internal events 
• Efficient implementation of models  

and control 
 

Model1

Model2

E-SE

Model3

Model4
E-SE

E-SE

E-SE

I-SE

E-SE

I-SE

E-SE

E-SE

I-SE

Model1

Model2

E-SE

Model3

Model4
E-SE

E-SE

E-SE

I-SE

E-SE

I-SE

E-SE

E-SE

I-SE

 
Fig.13  State chart control for different models  

with internal and external  events  

 

For instance, for parameter state events (SE-P) an im-
plementation with an internal event may be sufficient 
(I-SE-P), for an event of SE-S type implementation 
with an external event may be advantageous because 
of easier state re-initialisation (E-SE-S), and for a 
structural model change (SE-D) an implementation 
with an external event may be preferred (E-SE-D), be-
cause of much easier handling of the dynamic state 
change – and less necessity for index reduction. 

An efficient control of the sequence of models can be 
made by state charts, but also by a well defined defini-
tions and distinction of if- and when- constructs, like 
discussed in extensions of SCILAB/SCICOS for 
Modelica models. 

6 Simulators for hybrid and structural- 
       dynamic systems 
Up to now no simulator fulfils the structure given in 
Figure 12 completely. The main questions are 

• whether a-causal physical modelling is supported, 
• whether a-causal physical modelling is obeying 

the Modelica standard, 
• whether external events are supported (equal to 

whether hybrid decomposition into independent 
submodels is possible), 

• and whether state chart modelling or a similar 
construct is supported. 

 
In principle each combination of the above features is 
possible. By means of the maximal state space ap-
proach, each classic simulator can handle structural-
dynamic systems, but a-causal modelling may be sup-
ported or not, and state chart modelling may be avail-
able or not. Simulators with a-causal modelling may 
support hybrid decomposition or not, and state chart 
modelling may be available or not. Simulators with 
features for state chart modelling may support hybrid 
decomposition or not, and a-causal modelling may be 
offered or not. 

6.1 MATLAB / Simulink 

The mainly interpretative systems MATLAB / Simu-
link offers different approaches. First, it allows hybrid 
decomposition at MATLAB level. There, from MAT-
LAB different Simulink models are called condition-
ally, and in Simulink a state event is determined by 
the hit-crossing block (terminating the simulation). 
For control, in MATLAB only if-then-else constructs 
are available (Table 4 and Figure 14) . 

Table 4  MATLAB control in Constrained  
Pendulum example for external events  

witching between ling and short pendulum 
 

 

if ((phi_p-phi0)*phi_p<0 |  
                 (phi0==phi_p & phi_p*v>0)) 
    dphi0=v/ls; 
    sim('pendulum_short',[t(length(t)),10]); 
    v=dphi(length(dphi))*ls; 
else 
    dphi0=v/l; 
    sim('pendulum_long',[t(length(t)),10]); 
    v=dphi(length(dphi))*l; 
end 
 

 

 
Fig.14  Simulink model for Constrained Pendulum 
with external event detected by hit-crossing block 
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At Simulink level, different submodels may be con-
trolled by Stateflow, Simulink’s state chart modelling 
tool (Figure 15). But the system generates in any case 
a maximal state space. In both cases, a-causal model-
ling is not supported. 

 
Fig.15  Simulink model for Constrained Pendulum 
with external event detected by hit-crossing block  

and controlled by Stateflow 

6.2 Dymola / Modelica 

Modelica and Dymola have already been discussed in 
Section 4, together with examples also for the Con-
strained Pendulum example. Modelica clearly offers 
a-causal modeling, and so Dymola does.  

 
Fig.16  Graphical Dymola model for Constrained  

Pendulum with internal evenst managed by  
elements of Dymola’s state chart library 

But the Modelica definition says nothing about struc-
tural-dynamic systems, and Dymola builds up a maxi-
mal state space. Up to now, Modelica does not di-
rectly define state charts, and in Dymola a state chart 
library is available, but working only with internal 
events within the maximal state space. Figure 16 
shows a Constrained Pendulum implementation with 
Dymola’s state chart library. 

