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Abstract

We give a comparative overview over some different approaches towards modelling spatial
spread of epidemics and present methods for identifying these approaches respectively. The
basis of this study is the classical Kermack-McKendrick susceptible-infected-recovered (SIR)
ordinary differential equations (ODE) model. In order to introduce a spatial component in
the spread of diseases, we extend the classical model in a first step by using lattice gas cellu-
lar automata (LGCA) and stochastic cellular automata (stochastic CA). These approaches are
based on motion respectively distributed contacts of individuals and permit to observe sim-
ple strategies for confining epidemic outbreaks and to develop provisional methods towards
an identification. We proceed with the introduction of a partial differential equations (PDE)
model for simulating spatial spread. Like the stochastic CA model this approach is based on
distributed contacts among individuals and uses a probability density function to describe the
interaction behaviour. We can develop an universal relation between those two approaches
by using the central limit theorem. Further we observe random motion as a scaling limit of
Brownian motion in the LGCA model and the diffusion distribution, which we derive from the
Gaussian semigroup (Brownian motion), in the PDE and stochastic CA approach on the other
side. A Fast Fourier Transform (FFT) frequency analysis with susceptible-infected-recovered-
susceptible (SIRS) extensions of these three model approaches shows that our identification
methods deliver very good correspondence.

Keywords: epidemic spread, susceptible-infected-recovered model, lattice gas cellular au-
tomata, stochastic cellular automata, partial differential equations.
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1 ODE model
The SIR ODE model was stated in 1927 by Kermack
and McKendrick in order to describe the temporal evo-
lution of the number of individuals in a population who
are either susceptible, infected (and contagious) or re-
covered. It is composed of a system of three partially
decoupled non-linear ordinary differential equations (1)
and contains only two parameters α and β, which de-
termine the rates of infection and recovery.

Due to its simplicity but also because of some deficien-
cies, this model serves as basis for many extensions,
which involve incubation periods, the possibility of get-
ting infected again after a period of immunity, demo-
graphic partitions or spatial spread. Especially for in-
troducing the latter, there exist a variety of different
approaches. Among them also cellular automata and
partial differential equations. Sections 1-4 of this pa-
per are related to an article [1], which was published in
Simulation News Europe (SNE), and deal with LGCA
and stochastic CA for simulating epidemic spread. Sec-
tions 5-7 present an extended PDE model and deliver
advanced methods for model identifications.

∂S(t)
∂t

= −αS(t)I(t)

∂I(t)
∂t

= αS(t)I(t)− βI(t) (1)

∂R(t)
∂t

= βI(t)

The recoveries in the classical model βI(t) are linear
dependant on the size of the infected group and assign a
geometrical distribution to the duration of the infection.

The growth of the group of infected is determined by
αS(t)I(t), which invokes that the amount of new in-
fections depends on the interaction between susceptible
and infected individuals [2]. On the one hand, if we as-
sume that the individuals are situated on a two dimen-
sional domain and interaction depends on geographic
distances, this means that the individuals must always
be absolutely uniformly distributed. And on the other
hand, if a contagious and a susceptible individual come
into contact, the probability of infection must be α.

2 General information on CA
For the preceding considerations some basic informa-
tion on CA and consistent notations are necessary.

The observed domain (p.e. a geographical region) is
discretised on a square or hexagonal structured lattice,
where the resulting cells can hold different states, which
(p.e. describe the stage of infection of an individual
and) change only at discrete time steps. To calculate
the states of all cells in the next time step, an automaton
rule is applied on all cells simultaneously. This function
is applied locally and depends on the current state of
the cell itself and the ‘neighbouring’ cells. The neigh-
bourhood can be for example the four (Van Neumann

neighbourhood) respectively six nearest neighbours or
any stochastically determined set of cells on the domain
(stochastic CA).

A cellular automaton whose cells contain particles, that
interact within the cells and move to the neighbour-
ing cells at discrete time steps, is called lattice gas
cellular automaton (LGCA). We denote LGCA with a
hexagonal lattice and six particles per cell as Frisch-
Hasslacher-Pomeau (FHP) automata and LGCA with a
square lattice and four particles per cell as Hardy-de
Pazzis-Pomeau (HPP) automata. The particles change
their moving direction according to collision configu-
rations, which are applied depending on the number of
particles within the cell and their positions.

For the implementation of CA we use Matlab, which
provides easy access to three dimensional matrices, ar-
ray manipulation and visualisation devices.

3 LGCA model
For the SIR FHP LGCA model, which we will use as
a representative for LGCA approaches, and for many
other models which consider spatial spread, the popu-
lation must be discretised (resolved into single individ-
uals and placed) on the two dimensional LGCA-lattice
structure depending on the desired initial conditions.
Each individual is represented by a particle and can
hold one of the discrete states susceptible, infected or
recovered.

3.1 General considerations

We will now discuss several features of LGCA, which
give a deeper insight, allow small modifications within
the LGCA or need to be analysed in-depth.

We again use a parameter β, which determines the
probability of recovery for an infected individual and
α̃, which determines the probability of infection when a
susceptible and an infected individual come into contact
(are situated in the same cell). The probability of infec-
tion for a susceptible individual depends on the number
of contacts and accordingly on the number of infected
individuals in the same cell (Ic) and can be written as

Ψc = 1− (1− α̃)Ic . (2)

It is clear that the probability of infection is different for
each cell.

Because of the hexagonal structure of the lattice, the
number of contacts is limited to the five (three for the
HPP LGCA) other individuals in the same cell. And
by choosing a lower population density, the number of
contacts becomes even smaller.

The specification of transition rules (collision config-
urations), allows to control the motion of individuals
and thus to simulate social interaction and demographic
features. Two possibilities are FHP-I rules, which con-
serve mass and momentum [3], or random motion,
which leads to a diffusive behaviour.

Concerning the boundary conditions of the lattice, there
exist two possible configurations. Periodic boundary
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conditions let particles, which leave the domain at one
side, reenter from the other side. Reflective boundary
conditions reflect particles, which hit the border of the
domain. The first type of boundary conditions can be
more suitable for simulating a non geographical domain
and it just seems to be a little bit easier to implement.

