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Abstract

Cellular Automaton theory has proved to be an innovative and re-
liable tool in describing complex processes such as tumor growth.
The concept is extended with special interest on the extrusion of tis-
sue with regard to angiogenesis. The model is divided into different
components where the discrete states of the cellular automaton in-
teract with the continuous states from the description of the nutrient
supply. Computation of such models can be compared with clini-
cal data from oncology and can provide a deeper understanding of
tumor dynamics. The model under observation bases on an inho-
mogeneous nutrient supply and is able to simulate different supply
scenarios. Therefore an arterial tree serves as input for the nutrient
distribution. The supply is described by a diffusion process. The nu-
trient supply on the other hand serves as input for the cellular automa-
ton which governs the growth of the simulated tumor. Angiogenesis

is introduced by subsequent modification of the vascular network. The parameters are tuned to
attain exponential growth with fixed growth factors in homogeneous environments. The model
can be used to simulate tumor growth with a special focus on the effects of angiogenesis.
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1 Introduction
Cellular Automata are used to describe the develop-
ment of discrete entities. They are efficiently used
in modeling of biological processes [1] [2] and were
applied successfully to simulate tumor cell growth at
microscopic level [3] [4]. In the description of tumor
cell growth the nutrient supply plays a key role. The
development of cells depends mainly on the nutrient
concentration. Therefore the inhomogeneous nutrient
supply of the tissue must be modeled accurately and
reasonable haematocrit patterns have to be developed
for the region of interest. Another emphasis must be
placed on angiogenesis which changes the structure of
the vascular tree and therefore the nutrient supply.

The model is calculated using three different lattices,
which have the same spatial discretization and interact
in various ways, see figure 1:

1. The first lattice represents the nutrient concentra-
tion. The nutrient distribution is described by a
diffusion process. The diffusion is calculated with
a Lattice Boltzmann model (LBM) which is a sim-
ple but for this application very stable explicit
scheme.

2. In the second lattice the cells are simulated. This
is the main component of the model. The cells are
simulated with a cellular automaton which inter-
acts with the other layers. In difference to models
described in [4] or [5] the tumor growth is realized
by displacement of other cells.

3. The third lattice describes the vascular arterial net-
work. The network acts as a source for the nutrient
distribution. With different arterial networks dif-
ferent supply scenarios can be simulated. The ar-
terial network is influenced by angiogenesis. An-
giogenesis is simulated with a Lattice Gas Cellular
Automaton (LGCA) where the particles represent
the Vascular endothelial growth factor (VEGF).
Angiogenesis is strongly influenced by VEGF.

The first two lattices interact in both directions. The
cells consume nutrients and on the other hand the nutri-
ent concentration is a major input for the development
of the cells. The cells interact with the arterial network
because tumor cells create their own nutrient supply by
angiogenesis. They do this by creating VEGF particles
which lead to a vascular growth into the tumor. The
arterial network acts as a source within calculation of
the nutrient concentration in the first lattice.

All three components strongly interact. It is important
that the lattices have the same spatial discretization but
they are working on different time scales. In the follow-
ing sections the three components of the model will be
described in detail.

Fig. 1 Interaction of different layers

2 Modeling the nutrient distribution
The extracellular nutrient distribution is dependent on
the arterial vascular tree. Nutrient diffuses from ar-
eas of high concentration to areas of low concentration,
whereas the arterial vascular tree acts as supply system.
Therefore the process is modeled by the diffusion equa-
tion where the vascular tree acts as a boundary condi-
tion:

∂C(x, t)
∂t

= d∇2C(x, t)− k(x, t) (1)

where C is the concentration of extracellular nutrients,
d is the diffusion coefficient and k the nutrient uptake
rate at position x.

This partial differential equation has complex and in
consideration of angiogenesis alterable boundary con-
ditions.It is solved with a lattice Boltzmann model
(LBM) which was proposed in [6]. The main advan-
tage of this method to normal explicit finite differ-
ence schemes is the higher stability and therefore big-
ger freedom in choosing the diffusion coefficient. The
method will be shown for two spatial dimensions.

It is well known that 90 rotational invariance is enough
to yield full isotropy for diffusive phenomena. There-
fore the velocities are chosen in the following way:

c1 = (1, 0)
c2 = (−1, 0)
c3 = (0, 1)
c4 = (0,−1) (2)

The kinetic equation of lattice Boltzmann models is
given by

Ci(x + ci, t + 1) = (1− ω)Ci(x, t)ωC
(0)
i (x, t) (3)

where Ci(x, t) = C(ci,x, t) is the concentration in
direction ci, C

(0)
i is the equilibrium distribution and ω

the collision frequency.
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Note that the concentration at position x can obtained
by

C(x, t) =
∑

Ci(x, t) (4)

Conserved quantities and a linear ansatz shows that the
equilibrium function can be chosen as

C
(0)
i (x, t) =

C(x, t)
4

, i = 1 . . . 4 (5)

Multiscale expansion shows that the collision frequency
ω is related to the diffusion coefficient in the following
way:

k =
1
2

(
1
ω
− 1

2

)
(6)

Fig. 2 The nutrient distribution is calculated as a diffu-
sion process.

