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Abstract

Recently the Lattice Bhatnagar-Gross-Krook (LBGK) method has
been applied to hemodynamical simulations in 3D, giving a powerful
tool to investigate blood flow in realistic settings. The geometrical
boundary conditions which describe the artery wall can be easily ob-
tained from tomographic images. The choice of reasonable boundary
conditions at the in- and outlets is more demanding. To a certain
degree the development of self-consistent boundary conditions is as
important as the description of the model itself. In LBGK blood flow
simulations inflow boundary conditions are of great importance, be-
cause pressure boundary conditions must be handled extremely care-
fully due to the quasi- incompressibility of the method. The problem
with these boundary conditions is that the exact velocity profiles at

the in- and outlets are not known beforehand and therefore must be guessed in a realistic way.
Different choices of inflow velocity profiles can be made and their influence on the simulation
can be analyzed. As an example flow through the abdominal aorta is simulated with time depen-
dent inflow with different velocity profiles. The resulting flow fields, pressure fields and shear
stress at the vessel walls are compared and the influence of the different inflows to the overall
simulation can be observed.

Keywords: Boundary conditions, Lattice Boltzmann Method, LBGK, Hemodynamcis, CFD

Presenting Author’s Biography
Daniel Leitner graduated in mathematics at the Technical University of
Vienna. Currently he is working on his doctoral thesis about mesoscopic
simulation of blood flow at the Austrian Research Centers. His research
interests are numerical modeling, fluid dynamics in general, especially lat-
tice Boltzmann methods and its application to biofluids.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM



1 Introduction

In the western industrial countries cardiovascular dis-
eases are the most frequent cause of death. Therefore
a lot of research is done to get a better understanding
of the cardiovascular system. Of special interest is the
simulation of blood flow in three spatial dimensions us-
ing vessel geometries that are obtained from magnetic
resonance angiography. This enables an investigation
of pressure and flow profiles and shear stress at the
vessel wall. The appearing shear stress is important for
the risk estimation of arteriosclerosis [1].

In this work a LBGK is used to simulate the blood flow
in three spatial dimensions and to solve the incompress-
ible Navier-Stokes equations with the LBGK method
[2]. The LBGK method as a hemodynamical solver
on tomographic data has been presented in [3]. For
the treatment of elasticity of the vessel walls boundary
conditions where proposed by [4] where the vessel
wall is represented as a surface. When the vessel walls
are represented as voxels, a simpler approach has been
proposed in [5], which does not need a parameterized
representation of the vessel wall.

Blood flow simulation in 3D is mostly restricted to a
region of interest, where geometrical data are obtained
from tomographic images. The in- and outflow flow
profiles are not known and must be chosen in a realistic
way. One possibility is to obtain the flow from one-
dimensional simulation of the cardiovascular system,
see figure 1. There are different ways how to generate a
three dimensional flow profile out of a one dimensional
parameter like velocity of flow. Different approaches
will be compared and the influence of the inflow pat-
terns on the results of the simulation will be discussed.

Fig. 1 From a one dimensional model boundary condi-
tions for the more detailed three dimensional model are
obtained

2 The LBGK D3Q15 method
For simulating the flow field we use the LBGK D3Q15
model. A detailed description can be found in [6]
and [2]. The LBGK method has proved to be capable
of dealing with pulsative flow within the range of
Reynolds and Womersley number existing in large
arteries. The LBGK method has been successfully
applied to the cardiovascular domain by A.M.M Artoli
in [7] and [3]. In the following a short overview of the
method shall be given.

LBGK Models are based on a statistical description of
a fluid in terms of the Boltzmann equation. Thus it is a
bottom up approach in developing a numerical scheme
for solving the Navier-Stokes equations. Starting point
is the Boltzmann equation with the BGK approximation
of the collision integral with single relaxation time is
given by

∂f

∂t
+ ξ · ∇f = − 1

λ
(f − feq) (1)

where f(x,v, t) is the probability distribution depend-
ing on the spatial coordinate x, the velocity v and
the time t. The value feq is the Maxwell distribution
function and ξ is the macroscopic velocity.

When the Boltzmann is discretised in the spatial do-
main, in phase space and in time it yields

fi(x + c · ci∆t, t + ∆t)− fi(x, t) =

− 1
λ

(fi(x, t)− feq
i (x, t)) (2)

where c = ∆x/∆t, ∆x is the lattice grid spacing and
∆t the time step.The speed c couples the spatial and
temporal resolution and therefore ensures Lagrangian
behavior.