If the LGCA model should be adapted to an existing
infection rate α and the corresponding behaviour of the
ODE model, the number of infections per time step in
the LGCA must necessarily be modified. The reason for
this is that the number of contacts in the LGCA model
is always smaller than in the continuous approach.

The expected probability of infection (we assume a uni-
form distribution of the individuals) in the LGCA is

Ψ = 1− (1− α̃)
I
N (3)

where I is the overall number of infected and N is the
number of cells. A Taylor series expansion [4, 5] shows
that

(1− α̃)
I
N = 1− α̃I

N
+

α̃2I(I −N)
2N2

+ . . . (4)

Consequently for small α̃ the probability of infection
can be approximated by Ψ ≈ α̃ I(t)

N , which leads to
α̃ = αN if we want a behaviour similar to the ODE
model.

3.2 Model identification – spatial inhomogeneities

The most distinctive difference between the classical
and the LGCA model is the local character of disease
propagation in the latter approach. This feature favours
the formation of subgroupings of infected individuals
on the domain. From those ‘epidemic’ areas the in-
dividuals diffuse rather slowly and can not spread the
disease unless they reach cells with susceptible individ-
uals. Consequently it is not surprising that transition
rules like FHP-I rules, which lead to a fast mixing of the
population, deliver faster spread than transition rules
like random motion, which determine diffusive motion.

Concerning the initial conditions of the LGCA with the
same arguments we come to the conclusion that homo-
geneous initial conditions deliver faster spread of the
epidemic. Now if we lower the density of the individ-
uals in the CA (use a larger domain but with the same
number of individuals) and always reconfigure the in-
fection rate α̃ = αN , simulations show that epidemic
spread becomes slower (Fig. 1).

Experiments with the FHP and HPP models show that
spread of epidemics is faster in the FHP model (Fig. 2).
Even though the number of individuals per cell in the
FHP automaton is higher, this behaviour is not expected
because the infection rates have been adjusted sepa-
rately for both models and should deliver the same rate
of overall infections. The only possible explanations
are that the lattice of the FHP automaton is smoother
and that the cell-neighbourhoods are larger. Because
a large neighbourhood corresponds to more dynamic,
faster and wide ranged movements of the individuals,
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Fig. 1 Infected individuals from FHP LGCA simu-
lations with 100 000 susceptibles and 240 000 resp.
135 000 cells (infection rates 0.72 resp. 0.405).

we can assume that a larger neighbourhood generally
favours faster spread [1].

To understand that the LGCA model really extends
the classical ODE model, we show that the time-
discretisation of the ODEs is concerning the speed of
spread an upper bound and concerning spatial inhomo-
geneities a lower bound for the FHP simulations.

In order to accelerate epidemic spread in the LGCA it
is necessary to dissolve the local character of motion by
repositioning the individuals randomly every time step
[4]. Increasing the infection rate in order to acceler-
ate the epidemic has no effect after a certain value has
been reached, because the local character of contagion
(restricted to the individuals within the same cell) lim-
its the speed of spread. To dissolve the local character
of motion very conscientiously, the lattice must be re-
arranged very often so that the average distribution of
individuals, which then is uniform, can be applied to
the lattice.

In (3) the expected probability of infection in the LGCA
was calculated, which implies that a uniform distribu-
tion of the individuals was assumed. Afterwards a sim-
plification with the help of a Taylor series expansion
was presented. Therefore it is now possible to describe
the evolution of the epidemic on the lattice by the dif-
ference equations system

S(t + 1) = S(t)− S(t) · α̃ I(t)
N

(5)

I(t + 1) = I(t) + S(t) · α̃ I(t)
N

− I(t) · β

R(t + 1) = R(t) + I(t) · β.

If the individuals are not distributed uniformly, this
method gets rather imprecise.

But if we assume a uniform distribution for all time
steps and employ α̃ I(t)

N = αI(t) on this system (5),
we have

S(t + 1) = S(t)− S(t) · αI(t) (6)
I(t + 1) = I(t) + S(t) · αI(t)− I(t) · β
R(t + 1) = R(t) + I(t) · β,

which actually corresponds to the time-discretisation of
the classical ODE model.

Accordingly by dissolving the local character and si-
multaneously reducing the step size, the LGCA con-
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verges towards the ODE model (Fig. 2). But this means
nothing else than that the LGCA model is a (discretised)
extension of the classical model by a spatial character
of disease propagation.

A more demonstrative method to achieve the same re-
sult is by applying (5) on each single cell containing
s(t) = S(t)

N , i(t) = I(t)
N and r(t) = R(t)

N susceptible,
infected and respectively recovered individuals. The re-
sulting equations do again match (6).

Fig. 2 [1] Infected individuals from different simulation
techniques. In this case the lattice was rearranged only
once every time step (rearranged FHP).

3.3 Implementation of LGCA

Generally matrices and the values 0, 1, 2, 3 (empty po-
sition, susceptible, infected, recovered) can be used to
store the positions and the states of the individuals.

Concerning the implementation of a FHP LGCA the
special structure of the lattice has to be taken into ac-
count. If a three dimensional matrix with one layer for
each particle-position (which might be the best possible
method and also allows good optimisation with Mat-
lab) should represent a square shaped hexagonal lattice,
the even cell-rows must be shifted to the right in or-
der to relate the lattice to the matrix. Consequently the
structure of the neighbourhood and the transition rules
in the matrix representation are different for even and
odd rows, which actually makes things unnecessarily
complicated. If the shape of the domain and the lattice
is assumed to be rhomboid, all rows can be shifted in
one direction in order to obtain a square shaped struc-
ture, that can be related to a matrix. In this case there
exists only one distinctive structure of the neighbour-
hood and one kind of transition rules. This deformation
of the domain does not strongly influence the behaviour
of the FHP automaton if periodic boundary conditions
are used. For reflective boundary conditions there are
two sharp corners, which are not that easily accessible
for the particles.

The implementation of random motion is rather straight
forward. In order to obtain special collision configura-
tions, the particles in the cells and accordingly along the
third dimension of the matrix must be counted. Some
optimised matrix calculations can deliver the empty po-

sitions and so the direction of particle-rotation can be
determined for every cell. The motion of the particles
between the cells can be performed by shifting the lay-
ers of the three dimensional matrix into different direc-
tions. To simulate the infections, the number of infected
individuals in each cell must be counted and according
to (2) a binomial distributed random number must be
calculated for every susceptible individual.

