
STRUCTURE OF SIMULATORS FOR HYBRID
SYSTEMS - GENERAL DEVELOPMENT AND

INTRODUCTION OF A CONCEPT OF EXTERNAL
AND INTERNAL STATE EVENTS

Felix Breitenecker, Florian Judex, Nikolas Popper, Inge Troch, Julia Funovits
Institute for Analysis and Scientific Computing, Vienna University of Technology,

Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria

Felix.Breitenecker@tuwien.ac.at (Felix Breitencker)

Abstract

New trends for the structure of simulation systems support hybrid modelling and structural dy-
namic systems. The paper first discusses discrete elements in the CSSL Standard, and - in more
detail - classification of ‘classic’ state events. There, structural-dynamic systems are generated by
state events, changing the dimension of the state space. The paper continues with recent develop-
ments caused by Modelica and VHDL-AMS, which introduce non-causal modelling on a high
level, including implicit models and state events associated with boundary conditions. Both new
standards extend the CSSL standard, with emphasis on continuous systems; but especially Mode-
lica allows defining pure discrete model constructs based on events, state charts, and Petri nets.

The main chapters concentrate on further extensions for the CSSL frames, mainly in order to han-
dle hybrid and structural-dynamic systems properly. There, features of two competing ‘philoso-
phies’ are sketched, maximal state space versus hybrid decomposition. In order to allow a high
flexibility at modelling level, state events are characterised as ‘internal state events’ (I-SE) or ‘ex-
ternal state event’ (E-SE). An I-SE is handled in a classic way: detecting, localising, event han-
dling, and restart of integration. An E-SE is detected and localised, but then it terminates the simu-
lation of the (previous) model; the event itself is managed outside the model(s), and simulation of

the same or of another model is started. Both types of event can
be described by state charts (se at left); implementation is the
simulator’s task. Finally, simulators being able to implement
both state event types are reviewed: Modelica/Dymola, Mosilab,
AnyLogic, ModelVision, and MATLAB/Simulink/ Stateflow.

Keywords: CSSL Standard, Hybrid Modelling, State Events, State Charts

Presenting Author’s biography
Felix Breitenecker studied ‘Applied Mathematics’ and acts as professor for
Mathematical Modelling and Simulation at Vienna University of Technology He
covers a broad research area, from mathematical modelling to simulator develop-
ment, from DES via numerical mathematics to symbolic computation, from bio-
medical and mechanical simulation to process simulation. He is active in various
simulation societies: president and past president of EUROSIM since 1992, board
member and president of the German Simulation Society ASIM, member of IN-
FORMS, SCS, etc. He has published about 250 scientific publications, and he is
author of two 3 books and editor of 22 books. Since 1995 he is Editor in Chief of
the journal editing the journal Simulation News Europe.

Model

External or
Internal
State Event

Model

External or
Internal
State Event

Model2
External
State
Event

Model

External
State
Event

Model2
External
State
Event

Model

External
State
Event

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction
Since early times of simulation, attempts were made
to standardise digital simulation programs by means
of a self standing structure for simulation systems.

There were some unsuccessful attempts, but in 1968
the CSSL Standard (The CSSL Report commissioned
by the Simulation Council Inc - SCI) became the mile-
stone in the development: it unified the concepts and
language structures of the available simulation pro-
grams, it defined a structure for the model, and it de-
scribes minimal features for a runtime environment.

In principle, this basic CSSL structure standard has
been a standard for almost four decades, although a lot
of extensions and other concepts have been developed
and discussed. Also modern simulation systems, like
Dimple, follow in principle an extended CSSL stan-
dard. Mainly these extensions deal with discrete
model parts, and with DAE modelling (discussed in
Sections 4).

An alternative standardised structure on basis of sys-
tem theory is Zeigler’s hybrid extension of the DES
formalism (Discrete Event Systems). Unfortunately
this approach is not familiar in the area of continuous
system modelling, and prototype implementations put
emphasis on the discrete world.

Since three years a new challenge is discussed in
combined continuous / discrete modelling and simula-
tion, the challenge of structural dynamic
systems.

In principle, structural dynamic systems can
be modelled and simulated in CSSL struc-
tures, but main problem is the fixed state
space, as well in the CSSL structure as well
as in hybrid DES.

In any case, state events are bridging the gap
between the continuous world and the dis-
crete world. On the one side, continuous
modeling views state events as interruption
of the continuous course of the system,
which has to be handled properly, in order to
continue continuously. On the other side,
discrete system theory puts state events in
the foreground, which update states and
which control switching between different
update algorithms (static algorithmic up-
date, stochastic update base on event
mechanisms, or also ODEs and DAEs).

Coming from side of continuous simulation, state
events may be viewed in an ambivalent manner. They
may cause discontinuous changes within a running al-
gorithm updating the states (ODE solver), or they may
cause a termination of the current update algorithm
(ODE solver), and starting a new update algorithm
(ODE solver) with same or with another model. There,
the second view would allow easy modelling and
simulation of structural dynamic systems.

It is worth to develop the fore-mentioned idea on basis
of a structure with internal state events and external
state events, discussed in chapter 5.

Interestingly, this idea of a distinction of state events is
related to the development of Modelica, where external
state events are discussed as basis for model switching
based on state charts. Furthermore, since about five
years simulation systems try to implement features for
dynamic structures, switched by state events. First, this
development used the backdoor by means of simulator
coupling, now generic extensions and new systems are
available (discussed in chapter 6).