The particle distribution functions fi evolve on a regu-
lar grid and represent particle densities traveling on the
links ci, see figure 2. Thus

fi(x, t) = f(x,v, t) (3)

refers to the particle distribution on the lattice node x
at the time t with the velocity ci.

The equilibrium density distribution feq(x, t) depends
solely on the density ρ(x, t) and the velocity u(x, t) of
a lattice node x. The density ρ and the velocity u are
obtained from the density distribution function fi. The
density is given by

ρ(x, t) =
∑

i

fi(x, t). (4)

Moment and velocity are given by

j(x, t) = ρ(x, t)u(x, t) =
∑

i

cifi(x, t) (5)
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Fig. 2 The velocity directions ci in the D3Q15 LBGK
model

The discrete equilibrium distribution function is chosen
as

feq
i (ρ,u) =

ωi
ρ

ρ0
(1 + 3(ci · u) +

9
2
(ci · u)2 − 3

2
(u · u)) (6)

with the weight coefficients chosen in the way that the
zeros to fourth moments of the equilibrium distribution
function equals the Maxwell distribution function.

ωi =


2
9 , i = 0
1
9 , i = 1, 2, 3, 4, 5, 6
1
36 , i = 7, 8, 9, 10, 11, 12, 13, 14, 15

(7)

The mass and momentum equations can be derived
from the model via multiscale expansion resulting in

δρ

δt
+∇ · (ρu) = 0 (8)

δ(ρu)
δt

+∇ · (ρuu) =

−∇p + ν(∇2(ρu) +∇(∇ · (ρu))) (9)

where

p = c2
sρ (10)

is the pressure,

cs =
c√
3

(11)

is the speed of sound and

ν =
(2τ − 1)c2

6
∆t (12)

is the kinematic viscosity.

The mass and momentum equations are exactly the
same as the compressible Navier- Stokes equation
if the density variations are small enough. Thus the
compressible Navier- Stokes equation is recovered in
the incompressible low Mach number limit.

2.1 Implementation

LBGK schemes can be implemented very efficiently
because of their explicit and local nature. The pseudo
code for LBGK methods can be shortly formulated as

while(running) {
for each node
{

calculate kinetic equation
}
for each node
{

calculate local equilibria
}

}

First the structure of the kinetic equation will be dis-
cussed. The kinetic equation 2 can be reformulated as

fi(x + ci, t + 1)− fi(x, t) =

−1
τ

(fi(x, t)− feq
i ) (13)

The operator can be split into a collision step and a
streaming step in the following way:

f∗(x, t) = (1− 1
τ

)fi(x, t) +
1
τ

feq
i

fi(x + ci, t + 1) = f∗(x, t). (14)

This splitting of the operator is called the collide-and-
stream update order.

For the knowledge of the equilibrium density dis-
tribution feq

i (ρ, j) only the node itself, thus no
neighborhood, is needed.

The update rules of LBGK methods are simple. Clearly
the method works fast and due to its local nature can
be easily parallelized. Considering CPUs with multiple
cores this benefit of the method is of increasing impor-
tance. To adjust the method for multiple threads the set
of nodes must be simply distributed on the processors.
In each calculated time step the threads must wait for
each others two times:

while(running)
{

for each thread
{

calculate kinetic equation
for all nodes

}

wait for all threads
for each thread
{

calculate equilibrium values
for all nodes

}
wait for all threads

}
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3 Data acquisition
For geometrical boundary conditions halfway bounce
back schemes are used to describe the vessel walls.
Tomographic images provide information to determine
which nodes are fluid nodes and which are solid
no-slip nodes. The images are transformed to a volume
consisting of voxels. A binary segmentation of the
volume has to be performed mapping every voxel to a
corresponding lattice node, see figure 3.

Fig. 3 Binary segmentation of tomographic images

In this way a lattice is constructed that can be used
for computer fluid dynamics using the LBGK method.
No complicate mesh generation methods are needed
like with finite volume or finite element methods. The
vessel walls are given in a voxel representation and not
as parameterized surfaces.

For the comparison of different in- and outlet boundary
conditions a model of abdominal aorta has been created
from tomographic images, see figure 9.

Fig. 4 Voxel representation of the abdominal aorta

In the next step realistic boundary conditions for the
in- and outlets will be developed.

4 Inflow Boundary condition for LBGK
The inflow boundary condition for the LBGK schemes
can be implemented easily. In every discrete time step
the inflow nodes are reset to the equilibrium population,
which corresponds to the desired value of flow speed
and density [6].

fin = feq
out(ρin,uin) (15)

In the following considerations ρin is set to 1 for
simplicity.