3.4 Vaccination policies

One reason for the development of models for simulat-
ing epidemic spread is to find or test methods for con-
fining outbreaks. Such investigations can not be per-
formed with the classical ODE model and involve vac-
cinations and/or quarantining.

Simulating a full or partial quarantine of a group of in-
dividuals with the LGCA approach is not straight for-
ward since quarantining involves the restriction of mo-
tion for a special set of cells on the domain, which
would require a completely new implementation of the
transition mechanism. What is easily accessible with
the LGCA model is the observation of the behaviour of
an epidemic, when a group of vaccinated (recovered)
individuals is placed homogeneously or under certain
considerations inhomogeneously on the domain. Such
considerations can concern the surrounding of an epi-
demic area with vaccinations [4, 5] or to prevent a dis-
ease from spreading to certain regions of the domain or
to simply slow down the speed of spread.

Simulations with the random motion FHP model show
that the barrier strategy (surrounding an epidemic area
with vaccinations) permits two different evolutions of
an outbreak. If the barrier is very tight and large, no
infected individuals from the epidemic area diffuse to
the rest of the domain and the epidemic fades away.
But in the other case if some infected individuals can
pass through the barrier the epidemic reaches a second
climax outside the primal epidemic area. In this case
the spread can be even faster than for other vaccina-
tion policies like vaccinations inside the epidemic area,
which do not intend to confine the outbreak, but rather
target a slow down in the spread of the disease.

Especially for modelling advanced vaccination policies,
which intend the use of quarantines and a chronologi-
cal order for vaccinating certain subsets of the popu-
lation, model approaches like agent-based CA [6] are
more suitable.

3.5 Epidemic Waves

If we introduce further possible states for the particles
(susceptible - infected - contagious - immune) and al-
low immune/recovered individuals to become suscepti-
ble again, we can observe the typical wavelike evolu-
tion of the number of individuals in each of the groups,
which can also be observed for epidemics in real life.

We will use an extended model in section 7.1 in order to
provide a solid basis for comparing different model ap-
proaches. And we additionally produce clearly visible
waves in section 7.2.
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4 Stochastic CA model

By stochastic CA we mean ordinary CA (without con-
sidering motion of particles) with a stochastically de-
termined neighbourhood. The primary interests of the
following section are a flexible definition of the inter-
action area/contact neighbourhood and the connections
and differences between LGCA and stochastic CA. The
application of stochastic CA for modelling epidemic
spread can be found in [7] for example.

4.1 Stochastic neighbourhood and implementation

For simulating sociological interaction between indi-
viduals (which is also the basis for contagious contacts)
it is necessary to find a neighbourhood for every cell,
that represents the sociological environment of an in-
dividual. This idea applied on the FHP model would
mean that a person has only contact to maximal five
other persons per time step, which was also the reason
for the restrictions concerning the speed of spread in the
LGCA approach. On the other side this idea applied on
the classical ODE model would mean that all individu-
als come into contact every time step (section 1).

To define a sociological environment in the stochastic
CA model, that provides a gradation for the occurrence
of interaction between individuals, a decaying likeli-
hood of interaction between cells depending on the dis-
tance between them can be used. This approach delivers
a radial-symmetric distribution of the contacts for each
cell, what principally can be described by an arbitrary
probability distribution or a similar function, which we
will denote likelihood functions.

To implement this model the advantages of matrix shift-
ing have to be abandoned and ordinary loops through
the cells of the lattice must be used instead. For es-
tablishing the contacts, whose positions should follow
a particular distribution, the determination of the con-
tacts can easily be done by generating a random ankle
and a random radius which is distributed with the likeli-
hood function. If the likelihood function does not have
the features of a probability distribution, a so called
bounding box algorithm can be used [7]. This means
that depending on the desired number of contacts per
time step and the likelihood function an increasing se-
quence of radii must be generated so that within each
of the circles defined by a radius one cell can be chosen
randomly. This method for determining the contacts al-
lows to control several new parameters, which allow a
very detailed definition of the contact behaviour.

Of course it is easy to show that this approach extends
the classical model by a local character of disease prop-
agation. The ODEs are again an upper bound concern-
ing the speed of spread and a lower bound for spatial in-
homogeneities. If the stochastic CA establishes contact
between each two cells (dissolution of the local char-
acter and increase of speed), a probability of infection
for every individual of Ψ = αI is obtained and con-
sequently the growth of the group of infected is αIS,
which corresponds to the discretised ODE system.

4.2 Comparison with the LGCA model

The distinctive differences between LGCA and stochas-
tic CA are that the stochastic CA does not consider
motion of individuals but allows a more flexible defi-
nition of the neighbourhood. We try to identify these
two models, by observing the spread under several spe-
cial considerations, conditions and modifications and
then generalise the outcomes to the original forms of
the models.

First a HPP simulation with full density of the popula-
tion and the rates α = 1 and β = 0 is observed. In
this special case it plays no role which transition rules
are used, because if the cells contain four infected indi-
viduals in the next time step all individuals in all four
surrounding cells become infected in both situations.
Consequently it is possible to assign the status suscep-
tible, infected, recovered etc. to whole cells instead of
single particles. Therefore in this case the simulation
with the HPP model exactly matches a simulation with
a Van Neumann CA, which also uses the rates α = 1
and β = 0. The infectious area is always a rectangu-
lar region, which grows symmetrically every time step
(Van Neumann neighbourhood of radius t).

On the other side if the contact distance for the stochas-
tic CA is always kept between 0.6999 . . . (0 would be
possible too) and 0.7 <

√
0.52 + 0.52 (take a look at

the square lattice structure in Fig. 3 a) and the number
of contacts grows infinitely, the infections are always
transmitted to the whole Van Neumann neighbourhood.

Fig. 3 [1] a) Stochastic CA: neighbourhood with radius.
b) Rotational HPP LGCA: neighbourhood.

Therefore the Van Neumann CA is an upper bound con-
cerning the speed of spread in the HPP automaton and a
lower bound concerning the size of the neighbourhood
for the stochastic CA – actually only when contact to
all cells within the contact radius is established, which
was ensured by the infinitely high number of contacts
per time step.