2 CSSL Standard
The CSSL standard suggests structures and features
for a model frame and for an experimental frame. This
distinction is based on Zeigler’s concept of a strict
separation of these two frames. Model frame and ex-
perimental frame are the user interfaces for the heart
of the simulation system, for the simulator kernel or
simulation engine. The simulation engine drives the
calculations in the time domain. This basic structure
of a simulator - due to CSSL standard – is illustrated
in Figure 1.

This basic structure does not include any features for
discontinuous changes, so that very soon at least time
event features were incorporated.

3 Discrete elements and events in
 continuous simulation
The CSSL standard defines segments for discrete ac-
tions, first mainly used for modelling discrete control.
So-called DISCRETE regions or sections manage the
communication to and from the continuous world and
compute the discrete model parts.

These discrete section model discrete events, sched-
uled by time-dependent inputs (time events), or sched-
uled by state-dependent threshold functions (state
events).

Fig.1 Basic structure of a simulation language
due to CSSL standard

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

3.1 Time Events

In the graphical model description discrete controllers
and the time delay could be modelled by a z-transfer
block. If a discrete action is more complex, graphical
descriptions have problems. SIMULINK offer for this
purpose triggered submodels, which can be executed
only at one time instant, controlled by a logical trigger
signal. New versions of MATLAB also integrate a
state machine (State Flow) for event control. Recently
(2006) event control is supported in MATLAB/ Simu-
link by the SimEvent Blockset, offering also the entity
concept.

In any case, the simulation engine must handle an
event list, representing the time instants of discrete ac-
tion and the calculations associated with the action,
where in-between consecutive actions the ODE solver
are to be called (see Figure 2, extended structure of a
simulator due to CSSL standard).

3.2 State Events

Much more complicated, but defined in CSSL, are the
so-called state events. Here, a discrete action takes
place at a time instant, which is not known in advance,
it is only known as a function of the states, described
by a threshold function. This discrete action (‘time-
less’ action) may simple change an input – or the
structure of a system.

As example we consider the pendulum with con-
straints. If the pendulum is swinging, it may hit a pin
positioned at angle ϕp with distance lp from the point
of suspension. After hit case the pendulum swings on
with the position of the pin as the point of rotation and
the shortened length ls = l - lp. and the angular veloc-
ity dϕ/dt is multiplied at position ϕp by l/ ls , etc.

These discontinuous changes are state events, because
they depend on the state ϕ . For state events the classi-
cal state space description is extended by the state
event function h(x), the zero of which determines the
event:

0),(,sin,

0),),(),((),,),(),(()(

12121221 =−=−−==

==

ph
m
d

l
g

tptutxhtptutxftx

ϕϕϕϕϕϕϕϕϕ &&

rrrrrrr
&r

The example involves two different events: change of
parameter (length), and change of state (angular veloc-
ity). Generally, state events can be classified in four
types:

• type 1: parameter change - SE-P
• type 2: one or more inputs change

discontinuously - SE-I
• type 3: one or more states change

discontinuously - SE-S
• type 4: the dimension of the state vector

changes discontinuously - SE-D

Fig. 2 Extended structure of a simulation system with discrete elements (events)

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

State Events Type 1 (SE-P) could also be formulated
by means of IF-THEN-ELSE constructs and by
switches in graphical model descriptions, without syn-
chronisation with the ODE solver. The necessity of a
state event formulation depends on the accuracy
wanted. Big changes in parameters may cause prob-
lems for ODE solvers with stepsize control.

State Events Type 2 (SE-I) are no real state events,
they are time events – and listed here due to historic
reasons.

State Events Type 3 (SE-S) are essential state events.
They must be located, transformed into a time event,
and modelled in discrete model parts. In principle,
these types of state events cannot exist, because a state
variable cannot jump; jumps in states are caused by
simplified modelling approaches.

In case of the pendulum, in reality the hit at the pin is
not an event changing the velocity; it is a short physi-
cal process different to the oscillation process. The
whole process may be seen as sequence of different
processes: oscillation of long pendulum (differential
equations) – hit at pin (event or differential equation) -
oscillation of short pendulum (differential equations) –
leave from pin (event or differential equation) - oscil-
lation of long pendulum (differential equations) – ,
etc.

State Events of Type 4 (SE-D) are essential ones and
indicate a structural change in the model. In mechani-
cal systems, they indicate a change of degrees of free-
dom.

Very often the threshold function switches between
different algebraic constraints, so that these state
events are coupled with differential-algebraic equa-
tions. In principle, these events may occur frequently,
so that the system is called structural-dynamic, be-
cause the dimension of the systems changes quasi-
dynamically.

Two philosophies are found in handling these struc-
tural dynamic problems: a hybrid decomposition of
the process, or making use of frozen states (combined
with index reduction algorithms).

3.3 Handling of State Events

In principle, the service (handling) of a state event re-
quires four steps:

1. Detection of the event: usually by checking the
change of the signum-function of h(x).

2. Localisation of the event: algorithms make use of
either iterative techniques, or of interpolation
techniques for determining the time instant of the
event with sufficient accuracy.

3. Service of the event: calculating / setting new
parameters, inputs and states; switching to
new equations

4. Restart of the ODE solver (in a ‘maximal’ state
vector), or starting another model
(hybrid decomposition)

State events are facing simulators with severe prob-
lems. Up to now the simulation engine had to call in-
dependent algorithms, now a root finder for the state
event function h(x) needs results from the ODE solver,
and the ODE solver calls the root finder by checking
the sign of h.