6.3 Mosilab / Dymola 

At present Fraunhofer Gesellschaft Dresden develops 
a generic simulator Mosilab, which defines an exten-
sion to Modelica: multiple models controlled by state 
automata and coupled serially. This simulator meets 
most of the challenges for the hybrid decomposition 
approach: at state chart level, state events of type SE-
D control the switching between different models and 
service the events (E-SE-D). State events affecting a 
state variable (SE-S type) can be modelled at this ex-
ternal level (E-SE-S type), or also as classic internal 
event (I-SE-S). Also parameter events may be handled 
in both manners. 

As first example, a model is presented, which de-
scribes the simplified dynamics of a landing device, 
which is falling and slowing down alternatively. The 
state chart in Figure 17 is translated into extended 
Modelica (textual) model description given in Table 5.  

 

 
 

Fig. 17  State chart for dynamics of landing device,  
Modelica Extension in Mosilab 

The dynamic models for the different phases may be 
modelled textually in Modelica standard or using ele-
ments from a graphical Modelica library. Mosilab 
translates each model separately, and generates a main 
simulation program from the state chart, controlling 
the call of the precompiled models and passing data 
between the models. 

Mosilab is in developing, so it supports only a subset 
of  Modelica, and it does not perform index reduction, 
so that a-causal modelling is supported only at a lower 
level. 
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Table 5  Textual state chart notation for dynamics of 
landing device, Modelica Extension in Mosilab 

 
 
model System 
   statechart 
   state SystemSC extends State;  
                             // State is basic class 
      state Moving extends State; 
                  // Definition State “Moving” 
         state SlowDown extends State;  
         ...  
         end SlowDown; 
         State falling, State start(isInitial=true);  
                                  // Intro of States 
         SlowDown slowDown;                       // 
         ... 
         transition t2 : falling -> slowDown     
                              // state transition t2 
         event sw guard sw==1 action body.add(boost) 
         end transition; 
         transition t3 : slowDown -> falling        
                              // state transition t3 
            event sw guard sw==0 
         end transition; 
      end Moving; 
      State stop, start(isInitial=true);  
      Moving moving; 
      entry action  // executed, if state  
                                 SystemSC activ 
         gr := new Gravity(); 
         boost := new Boost(empty=false); 
      end entry; 
      ... 
   end SystemSC;  
end System; 
 

 

On the other hand, Mosilab allows very different ap-
proaches for modelling and simulation tasks, to be 
discussed with the Constrained Pendulum example. 

In a standard Modelica approach, the Constrained 
Pendulum is defined in the MOSILAB equation layer 
as implicit law (it is non necessary to transform to an 
explicit state space); the state event, which appears 
every time when the rope of the pendulum hits or 
‘leaves’ the pin, is modelled in an algorithm sec-
tion with if (or when) – conditions (Table 6). 

Table 6  Mosilab model for  Constrained  
Pendulum – standard Modelica approach  

with  internal events (I-SE-P) 
 

 
equation /*pendulum*/ 
v = l1*der(phi); vdot = der(v); 
mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0; 
algorithm 
if (phi<=phipin) then length:=ls; end if; 
if (phi>phipin) then length:=l1; end if; 
end 
 

 

MOSILAB state chart approaches model discrete ele-
ments by state charts, which may be used instead of if- 
or when- clauses, with much higher flexibility and 
readability in case of complex conditions. There, Boo-
lean variables define the status of the system and are 
managed by the state chart.  

The state charts initialise the system (Initial state) 
and manage switching between long and short pendu-
lum, by changing the length appropriately (Table 7). 