The second approach towards an identification delivers
weaker results and does not request a special infection
and recovery rate, but is rather built upon modified tran-
sition rules for the HPP model what involves that not the
cells, but single individuals are observed. Because par-
ticles in the LGCA do not have a fix or bounded envi-
ronment of interaction as in the stochastic CA, we min-
imise this area by introducing rotational motion. This
leads to 4 · 3 = 12 different direct contact particles for
every particle, because in every discrete moment a par-
ticle has contact to three other particles (Fig. 3 b). The
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numbers of direct contacts after one, two etc. time steps
is 3, 6, 9, 12, 12, 12, . . . .

To reach the same number of contacts in the stochas-
tic CA, we allow three contacts per time step and keep
the contact distance always between d ∈ [0, 1.5] and
1.58 <

√
0.52 + 1.52 and thus reach that a individual

can establish contact to 12 other individuals (Fig. 3 a).
If lower values are used for d, the likelihood of inter-
action with the outer cells becomes smaller and spread
slower. Simulations show that for d ≈ 1.5 the two mod-
ified automata deliver the same behaviour.

Generally there can always be found parameters for the
stochastic CA so that the behaviour of an epidemic out-
break is the same for both models.

In section 6 a more advanced method towards identify-
ing these two models is presented.

4.3 Vaccination policies

With the stochastic CA model it is now easily possible
to change the contact behaviour of regional groups of
the population by defining a different number of con-
tacts for different regions of the domain. Like with the
FHP model several different vaccination policies can be
examined.

A quarantining policy can be implemented by defining
a lower number of contacts in and around the epidemic
area. The results are the same as for the barrier strat-
egy in the FHP model. Too weak quarantining mea-
sures can deliver a faster course of the epidemic than we
would reach with a generally lower number of contacts.
Combinations of vaccination and quarantining policies
could for example consist of an area with a low num-
ber of contacts, surrounded by a barrier of vaccinated
individuals. Of course combinations can deliver much
better results for confining an outbreak.

4.4 Towards an extended model

In the section on LGCA models it was stated that the
number of contacts for this type of model is limited
due to the structure of the lattice. To obtain a model,
which considers motion of individuals but also allows a
flexible definition of the contact environment, the FHP
and stochastic CA approach can be combined by allow-
ing stochastically distributed contacts among particles
in the FHP model.

5 PDE model
The partial differential equations approach we want to
observe here can be found in [8]. It is based on dis-
tributed contacts like the stochastic CA approach and
emerges from a Taylor series simplification that can be
found in [9] for example, which also refers to [8].

5.1 Derivation

Spatial inhomogeneities are introduced by distributing
the individuals on a domain and observing the densi-
ties of each group S(t, x, y), I(t, x, y) and R(t, x, y)
respectively their change in time. For every location

(x, y) on the domain S(t, x, y) + I(t, x, y) + R(t, x, y)
is always ≤ 1.

Further a rate or probability of infection for every lo-
cation is necessary. The basis for this is an interaction
coefficient α̃(~x,~v) for each two points ~x = (x, y) and
~v = (v, w) on the domain, which allows contact be-
tween individuals, which are located at different posi-
tions. As already mentioned in the section on stochas-
tic CA, a prototype for the likelihood of interaction is a
function that depends on the distance between the two
points ‖~v − ~x‖. We only observe interaction functions
that satisfy ‖α̃‖L1(R2) = α ≤ 1 and thus have similar
features like probability distributions (compare [8]).

With the assumptions from above, the probability of in-
fection Ψ at a certain point ~x is∫

α̃(~x,~v)I(~v) d~v =
∫

α̃(‖~v − ~x‖)I(~v) d~v (7)

and after transformation with ~z := ~v − ~x becomes∫
α̃(‖~z‖)I(~x + ~z) d~z. (8)

Now in [9] the zeroth- and second-order Taylor series
expansion of I(~x + ~z) is observed in order to simplify
the resulting integral equations.

I(x + z) = I(x) + I ′(x)z +
I ′′(x)

2
z2 + (9)

+
I ′′′(x)

6
z3 +

Iiv(x)
24

z4 + . . .

For functions on a two dimensional space (~x = (x, y)
and ~z = (u, v)) this is equal to

I(~x + ~z) = I + uIx + vIy + (10)

+
1
2
(u2Ixx + 2uvIxy + v2Iyy) + . . .

After simplification of the integral equation with the
zeroth-order expansion the probability of infection is
the same as in the original ODE model: Ψ0 = αI .

Using the second-order expansion delivers

Ψ2 = I

∫
α̃dz +

1
2
Ixx

∫
u2α̃dz +

1
2
Iyy

∫
v2α̃dz (11)

for the probability of infection. Because of the ra-
dial symmetry of the likelihood function α̃ some of the
terms can be eliminated

0 = Ix

∫
uα̃dz = Iy

∫
vα̃dz = Ixy

∫
uvα̃dz. (12)

This is also the reason for Ψ1 = Ψ0.

Furthermore we only observe domains with finite range
and thus can say that r =

√
u2 + v2 ≤ ρ and α̃(r) = 0

for r > ρ. This allows to define a parameter γ with a
finite number (transformation into polar coordinates)

γ =
1
2

∫
u2α̃dz =

π

2

∫ ρ

0

r3α̃(r)dr. (13)
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Using this substitution the probability of infection can
be written as

Ψ2 = Iα + Ixxγ + Iyyγ = αI + γ∆I. (14)

For a second order simplification of the probability of
infection at a point ~x, a (new) partial differential equa-
tions system, which describes the densities of the three
groups can be set up

∂S(t, ~x)
∂t

= −S(t, ~x)(αI(t, ~x) + γ∆I(t, ~x))

∂I(t, ~x)
∂t

= S(t, ~x)(αI(t, ~x) + γ∆I(t, ~x))−

−βI(t, ~x)
∂R(t, ~x)

∂t
= βI(t, ~x). (15)

With the Hölder Inequality and because

α = ‖α̃‖L1(R2) =
∫

α̃dz = (16)

= 2π

∫
α̃(r)rdr = 2π‖rα̃‖L1[0,ρ]

we can calculate an upper bound for γ

γ =
π

2
· ‖r3α̃(r)‖L1[0,ρ] (17)

≤ π

2
· ‖r2‖L∞[0,ρ] · ‖rα̃(r)‖L1[0,ρ]

=
π

2
· ρ2 · 1

2π
‖α̃‖L1(R2)

=
1
4
ρ2α.