Figure 2, an extension of Figure 1, shows the now
more complex structure of calls between model frame,
experimental frame, simulation engine and libraries.
In principle, the kernel of the simulation engine has
become an event handler, managing a complex event
list with feedbacks. Furthermore it has to be noted,
that not only classic time domain analysis by ODE
solvers is offered, but also linear analysis by means of
eigenvalue algorithms. Figure 2 also shows an inter-
esting relation to discrete simulation: an event list
manager has to be implemented, which can handle
also pure discrete systems without any differential
equations.

In case of a structural change of the system equations
(SE-D) simulators usually can manage only fixed
structures of the state space (‘maximal’ state space
with frozen states in case of loss of degrees of free-
dom).

In textual model description the DISCRETE construct
allows to define events of any type, in graphical model
descriptions calculations at discrete time instants are
difficult to formulate within the continuous in-
put/output form.

3.4 Classic implementations of Constrained
Pendulum model

The example Constrained Pendulum involves state
events of type 1 (SE-P: discontinuous change of pen-
dulum length) and of type 3 (SE-S: change of angular
velocity). Table 1 presents a classic ACSL model de-
scription, which works with two discrete sections hit
and leave, representing the two different modes.
These sections model the events, which are scheduled
by the SCHEDULE statement in the dynamic model de-
scription. ACSL makes use of an iterative state event
finder based on regula falsi.

In pure graphical model descriptions we are faced
with the problem that calculations at discrete time in-
stants are difficult to formulate. For the detection of
the event SIMULINK provides the Hit Crossing block
(Figure 3). This block starts state event detection (in-
terpolation method) depending on the input, the state
event function, and outputs a trigger signal. Recent
versions of SIMULINK offer an implicit use of such
hit crossing facilities in all blocks with switching fea-
tures.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

For restarting the integration with new values for the
angular velocity, a formulation going back to the
times of analog computation is used: the integrator
block is extended by a logical reset signal input; as
this signal triggers, the integration is restarted with
initial values fed into the initial value input, which is
the angular velocity after the hit. In the implementa-
tion given, the new angular velocity is calculated con-
tinuously, while needed only at the hit event.

A more event-oriented implementation would make
use of a triggered subsystem, which is executes only
when the trigger from the hit crossing activates the
event, calculating new angular velocity and providing
new pendulum length..

Table 1: ACSL textual model description

for Constrained Pendulum Example

PROGRAM constrained pendulum
CONSTANT m = 1.02, g = 9.81, d =0.2
CONSTANT lf=1, lp=0.7
DERIVATIVE dynamics
 ddphi = -g*sin(phi)/l – d*dphi/m
 dphi = integ (ddphi, dphi0)
 phi = integ (dphi, phi0)
 SCHEDULE hit .XN. (phi-phip)
 SCHEDULE leave .XP. (phi-phip)
END ! of dynamics

DISCRETE hit
 l = ls; dphi = dphi*lf/ls
END ! of hit

DISCRETE leave
 l = lf; dphi = dphi*ls/lf
END ! of leave

END ! of constrained pendulum

4 From CSSL to physical
object-oriented modelling
and state chart modelling

In the 1990s, a lot of attempts have
been made to improve and to extend
the CSSL structure, especially for
the task of mathematical modelling.
The basic problem was the state
space description, which limited the
construction of modular and flexible
modelling libraries. Two develop-
ments helped to overcome this prob-
lem. On modelling level, the idea of
physical modelling gave new input,
and on implementation level the ob-
ject oriented view helped to leave
the constraints of input/output rela-
tions. Furthermore, UML – the Uni-
fied Modelling Language – gave
new inputs for hybrid modelling.

4.1 Physical modelling in Modelica and VHDL-AMS

In physical modelling, a typical procedure for physical
modelling is to cut a system into subsystems and to
account for the behaviour at the interfaces. Each sub-
system is modelled by balances of mass, energy and
momentum and material equations. The complete
model is obtained by combining the descriptions of
the subsystems and the interfaces. This approach re-
quires a modelling paradigm different to classical in-
put/output modelling. A model is considered as a con-
straint between system variables, which leads
naturally to DAE descriptions. The approach is very
convenient for building reusable model libraries.

In 1996, the situation was thus similar to the mid
1960s when CSSL was defined as a unification of the
techniques and ideas of many different simulation pro-
grams. An international effort was initiated in Sep-
tember 1996 for the purpose of bringing together ex-
pertise in object-oriented physical modelling (port
based modelling) and defining a modern uniform
modelling language. The language is called Modelica.
Modelica is intended for modelling within many ap-
plication domains such as electrical circuits, multi-
body systems, drive trains, hydraulics, thermodynami-
cal systems, and chemical processes etc. It supports
several modelling formalisms: ordinary differential
equations, differential-algebraic equations, bond
graphs, finite state automata, and Petri nets etc. Mode-
lica is intended to serve as a standard format so that
models arising in different domains can be exchanged
between tools and users.

Modelica is a not a simulator, Modelica is a modelling
language, supporting and generating automatically
mathematical models in physical domains.

Fig.3 SIMULINK model of Constrained Pendulum example

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

When the development of Modelica started, also a
competitive development, the extension of VHDL to-
wards VHDL-AMS was initiated. Both modelling
languages aimed for general purpose use, but VHDL-
AMS mainly addresses circuit design, and Modelica
covers the broader area of physical modelling; model-
ling constructs such as Petri nets and finite automata
could broaden the application area, as soon as suitable
simulators can read the model definitions.

Modelica offers a graphical model frame, where the
connections are bidirectional physical couplings, and
not directed flow. An example demonstrates how
drive trains are handled. The drive train consists of
four inertias and three clutches, where the clutches are
controlled by input signals (Figure 4).