The resulting numerical scheme is used to calculate
the nutrient distribution. Realistic geometries of ves-
sel structures can be used as nutrient sources, see fig-
ure 2. The nodes that describe this sources are realized
by setting their distribution function to a predetermined
concentration c of the equilibrium distribution function
5 in every time step, thus

Csource
i =

c

4
(7)

The nutrient uptake k(x, t) is realized by simple
subtraction of the concentration in every time step.

The vessel structure can be contained from tomo-
graphic images. A feasible lattice can be generated
from binary segmentation of the image, see figure 5

The calculation the nutrient distribution depends not
only on the chosen spatial and temporal discretization
but although on parameters that shall be shortly sum-
marized:

• Diffusion coefficient D(x, t)

• Uptake rates of different cell types k(x, t).

• Concentration at the source nodes Csource

The right choice of the parameters will be discussed in
section 5.

Fig. 3 A feasible lattice for LBM computation can be
derived from tomographic images.

3 A cellular automaton for tumor growth
The cells are arranged on an equidistant quadratic grid.
Since the lattice has the same spatial discretization
as the nutrient distribution every cell has exactly
one corresponding nutrient supply. The temporal
discretization is done in a way that a time step is
exactly the time the cells need for cell division.

Every cell has four different states:

1. Normal cells

2. Proliferative cancer cells

3. Quiescent cancer cells

4. Empty space or interstitium

The cellular automaton acts on a Moore neighborhood
of 1. Basically cancer cells can grow in three different
ways. They can be infiltrating, destructive or displace
normal cells. The update rules of this work are based
on ideas presented in [5] and [4] but in contrary to these
works main focus lies on the displacement of cells. In
the following the rules for every cell type is explained,
the rules are dependent of the concentration C(x, t).

3.1 Normal cells

If the nutrient supply sufficient is, thus the concentra-
tion C(x, t) higher than a certain threshold Tn the cell
stays a normal cell, otherwise the cell dies and is of the
state ’empty cell’ in the next time step.

3.2 Proliferative cancer cells

Proliferate cancer cells are unaltered if the nutrient
supply is sufficient, thus the concentration C(x, t)
must be higher than a certain threshold Tc. Otherwise
the cancer cell enters a quiescent state, thus changes its
state to ’quiescent cancer cell’.

Proliferate cancer cells divide with a certain potability
Pdiv per time step which is linearly related to the cells
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nutrient supply C(x, t) and a growth rate g, thus

Pdiv = C(x, t)g (8)

Note that in case of homogeneous nutrient supply, thus
C(x, t) = const, from an initial value c0 of cancer cell
the number of cells develop according to

cells(t) = c0 (1 + Pdiv)t
, (9)

thus arbitrary exponential growth can be achieved,
see figure 4. As a result the growth factor g can be
determined from in vitro experiments where the growth
of a layer of tumor cells is under investigation.

Fig. 4 Under an homogeneous nutrient supply the can-
cer cells grow exponentially

When a cancer cell divide there are two possible
situations. One is that a neighboring cell is empty,
then the empty cell will be a ’proliferative cancer cell’
in the next time step. When no neighboring cell is
empty the cellular automaton is stopped and all three
lattices of the components of the model are altered.
First randomly a direction of growth is chosen. From
the position of the cancer cell depending on the this
direction a column or row is shifted for one node. The
new free neighbor of the cancer cell is set to to the
state ’proliferative cancer cell’. In the nutrient lattice
the free node is that to the average of the surrounding
nodes and in the lattice containing the vessels the node
is set to empty.

The displacement of all in all geometries is of major
importance when angiogenesis is considered. In the
simulation of tumor grow the tumor displaces its the
existing supply system. When the tumor gets larger it
starts to create its own supply system by angiogenesis.

3.3 Quiescent cancer cells

Quiescent cancer cells stay quiescent when the nutrient
supply C(x, t) stays under the threshold value Tc. If

the nutrient supply stays under this value for a certain
time span Tq the quiescent cell dies, thus switches to
the state ’empty’. If the nutrient supply is higher than
the threshold value it gets active again and switches to
the sate ’proliferate cancer cell’.

Note that quiescent cancer cells are not able to divide.
They act as sources for the VEGF particles in the
corresponding lattice used to simulate angiogenesis,
see section 4. Thus the quiescent cancer cells alter
the nutrient supply system by sending VEGF particle
which enforce the vessel growth towards the quiescent
cells.

3.4 Empty space or interstitium

An empty cell only changes its state when a neighbor-
ing cell wants to divide into it. In this work growth of
normal cells is neglected, thus only proliferate cancer
cells can divide into the empty cell.