5.2 Deriving an extended version

Using the third order expansion delivers nothing new
because of the symmetry of α̃ all terms with third order
derivatives vanish Ψ3 = Ψ2.

The fourth order Taylor series expansion yields to

Ψ4 = I

∫
α̃dz + (18)

+
1
2
Ixx

∫
u2α̃dz +

1
2
Iyy

∫
v2α̃dz +

+
1
24

Ixxxx

∫
u4α̃dz +

1
24

Iyyyy

∫
v4α̃dz +

+
1
4
Ixxyy

∫
u2v2α̃dz.

If γ0 := α and γ2 := γ are the same as for the second
order expansion, and we define γ4 so that

γ4 =
1
24

∫
u4α̃dz =

π

32

∫
r5α̃(r)dr, (19)

2γ4 =
1
4

∫
u2v2α̃dz =

π

16

∫
r5α̃(r)dr,

we can write the probability of infection (18) as

Ψ4 = γ0I + γ2∆I + γ4(Ix4 + Iy4 + 2Ix2y2) =
= γ0I + γ2∆I + γ4∆∆I. (20)

Actually this is only possible if the surface I(x, y) is
smooth enough. But because we observe only discrete
points we can assume an arbitrary interpolation.

As before for γ = γ2 we can now find upper bounds for
γ4.

γ4 ≤ 1
16

ρ2γ2. (21)

γ4 ≤ 1
64

ρ4γ0.

Generally the probability of infection can be approxi-
mated with the Taylor series expansion of any arbitrary
order n, which delivers a differential equations system
of the form

∂S(t, ~x)
∂t

= −S(t, ~x)Ψn(t, ~x)

∂I(t, ~x)
∂t

= S(t, ~x)Ψn(t, ~x)− βI(t, ~x)

∂R(t, ~x)
∂t

= βI(t, ~x), (22)

where Ψn(t, ~x) is the probability of infection at a cer-
tain point ~x at time t, which has been approximated us-
ing the n-th order Taylor series expansion.

Now we will determine and analyse Ψn in order to ex-
amine the behaviour for n →∞.

For ~x = (x, y) and ~z = (u, v) the n-th order Taylor
series expansion of I(~x + ~z) can be written as

In(~x + ~z) =
∑

i+j≤n

∂i

∂xi

∂j

∂yj

I(x, y)
i!j!

uivj . (23)

Because of the radial symmetry of α̃ all terms for which
i · j is an odd number vanish in the integral representa-
tion of the probability of infection Ψn. This means that
we have

Ψn(t, ~x) =
∫

α̃(‖~z‖)In(~x + ~z) d~z = (24)

=
∫

α̃(‖~z‖)
∑

i+j≤n
i,j∈2N

∂i

∂xi
∂j

∂yj

I(x,y)
i!j! uivj d~z =

=
∑bn

2 c
k=0

i+j=k

∂2i

∂x2i
∂2j

∂y2j

I(x,y)
(2i)!(2j)!

∫
α̃(‖~z‖)u2iv2j d~z.

Now we claim that

Ψn(t, ~x) =
bn

2 c∑
k=0

γ2k∆kI(x, y) (25)

where

γ2k =
1

(2k)!

∫
α̃(‖~z‖)u2k d~z (26)

=
2π

(2k)!

k∏
l=1

2l − 1
2l

∫ ρ

0

α̃(r)r2k+1 dr.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM



The second equal sign follows from the Wallis prod-
uct and the periodicities of the cosine function. Fur-
thermore we can develop a relation between γ2k and
γ2(k−1) respectively γ0 (k > 0).

γ2k ≤ 1
4k2

ρ2γ2(k−1) (27)

γ2k ≤ 1
4k(k!)2

ρ2kγ0

Our proposition (25) is true because

∆kI(x, y) =
∑k

j=0

(
k
j

)
∂2(k−j)

∂x2(k−j)
∂2j

∂y2j I(x, y) (28)

and (γ2k is involved!)

1
(2(k−j))!(2j)!

∫ 2π

0
cos2k−2j ϕ · sin2j ϕ dϕ =

= (k
j)

(2k)!

∫ 2π

0
cos2k ϕ dϕ, (29)

which we can apply after rearranging (24) to a double
series.

On the other hand we know that the Taylor series ex-
pansion converges locally towards the function value
(actually depending on the smoothness of the function),
which leads to

lim
n→∞

bn
2 c∑

k=0

γ2k∆kI(x, y) =
∫

α̃(‖~z‖)I(~x + ~z) d~z. (30)

5.3 Implementation

First we observe the PDE model with the second order
Taylor series approximation. We need to approximate
the Laplacian at every point of the lattice (and also use
a shorter notation).

∆I(x, y) = I(x, y)xx + I(x, y)yy = (31)

= I(x+ε,y)+I(x−ε,y)−2I(x,y)
ε2 +

+ I(x,y+ε)+I(x,y−ε)−2I(x,y)
ε2 =

= I(x+ε)+I(x−ε)+I(y+ε)+I(y−ε)−4I
ε2

Because we have a discrete lattice, the minimal value
for ε is 1. This means that in the case of Ψ2 the solution
procedure for the PDE uses a Van Neumann neighbour-
hood of size one to calculate the growth of the density
of infected in the cell.

For the fourth order approximated PDE model we addi-
tionally need to know

∆∆I(x, y) = ∆(I(x, y)xx + I(x, y)yy), (32)

which we can calculate from {∆I(u, v), |x−u|+ |y−
v| ≤ 2}. We obtain a Van Neumann neighbourhood of
size two for Ψ4.

Very interesting are the weight factors for the cells in
the neighbourhood, which are determined by the γ2k

(Fig. 4). This also explains why, these parameters can

. . .

γ4 . . .