Figure 4 Graphical Modelica model for coupled
clutches

The graphical model layout corresponds with a textual
model representation, shown in Table 2 (abbreviated,
simplified):

Table 2: Textual Modelica model for

coupled clutches

encapsulated model CoupledClutches
 "Drive train with 3 dynamically coupled
clutches"
 parameter SI.Frequency freqHz=0.2
 ………………………………………………
 Rotational.Inertia J1(J=1, phi(start=0),
w(start=10));
 Rotational.Torque torque;
 Rotational.Clutch clutch1(peak=1.1,
fn_max=20);
 Sources.Sine sin1(amplitude={10},
freqHz={5});
 ……………………………………..
 Rotational.Inertia J3(J=1);
 Rotational.Clutch clutch3(peak=1.1,
fn_max=20);
 ……………………………………
equation
 connect(sin1.outPort, torque.inPort);
 connect(torque.flange_b, J1.flange_a);
 connect(J1.flange_b, clutch1.flange_a);
 ……………………………………..
 connect(clutch3.flange_b, J4.flange_a);
 connect(step2.outPort, clutch3.inPort);
 ………………………………………..
end CoupledClutches;

Modelica can handle very different modelling ap-
proaches, not only ODEs and DAEs, but also finite
state automata, and Petri nets. By means of state
automata or state charts, conditions can be described
more clear and transparent (see later).

The translator from Modelica into the target simulator
must not only be able to sort equations, it must be able
to process the implicit equations symbolically and to
perform DAE index reduction.

Up to now – similar to VHDL-AMS – two simulation
systems understand Modelica, Dymola from Dynasim,
and MathModelica from MathCore Engineering. At
present (2006/2007) the University of Lyngby devel-
ops and provides a Modelica simulation environment,
the Open Modelica System, and Fraunhofer Gesell-
schaft develops a generic simulator, which under-
stands Modelica models and supports variable dy-
namic structures.

As Modelica defines also graphical model elements,
the user may choose between textual modelling,
graphical modelling using elements from an applica-
tion library. Furthermore, graphical and textual model-
ling may be mixed in various kinds. Figure 5 shows a
graphical model for a double pendulum, consisting of
two revolute joints (one with damper), and two masses
modelling the rods. For joints and masses equations
are predefined and sorted together during compilation.

Figure 5 Graphical Modelica model for double
pendulum

The model for the constrained pendulum can be for-
mulated in Modelica textually as a physical law for
angular acceleration. The event with parameter change
is put into an algorithm section, defining and sched-
uling the parameter event SE-P (Table 3). As instead
of angular velocity, the tangential velocity is used as
state variable, the second state event SE-S ‘vanishes’.
In principle, one could use also graphical modelling
for joint and mass using elements as in Figure 5, but
the change of length must be formulated textually in
an algorithm section.

Table 3: Textual Modelica model for
Constrained Pendulum

equation /*pendulum*/
 v = length*der(phi);
 vdot = der(v);
 mass*vdot/length + mass*g*sin(phi)
 +damping*v = 0;
algorithm
if (phi<=phipin) then length:=ls; end if;
if (phi>phipin) then length:=l1; end if;

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

4.2 Modelling events by state charts in AnyLogic

In the end of the 1990s, computer science put the de-
velopment forward. The Unified Modelling Language
(UML) is one of the most important standards for
specification and design of object oriented systems.
This standard was tuned for real time applications in
the form of a new proposal, UML for Real-Time
(UML-RT). By means of UML-RT objects can hold
the dynamic behaviour of an ODE. There exist a lot of
discrete simulation libraries for discrete simulation,
based on the UML notation (class diagrams, state
charts, etc). They allow for convenient modelling and
simulation of DEVS – Discrete Event Systems.

In 1999, a simulation research group at the Technical
University of St. Petersburg used this approach in
combination with a hybrid state machine for the de-
velopment of a hybrid simulator, from 2000 on avail-
able commercially as simulator AnyLogic. The model-
ling language of AnyLogic is an extension of UML-
RT; the main building block is the active object. Ac-
tive objects have internal structure and behaviour, and
allow encapsulating of other objects to any desired
depth. Relationships between active objects set up the
hybrid model.

Fig.6 Active objects with connectors

exchanging discrete messages (rectangle ports)
and continuous signals (triangle ports)

Active objects interact with their surroundings solely
through boundary objects: ports for discrete commu-
nication, and variables for continuous communication.
The activities within an object are usually defined by
statecharts (extended state machine). While discrete
model parts are described by means of statecharts,
events, timers and messages, the continuous model
parts are described by means of ODEs and DAEs in
CSSL-type notation and with state charts within an
object.

The following AnyLogic implementation of the
Bouncing Ball example shows a simple use of state-
chart modelling (Figure 7). The equations are defined
in the active object ball, together with the state chart
ball.main. This state chart describes the interruption of
the state flight (without any equations) by the event
bounce (SE-P and SE-S event) defined by condition
and action.

Equations
d(y)/dt=vy
d(vy)/dt=-g

Change event
y<=0 && vy < 0

Action
vy = - k * vy;

Fig.7 AnyLogic model for the Bouncing Ball

An AnyLogic implementation for the Constrained Pen-
dulum may follow the implementation for the bouncing
ball. A (main) active object ‘holds’ the equations for the
pendulum, together with a state chart switching be-
tween short and long pendulum. The state chart nodes
are empty, the arcs define the events (Figure 8).