Table 7  Mosilab model for  Constrained  
Pendulum – state chart model with   

internal events (I-SE-P) 
 

event Boolean lengthen(start=false), 
shorten(start = false); 
equation 
lengthen=(phi>phipin); shorten=(phi<=phipin); 
equation /*pendulum*/ 
 v = l1*der(phi); vdot = der(v); 
 mass*vdot/l1 + mass*g*sin(phi)+damping*v= 0; 
statechart 
state LengthSwitch extends State; 
State Short,Long,Initial(isInitial=true); 
transition Initial -> Long end transition; 
transition Long -> Short event shorten action 
length := ls; 
end transition; 
transition Short -> Long event lengthen action 
length := l1; 
end transition; end LengthSwitch; 
 

 

From the modelling point of view, this description is 
equivalent to the description with if-clauses. The 
Mosilab translator clearly generates there an imple-
mentation with different internal equations. Mosilab’s 
simulator performs simulation by handling the state 
event within the integration over the simulation hori-
zon. 

Mosilab’s state chart construct is not only a good al-
ternative to if- or when - clauses within one model, it 
offers also the possibility to switch between structural 
different models. This very powerful feature allows 
any kind of hybrid composition of models with differ-
ent state spaces and also of different type (from ODEs 
to PDEs, etc.) see Table 8.  

Table 8  Mosilab model for  Constrained  
Pendulum – state chart switching between different 

pendulum models by external events (E-SE-P) 
 

 
model Long 
equation 
mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0; 
end Long; 
model Short 
equation 
mass*vdot/ls + mass*g*sin(phi)+damping*v = 0; 
end Short; 
event discrete Boolean lengthen(start=true), 
     shorten(start = false); 
equation 
lengthen = 
(phi>phipin);shorten=(phi<=phipin); 
statechart 
state ChangePendulum extends State; 
State Short,Long,startState(isInitial=true); 
transition startState -> Long action 
L:=new Long(); K:=new Short(); add(L); 
end transition; 
transition Long->Short event shorten action 
disconnect ….; remove(L); add(K); connect … 
end transition; 
transition Short -> Long event lengthen  
                                     action 
disconnect …; remove(K); add(L); connect …… 
end transition; end ChangePendulum; 
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In case of the constrained pendulum, the system is de-
composed the system into two different models, 
Short pendulum model, and Long pendulum model, 
controlled by a state chart. The model description (Ta-
ble 6) defines now first the two pendulum models, and 
then the event as before. The state chart creates first 
instances of both pendulum models during the initial 
state (new). The transitions organise the switching be-
tween the pendulums (remove, add). The connect 
statements are used for mapping local states to global 
state variables. 

6.4 AnyLogic 

AnyLogic, already discussed in Section 4, is based on 
hybrid automata. Consequently hybrid decomposition 
and control by external events is possible. AnyLogic 
can deal partly with implicit systems, but does not sup-
port a-causal modelling. Furthermore, new versions of 
AnyLogic concentrate more on discrete modelling and 
modelling with System dynamics, whereby state event 
detection has been sorted out. For the Constrained Pen-
dulum example, a hybrid decomposed model may make 
use of a model ‘similar’ to that one in Figure 7, but now 
two sets of the state equations are found in the substates 
Short and Long. The events defined at the arcs stop 
the actual model, set new initial conditions and start the 
alternative model (Figure 18). 
 

 
 
Equations 
x = l*sin(alpha) 
y = l*cos(alpha) 

 

Equations 
d(alpha)/dt = omega 
d(omega)/dt =  
   (-g*sin(alpha)- 
     mu*omega)/ls 
 
Change eventLong 
(alpha>=alphaN)|| 
(alpha<=alphaN) 
Action 
omega=omega*ls/ll 
stop 
  
Change eventShort 
(alpha>=alphaN)|| 
(alpha<=alphaN) 
Action 
omega=omega*ll/ls 
stop 
 
Equations 
d(alpha)/dt = omega 
d(omega)/dt =  
   (-g*sin(alpha)- 
     mu*omega)/ll 

Fig.18  AnyLogic model for Constrained Pendulum, 
hybrid model decomposition with two pendulum 

models and external event 

AnyLogic works interpretatively, after each external 
event state equations are tracked and sorted anew for 
the new state space. This makes it possible, to decom-
pose model not only in serial, but also in parallel. For 
instance, in Constrained Pendulum example, the ODE 
for the angle, which is not effected by the events, may 
be put in the main  model (Figure 19). 