γ2 2γ4 . . .
−4γ4

γ0 γ2 γ4 . . .
−4γ2 −4γ4

+4γ4

Fig. 4 Weight factors in the neighbourhood for the
fourth-order simplified PDE implementation (upper-
right quadrant).

not be totally arbitrary but must satisfy the conditions
(21) and (27). Otherwise problems arise at the latest in
the implementation, especially if all densities should be
≤ 1.

Because of (30) we know that these CA approximations
converge for n → ∞ towards the integral representa-
tion (8) of the model. Therefore and because we al-
ways observe discrete domains, the approximation of
Ψ and consequently the calculation of the Laplacian for
each location is not necessary. Instead we can calculate
the probability of infection, which delivers the growth
of the density of infected (and also the growth of the
probability of a cell being infected as we will see in the
following section), by

Ψ(x, y) =
∑

(u,v)∈
Ω(x,y)

α̃(‖(u, v)− (x, y)‖)I(u, v) (33)

where Ω(x,y) is the set of all cells, which lie in the
neighbourhood of the cell located at (x, y).

5.4 Modified solution approach and comparison

Beneath the just mentioned solution method, which we
will use as a standard and which provides the densities
of the three groups on the lattice (domain), we will in-
troduce a modification, which uses the distribution of
the population to create a state-discrete representation
of the system.

With the help of a uniformly distributed random num-
ber for each cell, which is constant over time, a discrete
state can be calculated by simply locating the random
number in the segmentation of [0, 1] = [0, S]∪ (S, S +
I] ∪ (S + I, S + I + R] ∪ (S + I + R, 1]. Now this
means that Ψ describes the growth of the probability of
the cell being infected.

The behaviour of this lattice representation during eval-
uation can be compared to one of a stochastic CA sim-
ulation. In the following we provide the theoretical link
between these two approaches and therefore analyse the
feature of distributed interaction in both models using a
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special likelihood function α̃ ∈ L1.

α̃(r) =

{
c · exp

(
r2

d(r2−ρ2)

)
, r < ρ

0, r ≥ ρ
(34)

With c ∈ (0, 1] it is possible to directly define the max-
imum of the function, which is always located at r = 0.
d ∈ (0, 1] controls the decay of the function. Bigger
values mean slower decay. And finally ρ is the ra-
dius of the circular neighbourhood. These parameters
allow to generate likelihood functions, which satisfy
‖α̃‖L1 ≤ 1.

Because for both models α̃ defines neighbourhoods of
the same maximum size (ρ) and structure (c, d), the dis-
tinct difference lies in the employment of the likelihood
function (compare Tab. 1).

For the PDE model α̃ delivers a factor for each neigh-
bourhood cell (compare γ2k), which determines the
amount of impact that they have on the central spot.
Depending on the sum of all impacts, the densities of
infected in the discrete neighbourhood and the density
of susceptibles in the central cell, the growth of the
(density of the) infected is performed. According to
this density with the earlier mentioned constant random
number, a discrete state for the lattice representation
can be obtained. This also means that the probability
of the central cell being infected (in the next time step)
is

ΦPDE = I + Ψ · S (35)

(As before I and S are the densities of infected respec-
tively susceptibles in the central cell) minus the recov-
eries, which are neglected here for reasons of simplifi-
cation but reintroduced later on/in the implementation
without further mentioning.

In the stochastic CA on the other hand the likelihood
function is used for a stochastic determination of λ con-
tact cells within the neighbourhood in order to provide
the basis for – now in contrast not only for a representa-
tion – generating the infections with a further constant
parameter α, which may vary for different cells. Notice
that α must not necessarily be the same like α from the
previous section, to which we now refer to as γ0. For
the probability of the cell being infected (in the next
time step), which we denote ΦCA, this yields to

ΦCA = (1− (1− α)IΩλ ) · S (36)

as it has been discussed earlier in this paper (IΩλ
is the

number of infected contact cells and S is one if the cell
is susceptible otherwise it is zero).

Like in the section on stochastic CA α represents the
probability of infection when a susceptible and an in-
fected individual come into contact and λ is the number
of contacts within the neighbourhood per time step. Re-
gard the strong connection between those two parame-
ters, which is characterised by an indirect proportional
relation. If more contacts are established, the impact
of a single contact must be smaller in order to preserve

the same overall level of infectious impacts. Concern-
ing runtime of an implementation, it is important that λ
is not too large, because a high number of contacts re-
quires a higher number of runs through the loop, which
provides the random contact generation. If λ is a larger
number on the other side, the interaction with the neigh-
bourhood becomes ‘smoother’, which could (but actu-
ally does not – see later on) provide a behaviour of the
CA closer to the pseudo continuous PDE model.

Now the remaining parameter for an identification is α.

An optimal relation between the probabilities of infec-
tion would be valid for all possible conditions concern-
ing the neighbourhood.

ΦCA ≈ ΦPDE (37)
S(1− (1− α)IΩλ ) ≈ I + S ·Ψ

≈ I + S
∑

u2+v2<ρ2

α̃(u, v)I(u, v)

≈ I + S

∫
α̃(u, v)I(u, v) d~z

Because this might not be possible, some features of
the prevailing conditions must influence the derivation
of the probability of infection in the stochastic CA α.
What can be assumed is that S = 1 and I = 0, be-
cause otherwise it would not be clear that the cell has
not already status infected in the lattice representation.
Further an estimation of the density of infected in the
neighbourhood is needed I(u, v) ≈ Ī . This leads to
IΩλ

≈ Īλ.

After applying these assumptions on (37) and again
using a Taylor series simplification (especially if α is
small and λ is large) the equation can be solved for α.

1− (1− α)Īλ ≈ Ī‖α̃‖L1(R2)

αĪλ ≈ Ī‖α̃‖L1(R2)

α ≈ ‖α̃‖
λ

. (38)

On the first look this method seems to be rather impre-
cise.

Now we present a second one, which actually works
only for likelihood functions that are probability density
functions and therefore discharge the idea of discrete
states in the stochastic CA in the beginning and proceed
with using densities.

ΦCA ≈ ΦPDE (39)

I + S ·
∑
Ωλ

αI(u, v) ≈ I + S ·
∑
Ω

α̃(u, v)I(u, v)

If λ is large enough, we can assume Ωλ = Ω and we
can use the same approximation as before because the
contacts are distributed with α̃.