Equations
d(alpha)/dt = omega
d(omega)/dt =
 (-g*sin(alpha)-
 mu*omega)/l
x = l*sin(alpha)
y = l*cos(alpha)

Change eventLong
(alpha>=alphaN)||
(alpha<=alphaN)

Action
l=ll
omega=omega*ls/ll

Fig.8 AnyLogic model for Constrained Pendulum,

simple implementation

5 Hybrid and structural-dynamic
 systems
Continuous simulation and discrete simulation have
different roots, but they are using the same method,
the analysis in the time domain. During the last dec-
ades a broad variety of model frames (model descrip-
tions) have been developed.

In continuous and hybrid simulation the explicit or
implicit state space description is used as common de-
nominator. This state space may be described textu-
ally, or by signal-oriented graphic blocks (e.g. SIMU-
LINK), or by power-based block descriptions
(Modelica, VHDL-AMS). In discrete simulation we
meet very different techniques for the model frame.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

Application-oriented flow diagrams, network dia-
grams, state diagrams, etc. allow describing complex
behaviour of event-driven dynamics. Usually these
descriptions are mapped to an event-based description.

On the other side, the simulator kernel is similar for
discrete and continuous simulators. The model de-
scription is mapped to an event list with adequate up-
date functions of the states within state update events.
In discrete simulation the states are usually the status
variables of servers and queues in the model, and state
update is simple increase or decrease by increments;
complex logic conditions may accompany the sched-
uling of events.

In continuous simulation the state space is based of
various laws used in the application area, and usually
defined by differential-algebraic equations. DAE
solvers generate a grid for the approximation of the
solutions. This grid drives an event list with state up-
date events using complex formula depending on the
chosen DAE solver and on the defined DAE. Addi-
tional time events and state events are inserted into the
global event list.

Hybrid systems often come with together with a
change of the dimension of the state space, then called
structural-dynamic systems. The dynamic change of
the state space is caused by a state event of type SE-D.
In contrary to state events SE-P and SE-S, states and
derivatives may change continuously and differenti-
able in case of structure change.

In principle, structural-dynamic systems can be seen
from two extreme viewpoints. The one says, in a
maximal state space, state events switch on and off al-
gebraic conditions which freeze certain states for a
certain periods. The other one say that a global dis-
crete state space controls local models with fixed state
spaces, whereby the local models may be also discrete
or static.

These viewpoints derive two different approaches for
structural-dynamic systems, the maximal state space,
and the hybrid decomposition.

5.1 Maximal State Space for structural-dynamic
systems – internal events

Most implementations of physically-based model de-
scriptions support a big monolithic model description,
derived from laws, ODEs, DAEs, state event functions
and internal events. The state space is maximal and
static, index reduction in combination with constraints
keep a consistent state space. Dymola, OpenModelica,
and VHDL-AMS follow this approach.

This approach can be classified with respect to event
implementation. The approach handles all events of
any kind (SE-P, SE-S, and SE-D) within the ODE
solver frame, also events which change the state space
dimension (change of degree of freedoms) - conse-
quently called internal events.

Using the classical state chart notation, internal state
events I-SE caused by the model schedule the model
itself, with usually different re-initialisations (depend-
ing on the event type I-SE-P, I-SES, I-SE-D; Figure 9).

Modelica, VHDL-AMS, and Dymola follow this ap-
proach, handling also DAE models with index higher
than 1; discrete model parts are only supported at
event level. MATLAB / Simulink generates also a
maximal state space.

5.2 Hybrid Decomposition for structural-dynamic
systems – external events

The hybrid decomposition approach makes use of ex-
ternal events (E-SE), which control the sequence and
the serial coupling of one model or of more models. A
convenient tool for switching between models is a
state chart, driven by the external events – which itself
are generated by the models. Following e.g. the UML-
RT notation, control for continuous models and for
discrete actions can by modelled by state charts. Fig-
ure 10 shows the hybrid coupling of two models,
which may be extended to an arbitrary number of
models, with possible events E-SE-P, E-SE-S, and E-
SE-D. As special case, this technique may be also
used for serial conditional ‘execution’ of one model –
Figure 11 (only for SE-P and SE-S).

Fig.10 State chart control
for external events for

two models

Fig.11 State chart con-
trol for external events

for one models

Model2
External
State
Event

Model1

External
State
Event

Model2
External
State
Event

Model1

External
State
Event

Model

External
State

Events:
E-SE-P
E-SE-S

Model

External
State

Events:
E-SE-P
E-SE-S

Model

Internal
State

Events:
I-SE-P
I-SE-S
I-SE-D

Model

Internal
State

Events:
I-SE-P
I-SE-S
I-SE-D

Fig.9 State chart control for
internal events of one model

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

This approach additionally allows not only dynami-
cally changing state spaces, but also different model
types, like ODEs, linear ODEs (to be analysed by lin-
ear theory), PDEs, etc. to be processed in serial or also
in parallel, so that also co-simulation can be formu-
lated based on external events.

This approach allows handling all events also outside
the ODE solver frame. After an event, a totally new
model can be started. This procedure may make sense
especially in case of events of type SE-D and SE-S.
As consequence, consecutive models of different state
spaces may be used.

Figure 12 shows a structure for a simulator supporting
this hybrid approach. Some work has to be investi-
gated into extension of e.g. Modelica for using this ex-
ternal control of models. The figure summarises the
outlined ideas by extending the CSSL structure by
control model, external events and multiple models.

Clearly, not only ODE solver can make use of the
model descriptions (derivatives), but also eigenvalue
analysis and steady state calculation may be used, and
other analysis algorithms. Furthermore, complex ex-
periments can be controlled by external events sched-
uling the same model in a loop.