 
 
Equations 
d(alpha)/dt = omega 
x = l*sin(alpha) 
y = l*cos(alpha) 

 

Equations 
d(omega)/dt =  
   (-g*sin(alpha)- 
     mu*omega)/ls 
 
Change eventLong 
(alpha>=alphaN)|| 
(alpha<=alphaN) 
Action 
omega=omega*ls/ll 
stop 
  
Change eventShort 
(alpha>=alphaN)|| 
(alpha<=alphaN) 
Action 
omega=omega*ll/ls 
stop 
 
Equations 
d(omega)/dt =  
   (-g*sin(alpha)- 
     mu*omega)/ll 

 

Fig.19  AnyLogic model for Constrained Pendulum, 
hybrid model decomposition with two models for  

angular velocity and overall model for angle,  
controlled by  external event 

6.5 Model Vision Studium 

Model Vision Studium (for short MVS) – is an inte-
grated graphical environment for fast and safe design-
ing of interactive models of complex dynamical sys-
tems and experimenting on them.  

Development of MVS started in the 1990ies at Tech-
nical University of St. Petersburg, for end of  2007 an 
English version is to be released. Basis of MVS are 
hybrid statecharts, allowing any parallel, serial, and 
conditional combination of continuous models, de-
scribed by DAEs. State models itself are objects to be 
instantiated in various kinds, so that structural-
dynamic systems of any kind can be modeled. DAE 
modeling is supported by an editor capable of editing 
mathematical formula. 

For MVS, a subset of UML Real Time was chosen and 
extended to incorporate continuous behavior.  
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The modeling language implemented in the tool sup-
ports two types of UML diagrams: collaboration dia-
grams and state chart (state machine) diagrams with 
some changes. In collaboration diagrams, unidirec-
tional continuous connections between objects (cap-
sules in UML-RT) and the corresponding interface 
elements – input and output variables – have been 
added. UML state charts are made hybrid: a system of 
algebraic-differential equations over variables (inter-
face or object’s internal ones) can be associated with 
each simple or composite state. To make such an 
UML-based model fully executable Java as a reasona-
bly high-level language for defining data types and 
data transformation has been chosen.  

In principle, MVS and AnyLogic have been developed 
in parallel. The continuous elements in AnyLogic have 
been taken from MVS, because AnyLocis started as 
pure discrete simulator. Since 2007, some advanced 
hybrid features of MVS, e.g. state event location by it-
erative algorithms, cannot  be supported any more 
longer in AnyLogic, so that MVS has more features for 
hybrid modeling and external events than AnyLogic. 
 
MVS supports a-causal modeling on textual level 
(Figure 20), using a formula editor for DAE systems. 
Connections between submodels are at present unidi-
rectional, allowing only predefined input-ouptput rela-
tions. The model description is mathematically ori-
ented, and does not follow Modelica standard. 
 

 
 

 

Fig.20  MVS model for 
pendulum with free sus-
pension – model defini-
tion with physical laws 

(DAEs) 

 

State charts are similar to AnyLogic, each ‘state’ may 
consists of different implicit state space descriptions. 
State charts may also be used to define complex ex-
periments, calling one ore more models with different 
parameters in a loop. 

As example, the a breaking pendulum is described by 
two states pendulum and flight, with different state 
spaces, and a state chart handling the external event of 
type E-SE-D (Figure 21). 

 
 

Fig.21  MVS model for breaking pendulum - hybrid 
model decomposition into pendulum and flight model, 

controlled by an external event of type E-SE-D 

6.6 SCILAB / SCICOS 

SCILAB/SCICOS is an open source alternative to 
MATLAB / Simulink. The developers of this system 
discuss extensions in two directions: 

• Extending the model description by Modelica 
models (textually and graphically), and 

• refining the if-then-else – and when – clause by 
introducing different classes of associated  
events, resulting in clauses being as capable  
as state charts. 

With these extensions, would fulfil all requirements, 
from hybrid decomposition to Modelica standard. 
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