Now on the contrary we assume that λ = 1. This means
that one single contact cell with a specific density of
infected I1 is chosen. We want to have

αI1 ≈
∫

α̃(u, v)I(u, v). (40)
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Because the location of this contact cell follows the dis-
tribution α̃, we can use the central limit theorem, which
yields to

I1 →
∫

α̃(u, v)I(u, v) (41)

and accordingly α → 1 if the process of contact-
establishment is repeated very often. And with the same
idea we obtain for λ > 1 that α → 1

λ , which corre-
sponds to the first approach.

Now we must remember that we used a ‘probability’
of infection of the form αI . But because we know
from the previously used Taylor series expansion that
for small α and accordingly larger λ we can write
αIΩλ

≈ 1 − (1 − α)IΩλ , this results are also valid for
the original contagion process, which was described by
the latter form of the probability of infection.

With this parameter identification it is possible to gen-
erate rather good correspondence between the two dif-
ferent approaches as we will see later.

5.5 Remarks

As it can be seen in (37) for example, the space-
(and time-) discrete implementation of the PDE model
uses Riemann-Stieltjes-Sums to approximate the inte-
gral over α̃I .

A closer look on the bounding box algorithm, which
has been used in the implementation of the stochastic
CA model, shows that in this case the inverse of the
likelihood function applied on equidistant values deliv-
ers a special sequence of radii, which then provide by
themselves the decaying likelihood of interaction. This
method can be compared to the Lebesgue method of
integration, which seeks step functions f that satisfy∫

f ≤
∫

α̃. On the other hand the process of determin-
ing an interaction area within the neighbourhood with a
certain (decaying) likelihood of contact is equivalent to
calculating quantiles of the probability distribution α̃.

We recapitulate that for both models the process of
propagation of a disease is composed of two compo-
nents, either stochastic or deterministic (Tab. 1).

Tab. 1 Deterministic and stochastic components in the
PDE and stochastic CA model. 1This formulation is
of course only valid for likelihood functions, which are
probability density functions. 2Actually only the lattice
representation is generated stochastically by using the
(deterministic) density and a constant random number.

PDE stoch. CA
construction of deterministic stochastic
neighbourhood by by
resp. contacts Riemann sums quantiles1

reaction on semi-stochastic stochastic
contagious using by probability

contact densities2 of infection

Concerning the behaviour of the stochastic CA we can
assume that for higher values of λ the behaviour must

lie closer to the PDE approach because the impact of
contagious cells is closer to

∫
α̃I . That this is not the

case shows Fig. 5.

Further, if in the discretisation of the second order Tay-
lor series simplified PDE only discrete states are al-
lowed, the resulting CA corresponds to the Van Neu-
mann CA, which was used in section 4.2 to establish a
connection between the HPP LGCA and stochastic CA
approach.

6 Diffusion – Brownian motion
We now present a method for adapting the behaviour of
the PDE and stochastic CA approach to the behaviour
of the LGCA model. As a basic connection we use that
the diffusion of particles governed by random motion
(random walk) can be compared to Brownian motion –
at least in a scaling limit.

Brownian motion can be described by the diffusion or
Gaussian semigroup, which is defined by [10]

T (t)f(~x) =
1

4πt

∫
exp

(
−‖~z‖2

4t

)
f(~x + ~z) d~z (42)

This invokes a likelihood function

α̃(r) =
1
4π

e−
r2
4 (43)

for the PDE and stochastic CA approach, which only
defers little form the previously used likelihood func-
tions. Now the radius of interaction is not bounded.
This function also describes the mean square deviance
of the particles.

We use this likelihood function in the PDE approach
and adapt the parameters of the stochastic CA and
LGCA to fit the PDE behaviour.

For the stochastic CA we know from the previous sec-
tion how to choose α and λ.

6.1 Parameter identification for the LGCA model

We now identify positions on the domain for the PDE
approach and cells for the stochastic CA with cells in
the LGCA, which means that we do not observe the
number of particles (Iabs and Sabs) but their densities
within the cells (I and S). This allows again to calculate
a discrete status for every cell by a constant random
number.

The probability of a cell being infected in the FHP
LGCA is given by (compare (2))

ΦFHP =
Iabs + (1− (1− α)Iabs) · Sabs

6
(44)

= I + (1− (1− α)6I) · S
≈ I + 6α · I · S.

Further the particles in the cells depend on the transition
mechanism (random motion), which is described by α̃
(random walk).
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It is important to know that the variance of the diffusion
distribution α̃ describes the mean square deviation of
particles.

σ =
∫

u2α̃(u, v) d~z (45)

= π ·
∫

r3α̃(r)

= 2γ2

= 2

This means that during one time unit a particle moves
for two space units. Accordingly for a comparison of
the LGCA with the PDE approach the particles in the
LGCA must perform two discrete movements during
one time step. But because this means that the num-
ber of contacts doubles, we can alternatively divide the
probability of infection α by two (compare [11]) and
use one discrete movement per time step in the LGCA.

Further Graham’s law states that diffusion is indirect
proportional to

√
ω, where ω is the density of a popula-

tion or a gas.

Now the probability of infection can be written as

ΨFHP ≈ 6 · α

2
· I (46)

≈ 3α · 1√
ω

∫
α̃(u, v)I(u, v) d~z.

Comparing the probabilities of infection in both models
leads to

ΨFHP ≈ ΨPDE (47)
3α√
ω

∫
α̃I ≈

∫
α̃I

α ≈
√

ω

3
.

6.2 Monte Carlo simulation

The following experiment (Fig. 5) happens on a do-
main of 1000 cells/individuals/positions with periodic
boundary conditions. The initial condition is one (ab-
solutely) infected cell in the centre of the lattice, all
other cells are fully susceptible (full density). For rea-
sons of simplification only infections and no recoveries
are observed. The time of observation is 30 time units.
The outcome is an averaged one over 20 simulation runs
(except for the PDE because it is fully deterministic).

6.3 Remarks

Simulations show that also the behaviour of LGCA with
FHP-I transition rules (not shown in the figures) can be
compared to the PDE model with this special likelihood
function.