Fig. 12 Structure for a simulation system with external state events E-SE and
classical internal state events I-SE for controlling different models.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

5.3 Mixed approach with internal and external
events

A simulator structure as proposed in Figure 12 is a
very general one, because it allows as well external as
ell as internal events, so that hybrid coupling with
variable state models of any kind with internal and ex-
ternal events is possible (Figure 13). Both approaches
have advantages and disadvantages. The classical
Dymola approach generates a fast simulation, because
of the monolithic program. But the state space is
static. Furthermore, Modelica centres on physical
modelling.

A hybrid approach handles separate model parts and
must control the external events. Consequently, two
levels of programs have to be generated: dynamic
models, and a control program – today’s implementa-
tions are interpretative and not compiling, so that
simulation times increase - but the overall state space
is really dynamic.

A challenge for the future lies in the combination of
both approaches. The main ideas are:

• Moderate hybrid decomposition
• External and internal events
• Efficient implementation of models

and control

Model1

Model2

E-SE

Model3

Model4
E-SE

E-SE

E-SE

I-SE

E-SE

I-SE

E-SE

E-SE

I-SE

Model1

Model2

E-SE

Model3

Model4
E-SE

E-SE

E-SE

I-SE

E-SE

I-SE

E-SE

E-SE

I-SE

Fig.13 State chart control for different models

with internal and external events

For instance, for parameter state events (SE-P) an im-
plementation with an internal event may be sufficient
(I-SE-P), for an event of SE-S type implementation
with an external event may be advantageous because
of easier state re-initialisation (E-SE-S), and for a
structural model change (SE-D) an implementation
with an external event may be preferred (E-SE-D), be-
cause of much easier handling of the dynamic state
change – and less necessity for index reduction.

An efficient control of the sequence of models can be
made by state charts, but also by a well defined defini-
tions and distinction of if- and when- constructs, like
discussed in extensions of SCILAB/SCICOS for
Modelica models.

6 Simulators for hybrid and structural-
 dynamic systems
Up to now no simulator fulfils the structure given in
Figure 12 completely. The main questions are

• whether a-causal physical modelling is supported,
• whether a-causal physical modelling is obeying

the Modelica standard,
• whether external events are supported (equal to

whether hybrid decomposition into independent
submodels is possible),

• and whether state chart modelling or a similar
construct is supported.

In principle each combination of the above features is
possible. By means of the maximal state space ap-
proach, each classic simulator can handle structural-
dynamic systems, but a-causal modelling may be sup-
ported or not, and state chart modelling may be avail-
able or not. Simulators with a-causal modelling may
support hybrid decomposition or not, and state chart
modelling may be available or not. Simulators with
features for state chart modelling may support hybrid
decomposition or not, and a-causal modelling may be
offered or not.

6.1 MATLAB / Simulink

The mainly interpretative systems MATLAB / Simu-
link offers different approaches. First, it allows hybrid
decomposition at MATLAB level. There, from MAT-
LAB different Simulink models are called condition-
ally, and in Simulink a state event is determined by
the hit-crossing block (terminating the simulation).
For control, in MATLAB only if-then-else constructs
are available (Table 4 and Figure 14) .

Table 4 MATLAB control in Constrained
Pendulum example for external events

witching between ling and short pendulum

if ((phi_p-phi0)*phi_p<0 |
 (phi0==phi_p & phi_p*v>0))
 dphi0=v/ls;
 sim('pendulum_short',[t(length(t)),10]);
 v=dphi(length(dphi))*ls;
else
 dphi0=v/l;
 sim('pendulum_long',[t(length(t)),10]);
 v=dphi(length(dphi))*l;
end

Fig.14 Simulink model for Constrained Pendulum
with external event detected by hit-crossing block

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

At Simulink level, different submodels may be con-
trolled by Stateflow, Simulink’s state chart modelling
tool (Figure 15). But the system generates in any case
a maximal state space. In both cases, a-causal model-
ling is not supported.

Fig.15 Simulink model for Constrained Pendulum
with external event detected by hit-crossing block

and controlled by Stateflow

6.2 Dymola / Modelica

Modelica and Dymola have already been discussed in
Section 4, together with examples also for the Con-
strained Pendulum example. Modelica clearly offers
a-causal modeling, and so Dymola does.

Fig.16 Graphical Dymola model for Constrained

Pendulum with internal evenst managed by
elements of Dymola’s state chart library

But the Modelica definition says nothing about struc-
tural-dynamic systems, and Dymola builds up a maxi-
mal state space. Up to now, Modelica does not di-
rectly define state charts, and in Dymola a state chart
library is available, but working only with internal
events within the maximal state space. Figure 16
shows a Constrained Pendulum implementation with
Dymola’s state chart library.

6.3 Mosilab / Dymola

At present Fraunhofer Gesellschaft Dresden develops
a generic simulator Mosilab, which defines an exten-
sion to Modelica: multiple models controlled by state
automata and coupled serially. This simulator meets
most of the challenges for the hybrid decomposition
approach: at state chart level, state events of type SE-
D control the switching between different models and
service the events (E-SE-D). State events affecting a
state variable (SE-S type) can be modelled at this ex-
ternal level (E-SE-S type), or also as classic internal
event (I-SE-S). Also parameter events may be handled
in both manners.

As first example, a model is presented, which de-
scribes the simplified dynamics of a landing device,
which is falling and slowing down alternatively. The
state chart in Figure 17 is translated into extended
Modelica (textual) model description given in Table 5.

Fig. 17 State chart for dynamics of landing device,
Modelica Extension in Mosilab

The dynamic models for the different phases may be
modelled textually in Modelica standard or using ele-
ments from a graphical Modelica library. Mosilab
translates each model separately, and generates a main
simulation program from the state chart, controlling
the call of the precompiled models and passing data
between the models.