The cellular automaton needs different parameters. The
parameters shall be shortly summarized.

• Two threshold values expressing the dependency
on the nutrient density C(x, t): Tn for normal
cells, Tc for proliferate cancer cells

• The growth rate g of proliferate cells.

• The time span Tq that an quiescent cell survives.

4 Modeling angiogenesis
Angiogenesis is modeled with the help of a modified
LGCA, see [6]. The particles represent the vascular en-
dothelial growth factor (VEGF). They stream freely on
a lattice with nine velocities, see figure 5, according to
the operator

ni(x) = ni(x− ei), i = 0 . . . 8 (10)

where x is the lattice node, ni is a boolean value
(occupied or not) and ei are the lattice velocities.

Fig. 5 The VEGF particles move on a cartesian grid
with the velocities e0 . . . e8
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Instead of a collision the particles turn in the direction
of highest nutrient concentration C(x, t) in every time
step. In this way the particles will travel to the source of
the nutrient distribution. When a particle hits a vessel
node it is cleared and a counter in the corresponding
direction is increased, see figure 6. When a certain
amount of particles Cp have hit a vessel over a given
time span a new vessel is created in the direction of the
impact and the counters in the neighborhood are reset.

Fig. 6 The vessel grows in the direction of the impact
of VEGF particles

The tumor quiescent cells act as a source for VEGF
particles. They move towards the vessels. They act
as source for the nutrient distribution and as a sink for
VEGF particles.

The parameters that are needed in the angiogenesis sim-
ulation are

• Firing rate of the VEGF particles of quiescent can-
cer cells.

• Threshold Cp for the growth of the vessel.

5 Results
The tumor growth has been simulated for different
supply scenarios and various haematocrit distributions.
The results reflect the property that malignant cells
are able to survive low nutrient concentrations and the
effect of angiogenesis can be demonstrated.

In the following simulation a spatial domain of 0.5cm
* 0.5cm is under investigation. The simulation uses
a resolution of 200 * 200. As a result a cell in the
simulation has 25 µ, thus approximately 10 − 30 real
cells are aggregated in a simulated cell.

5.1 Homogenous nutrient supply

The homogeneous situation is important for determin-
ing the growth factor q of the proliferate cells. When
homogenous nutrient supply is under investigation a
regular vessel structure is used that is not altered by the
growth of the cells. The regular vessel structure leads
to regular nutrient supply, see figure 7, that must be
chosen to be sufficient for cancer and normal cells.

Fig. 7 A regular vessel structure leads to a sufficient
nutrient distribution

The resulting simulation of tumor growth can be con-
trolled by the growth factor g leading to exponential
growth of the tumor cells and has representation given
in figure 4.

5.2 Inhomogeneous nutrient supply

When inhomogeneous nutrient supply is under in-
vestigation the simplest approach is to start from an
regular vessel structure as given in figure 7 but allow
the displacement of the vessels.

As a result in the beginning the tumor grows like in the
homogeneous case but pushes the vessels aside. As a
result at a certain point there are too little vessels in the
cancerous region to supply the cells sufficiently with
nutrients.

Fig. 8 With the growth of the tumor cells the nutrient
supply becomes highly inhomogeneous

The proliferate cancer cells turn to quiescent which
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slows down the growth. When angiogenesis is ne-
glected the cancer cells inside the tumor start to die,
see figure 8.

5.3 Inhomogeneous nutrient supply with angio-
genesis

A tumor develops its own supply by angiogenesis. As
a result in a realistic simulation the tumor growth both
factors have to be taken into account:

• Vessels are displaced by tumor growth

• Vessels grow into the tumor by angiogenesis

When the simulation from the previous section is
considered the quiescent cancer cells start to send
VEGF particles. These particles force a vessel growth
in direction of the badly supplied areas. As a result
there are no empty areas, see figure 9.

Fig. 9 New vessels are created ensuring a better nutrient
supply.

The effect of angiogenesis can be recognized clearly
when the simulation is started from an inhomogeneous
nutrient distribution, see figure 10. First the tumor
becomes smaller because of the bad supply situation.
After a time span the vessels develop in direction of the
quiescent cancer cells and the nutrient concentration
gets higher, thus the tumor begins to grow rapidly.

6 References
[1] M. Alber, M. Kiskowski, J. Glazier, and Y. Jiang.

On cellular automaton approaches to modeling bi-
ological cells. Technical Report, (337), 2002.

[2] G. B. Ermentrout and L. Edelstein-Keshet. Cellular
automata approaches to biological modeling. Jour-
nal of Theoretical Biology, 160, 1993.

[3] T. Alarcn, H.M. Byrne, and P.K. Maini. A cellular
automaton model for tumour growth in inhomoge-
neous environment. Journal of Theoretical Biology,
225, 2003.
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