The difficult part is to choose the right flow profile.
Realistic flow profiles can be obtained from analytical
considerations. First laminar flow in cylindrical coordi-
nates is assumed, thus the fluid can only flow parallel to
the tube:

ur = 0
uφ = 0
uz = uz(r, t) (16)

When additionally steady flow and constant pressure
gradient is assumed this is called a Poiseuille flow and
is given by:

uP
z (r) =

(R2 − r2)(P1 − P2)
4µL

. (17)

Another solution is given by Womersley. When laminar
flow with pulsating pressure gradient is assumed the so
called Womersley flow can be derived analytically:

uW
z (r, t) =

AcR2

iµα2

(
1− J0(α(r/R)i3/2)

J0(αi3/2)

)
eiωt. (18)

For the resulting velocity profiles see figure 5

Fig. 5 Velocity profiles of Womersley flow in two di-
mensions

The two equations are used to create realistic flows
at the in- and outlets. Poiseuille flow is used when
steady flows are under investigation, while the Wom-
ersley flow is used when a dynamic model is calculated.
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A problem with this approach is that especially
Poiseuille flow is often not fully established in realistic
settings [8] because of the effects caused by branching
of the vessels. As a result the flow at the inlet has nor-
mally a flatter profile than the Poiseuille flow. For this
reason the velocity profile which is approximated with

uP
z (r) = (RN − rN )c0 (19)

with a constant c0 for scaling and N ≥ 2, see figure
6. Note that for N = 2 the equation is exactly the
Poiseuille equation, for N > 2 a flatter velocity profile
is achieved.

Fig. 6 Velocity profiles at an inlet for different choices
of N = 5, 4, 3, 2

The velocity profiles must be scaled to yield the
predetermined flow q(t). The predetermined flow
can be the result of a prediction from a coarser
model of the cardiovascular system or can be ob-
tained from measurements. In the following the
flow in the abdominal aorta will be simulated with
different velocity profiles at the inlet and the influence
to the shear stress at the vessel wall will be investigated.

5 Shear stress
A nice property of LBGK simulations is the easy calcu-
lation of the stress tensor. It can be calculated indepen-
dent of the velocity gradients with the following simple
formula [3]:

σαβ = −ρc2
sδαβ −

(
1− 1

2τ

) 15∑
i=0

feq
i ciαciβ . (20)

The stress tensor is used to calculate the von Mises ef-
fective stress, which is used to quantify the shear stress
at the vessel wall [9]:

σeff =

√
a + 6b

2
(21)

with

a = (σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 (22)

and

b = σ2
xy + σ2

yz + σ2
zx. (23)

The quantity is an invariant of the stress tensor and
therefore independent of orientation.

The shear stress is of fundamental importance for blood
flow simulation because in local shear stress is related
with the clotting process and therefore an important
risk factor of arteriosclerosis [1].

6 Results
Blood flow is simulated through the abdominal aorta
over one cardiac cycle. First the region of interest is
defined, see figure 7 and then the volume is cropped
to a bounding cube of 4.8 cm * 8.6 cm * 2.8 cm. The
resulting lattice consists of approximately 26000 fluid
nodes and 16000 no-slip boundary nodes, where every
node has a size of 15−1 cm.

Fig. 7 The definition of the region of interest in a maxi-
mum intensity projection of a MRI

The in- and outflow over a cardiac cycle is taken
from [8] with a period of 0.7 s. The inflow boundary
condition (see equation 15) is used at the in- and outlets.

The inflow velocity profile is chosen in three different
ways:

1. The simplest approach is to choose a constant in-
flow.

2. A fully developed Poiseuille flow.

3. A incompletely developed Poiseuille flow, approx-
imated with equation 19 with N = 4

The inflow is scaled in a way that the time dependent
flow q(t) is achieved, see figure 8.

The flow field is simulated over one cardiac cycle and
the effective wall stress is calculated with equation 21.
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Fig. 8 The inflow q(t) used for the simulation

The resulting velocity fields at 72 degrees are given
in figure 9, where the velocities are plotted with a
maximum intensity projection.

Fig. 9 The resulting velocity fields with fully developed
inlet (a), constant inlet (b) and partly developed inlet (c)

The differences at the inlet can be recognized clearly
in figure 9, while the flow field at the bifurcation is
very similar. The derivation of the wall shear stress in
this region is less than one percent which is acceptable,
since the error of the tomographic is much bigger
(between 1-8% [10]).
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