Mosilab is in developing, so it supports only a subset
of Modelica, and it does not perform index reduction,
so that a-causal modelling is supported only at a lower
level.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 11 Copyright © 2007 EUROSIM / SLOSIM

Table 5 Textual state chart notation for dynamics of
landing device, Modelica Extension in Mosilab

model System
 statechart
 state SystemSC extends State;
 // State is basic class
 state Moving extends State;
 // Definition State “Moving”
 state SlowDown extends State;
 ...
 end SlowDown;
 State falling, State start(isInitial=true);
 // Intro of States
 SlowDown slowDown; //
 ...
 transition t2 : falling -> slowDown
 // state transition t2
 event sw guard sw==1 action body.add(boost)
 end transition;
 transition t3 : slowDown -> falling
 // state transition t3
 event sw guard sw==0
 end transition;
 end Moving;
 State stop, start(isInitial=true);
 Moving moving;
 entry action // executed, if state
 SystemSC activ
 gr := new Gravity();
 boost := new Boost(empty=false);
 end entry;
 ...
 end SystemSC;
end System;

On the other hand, Mosilab allows very different ap-
proaches for modelling and simulation tasks, to be
discussed with the Constrained Pendulum example.

In a standard Modelica approach, the Constrained
Pendulum is defined in the MOSILAB equation layer
as implicit law (it is non necessary to transform to an
explicit state space); the state event, which appears
every time when the rope of the pendulum hits or
‘leaves’ the pin, is modelled in an algorithm sec-
tion with if (or when) – conditions (Table 6).

Table 6 Mosilab model for Constrained
Pendulum – standard Modelica approach

with internal events (I-SE-P)

equation /*pendulum*/
v = l1*der(phi); vdot = der(v);
mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0;
algorithm
if (phi<=phipin) then length:=ls; end if;
if (phi>phipin) then length:=l1; end if;
end

MOSILAB state chart approaches model discrete ele-
ments by state charts, which may be used instead of if-
or when- clauses, with much higher flexibility and
readability in case of complex conditions. There, Boo-
lean variables define the status of the system and are
managed by the state chart.

The state charts initialise the system (Initial state)
and manage switching between long and short pendu-
lum, by changing the length appropriately (Table 7).

Table 7 Mosilab model for Constrained
Pendulum – state chart model with

internal events (I-SE-P)

event Boolean lengthen(start=false),
shorten(start = false);
equation
lengthen=(phi>phipin); shorten=(phi<=phipin);
equation /*pendulum*/
 v = l1*der(phi); vdot = der(v);
 mass*vdot/l1 + mass*g*sin(phi)+damping*v= 0;
statechart
state LengthSwitch extends State;
State Short,Long,Initial(isInitial=true);
transition Initial -> Long end transition;
transition Long -> Short event shorten action
length := ls;
end transition;
transition Short -> Long event lengthen action
length := l1;
end transition; end LengthSwitch;

From the modelling point of view, this description is
equivalent to the description with if-clauses. The
Mosilab translator clearly generates there an imple-
mentation with different internal equations. Mosilab’s
simulator performs simulation by handling the state
event within the integration over the simulation hori-
zon.

Mosilab’s state chart construct is not only a good al-
ternative to if- or when - clauses within one model, it
offers also the possibility to switch between structural
different models. This very powerful feature allows
any kind of hybrid composition of models with differ-
ent state spaces and also of different type (from ODEs
to PDEs, etc.) see Table 8.

Table 8 Mosilab model for Constrained
Pendulum – state chart switching between different

pendulum models by external events (E-SE-P)

model Long
equation
mass*vdot/l1 + mass*g*sin(phi)+damping*v = 0;
end Long;
model Short
equation
mass*vdot/ls + mass*g*sin(phi)+damping*v = 0;
end Short;
event discrete Boolean lengthen(start=true),
 shorten(start = false);
equation
lengthen =
(phi>phipin);shorten=(phi<=phipin);
statechart
state ChangePendulum extends State;
State Short,Long,startState(isInitial=true);
transition startState -> Long action
L:=new Long(); K:=new Short(); add(L);
end transition;
transition Long->Short event shorten action
disconnect ….; remove(L); add(K); connect …
end transition;
transition Short -> Long event lengthen
 action
disconnect …; remove(K); add(L); connect ……
end transition; end ChangePendulum;

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 12 Copyright © 2007 EUROSIM / SLOSIM

In case of the constrained pendulum, the system is de-
composed the system into two different models,
Short pendulum model, and Long pendulum model,
controlled by a state chart. The model description (Ta-
ble 6) defines now first the two pendulum models, and
then the event as before. The state chart creates first
instances of both pendulum models during the initial
state (new). The transitions organise the switching be-
tween the pendulums (remove, add). The connect
statements are used for mapping local states to global
state variables.

6.4 AnyLogic

AnyLogic, already discussed in Section 4, is based on
hybrid automata. Consequently hybrid decomposition
and control by external events is possible. AnyLogic
can deal partly with implicit systems, but does not sup-
port a-causal modelling. Furthermore, new versions of
AnyLogic concentrate more on discrete modelling and
modelling with System dynamics, whereby state event
detection has been sorted out. For the Constrained Pen-
dulum example, a hybrid decomposed model may make
use of a model ‘similar’ to that one in Figure 7, but now
two sets of the state equations are found in the substates
Short and Long. The events defined at the arcs stop
the actual model, set new initial conditions and start the
alternative model (Figure 18).