The LGCA simulations require extremely less compu-
tation time. The CA is fast if only few susceptible cells
are on the domain. PDE simulations (no Taylor series
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PDE

stochastic CA − 10 contacts

stochastic CA − 2 contacts

FHP LGCA − 1 step

FHP LGCA − 2 steps

Fig. 5 Infected individuals from the PDE, stochastic CA
and FHP LGCA approach. The stochastic CA was run
with 10 contacts per time step and 2 contacts per time
step. Accordingly the infection rates in the stochas-
tic CA were 1

10 and 1
2 respectively. The FHP simula-

tion was run with one movement per time step and two
movements per time step. The infection rates for the
LGCA were therefore 1

3 respectively 1
6 .

Fig. 6 The density of infected individuals from the PDE,
stochastic CA and FHP approach (SIRS) on the do-
main after 10, 15 and 20 time steps (from left to right
and the densities are increasingly represented by black-
red-yellow-white except for the stochastic CA where
infected cells are marked yellow). Initial condition is
one infected cell in the centre of the lattice. The pop-
ulation consists of 500 susceptible individuals who are
uniformly distributed on a domain with a density of 0.8.
The rate of infection is 0.8, the recovery rate is 0.2 and
the rate for loss of immunity is 0.1.
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simplification) are slower – actually depending on the
implementation.

It is surprising that the behaviour of the stochastic CA
with two contacts per time step is closer to the PDE
model than with 10 contacts, which is closer to the
LGCA model. The reason for slower spread with 10
contacts could be that for a higher number of contacts
more contacts are established with other susceptible in-
dividuals.

How the population density effects the behaviour of
the LGCA is already known from section 3.2. Con-
sequently the reason for why the probability of infec-
tion (46) additionally contains the population density
is that otherwise a lower density would influence the
overall rate of infections in the LGCA twice. In the
PDE model the population density only influences the
values of S, I and R. In both situations no further pa-
rameter tuning is necessary. For the stochastic CA the
infection rate should be divided by the population den-
sity because the number of contacts in the calculation
of the probability of infection is linked to the popula-
tion density and is smaller for lower densities (compare
(37) and (38)). Accordingly the reason for the influence
of the population density is the same as for the LGCA
approach.

For a different rate of infection the probability of in-
fection in each of the three approaches must simply be
multiplied with a parameter.

Because of the central limit theorem and the diffusion
distribution from the previous sections we can say that
the PDE model is an upper bound for the stochastic CA
and random motion FHP LGCA concerning the sym-
metry and smoothness of the contact behaviour respec-
tively motion.

7 Frequency analysis
In this section we compare the occurrence of epidemic
waves in different SIRS model approaches. In section 1
it was mentioned that by using a rate (or actually proba-
bility) of recovery and a random number, which decides
whether an infected individual recovers in the current
time step or not, the duration of the infection is geomet-
rically distributed. For the period of immunity (before
the individuals become susceptible again) in the SIRS
extension the same idea is valid if a rate for the loss
of immunity is used. Principally it is also possible to
assign an arbitrary distribution to the incubation, conta-
gion or immunity period as done in section 7.2.

7.1 PDE, stochastic CA and FHP SIRS models

The simulations with the SIRS extensions with geomet-
rically distributed durations (Fig. 7 and Fig. 8) addi-
tionally show that the parameter identifications from the
previous sections deliver very accurate results.

Initial condition for the simulations in Fig. 7 and Fig.
8 is one infected cell in the centre of the lattice. The
population consists of 500 susceptible individuals who
are uniformly distributed on a domain with full density.

The rate of infection is 1, the recovery rate is 0.3 and
the rate for loss of immunity is 0.05.
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Fig. 7 above: Infected individuals from a single simula-
tion run with the PDE, stochastic CA and FHP LGCA
approach. below: FFT frequency analysis with two dif-
ferent scalings.
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Fig. 8 above: Average number of infected individuals
from 16 simulation runs with the PDE, stochastic CA
and FHP LGCA approach. (Results of simulations in
which the epidemic dies out were not used). below:
FFT frequency analysis.

7.2 SICRS – extended model

The model, which we use for the following simula-
tions, was mentioned earlier. It is a composition of the
LGCA and stochastic CA approach and thus features
distributed contacts and motion. But these are not the
decisive factors for the generation of the wavelike be-
haviour of an epidemic, as it is the duration of the stages
in which the individuals rest (susceptible, infected, con-
tagious, immune/recovered) and the breaks between po-
sition changes.

The durations of the stages are normally distributed
with the following parameters (Tab. 2).

We use FHP-I collision configurations and allow mo-
tion only every 10 time steps but permit 5 discrete
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Tab. 2 Expected values and variances for the durations
of the disease stages.

stage expected duration variance
incubation period 6 1
contagious period 14 4

resistant period 21 5

movements at once. The boundary conditions are pe-
riodic. The distribution of contacts is determined by
a likelihood function of the form (34) with parameters
ρ = 5 (radius), d = 0.4 (decay) and c = 1 (maximum).
The number of contacts per time step is 39 and the prob-
ability of infection 0.2. The domain is discretised on a
lattice of 15 000 cells and the population density is 0.3.
The initial condition consists of 54 infected particles in
the centre of the lattice. The outcomes of the simulation
after 800 time steps are presented in Fig. 9 and a Monte
Carlo simulation with 10 runs and 400 time steps can
be found in Fig. 10.
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Fig. 9 above: Number of susceptible, infected, conta-
gious and immune individuals from a single simulation
run with the extended model. below: FFT frequency
analysis.
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Fig. 10 above: Number of susceptible, infected, con-
tagious and immune individuals from a Monte Carlo
simulation with the extended model. below: FFT fre-
quency analysis.

7.3 Remarks

Especially the first two enhancements in the number of
infected individuals (Fig. 7) are very similar in all three

approaches. In contrast to the PDE model, the FHP
LGCA and especially the stochastic CA model deliver
strong fluctuations (compare Brownian motion) in the
number of infected. The Monte Carlo simulations (Fig.
8) show that the expected or mean development of the
number of infected can be described by the PDE model,
which confirms that the PDE model is an ‘upper bound
concerning smoothness’.

Fig. 9 and Fig. 10 show that the extended model deliv-
ers clearly visible waves and that it ends up in a steady
state. By applying Monte Carlo methods, small fluctua-
tions can be eliminated whereas the wavelike behaviour
is preserved.
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