Equations
x = l*sin(alpha)
y = l*cos(alpha)

Equations
d(alpha)/dt = omega
d(omega)/dt =
 (-g*sin(alpha)-
 mu*omega)/ls

Change eventLong
(alpha>=alphaN)||
(alpha<=alphaN)
Action
omega=omega*ls/ll
stop

Change eventShort
(alpha>=alphaN)||
(alpha<=alphaN)
Action
omega=omega*ll/ls
stop

Equations
d(alpha)/dt = omega
d(omega)/dt =
 (-g*sin(alpha)-
 mu*omega)/ll

Fig.18 AnyLogic model for Constrained Pendulum,
hybrid model decomposition with two pendulum

models and external event

AnyLogic works interpretatively, after each external
event state equations are tracked and sorted anew for
the new state space. This makes it possible, to decom-
pose model not only in serial, but also in parallel. For
instance, in Constrained Pendulum example, the ODE
for the angle, which is not effected by the events, may
be put in the main model (Figure 19).

Equations
d(alpha)/dt = omega
x = l*sin(alpha)
y = l*cos(alpha)

Equations
d(omega)/dt =
 (-g*sin(alpha)-
 mu*omega)/ls

Change eventLong
(alpha>=alphaN)||
(alpha<=alphaN)
Action
omega=omega*ls/ll
stop

Change eventShort
(alpha>=alphaN)||
(alpha<=alphaN)
Action
omega=omega*ll/ls
stop

Equations
d(omega)/dt =
 (-g*sin(alpha)-
 mu*omega)/ll

Fig.19 AnyLogic model for Constrained Pendulum,
hybrid model decomposition with two models for

angular velocity and overall model for angle,
controlled by external event

6.5 Model Vision Studium

Model Vision Studium (for short MVS) – is an inte-
grated graphical environment for fast and safe design-
ing of interactive models of complex dynamical sys-
tems and experimenting on them.

Development of MVS started in the 1990ies at Tech-
nical University of St. Petersburg, for end of 2007 an
English version is to be released. Basis of MVS are
hybrid statecharts, allowing any parallel, serial, and
conditional combination of continuous models, de-
scribed by DAEs. State models itself are objects to be
instantiated in various kinds, so that structural-
dynamic systems of any kind can be modeled. DAE
modeling is supported by an editor capable of editing
mathematical formula.

For MVS, a subset of UML Real Time was chosen and
extended to incorporate continuous behavior.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 13 Copyright © 2007 EUROSIM / SLOSIM

The modeling language implemented in the tool sup-
ports two types of UML diagrams: collaboration dia-
grams and state chart (state machine) diagrams with
some changes. In collaboration diagrams, unidirec-
tional continuous connections between objects (cap-
sules in UML-RT) and the corresponding interface
elements – input and output variables – have been
added. UML state charts are made hybrid: a system of
algebraic-differential equations over variables (inter-
face or object’s internal ones) can be associated with
each simple or composite state. To make such an
UML-based model fully executable Java as a reasona-
bly high-level language for defining data types and
data transformation has been chosen.

In principle, MVS and AnyLogic have been developed
in parallel. The continuous elements in AnyLogic have
been taken from MVS, because AnyLocis started as
pure discrete simulator. Since 2007, some advanced
hybrid features of MVS, e.g. state event location by it-
erative algorithms, cannot be supported any more
longer in AnyLogic, so that MVS has more features for
hybrid modeling and external events than AnyLogic.

MVS supports a-causal modeling on textual level
(Figure 20), using a formula editor for DAE systems.
Connections between submodels are at present unidi-
rectional, allowing only predefined input-ouptput rela-
tions. The model description is mathematically ori-
ented, and does not follow Modelica standard.

Fig.20 MVS model for
pendulum with free sus-
pension – model defini-
tion with physical laws

(DAEs)

State charts are similar to AnyLogic, each ‘state’ may
consists of different implicit state space descriptions.
State charts may also be used to define complex ex-
periments, calling one ore more models with different
parameters in a loop.

As example, the a breaking pendulum is described by
two states pendulum and flight, with different state
spaces, and a state chart handling the external event of
type E-SE-D (Figure 21).

Fig.21 MVS model for breaking pendulum - hybrid
model decomposition into pendulum and flight model,

controlled by an external event of type E-SE-D

6.6 SCILAB / SCICOS

SCILAB/SCICOS is an open source alternative to
MATLAB / Simulink. The developers of this system
discuss extensions in two directions:

• Extending the model description by Modelica
models (textually and graphically), and

• refining the if-then-else – and when – clause by
introducing different classes of associated
events, resulting in clauses being as capable
as state charts.

With these extensions, would fulfil all requirements,
from hybrid decomposition to Modelica standard.

7 References
[1] Strauss, J. C. ‘The SCi continuous system

simulation language (CSSL)’, Simulation 9,
281-303. San Diego: SCS Publishing, 1967.

[2] P. Fritzson: Principles of Object-Oriented
Modeling and Simulation with Modelica,
Wiley IEEE Press, ISBN 0-471-471631, 2005.

[3] C. Nytsch-Geusen, and P. Schwarz, ‘MOSILAB:
Development of a Modelica based generic
simulation tool supporting model structural
dynamics’, In Proc. 4th Intern. Modelica
Conference TU Hamburg-Harburg,
pp 527 – 535, 2005;.

[4] F. Breitenecker, and I. Husinsky I. (Eds.), SNE –
Simulation News Europe, Vienna, 1992 – now.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 14 Copyright © 2007 EUROSIM / SLOSIM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

