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Abstract 

The question how to model the spread of epidemics has been approached countless times. The 
number of different methods used on this problem is not too small either. Ordinary 
differential equations (ODE) and Partial differential equations (PDE) have dominated this 
field for several decades, if not centuries. In the second half of the last century two alternative 
techniques appeared on the stage, namely cellular automata (CA) and agent based (AB) 
models, also called multi agent systems (MAS). The difference between the approach with 
differential equations and the latter two methods is big. CA and MAS are so called “bottom-
up” approaches, focusing on the smallest unit of the system – a cell or agent, whereas ODEs 
try to model the system via causal connections on the macroscopic 
level. Setting up a SIR-type model using the AB approach one can 
take advantage of state charts to control the behavior of agents. 
Using AnyLogic as implementation platform agents and 
especially state charts can be programmed very conveniently. 
Especially modifications and/or extensions of the final model can 
be handled in an elegant way. The right figure does show all 
necessary adjustments to expand the SIR- to a SIRS-type 
epidemic (additional state transition highlighted). The results 
obtained by simulation with such an MAS are comparable to those 
of the ODE- and CA-approach, although AB modeling offers a 
higher degree of freedom and thus more possibilities of 
adjustment. 
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1 Introduction 
1.1 History of Agent Based Systems (ABS) 

The first known attempts to analyze patterns of 
epidemic outbreaks date back to Hippocrates [1]. Over 
the centuries the understanding of the biological and 
chemical processes leading to diseases became better 
and better, the mathematical knowledge grew larger 
and with it the possibilities and models for such 
attempts became more and more complex. At the 
beginning of the 20th century Kermack and 
McKendrick published the famous and often cited 
ODE-system 

 
for the simulation of a simple SIR-type epidemic, 
where S(t) denominates the number of susceptible 
individuals at time t, I(t) the number of infected and 
R(t) the number of recovered individuals. The 
variables β and γ represent the infection respectively 
the recovery rates. Since then the differential equation 
methods have been refined and improved in various 
ways. In the second half of the last century, with the 
rise of computers and increased computing power, 
cellular automata (CA) became an interesting field for 
experience. Especially one advantage made them quite 
interesting – the possibility to simulate heterogeneous 
populations. In the 1990ies computers finally reached 
a level making it possible to handle even more 
complex structures – ABS, also referred to as multi-
agent-systems (MAS) were born. These systems allow 
for even more flexibility, as the agents may hold 
(many) different characteristics, such as age, or sex. 

1.2 Characteristics of MAS 

Cellular automata and multi-agent systems are both 
classified as “bottom-up” approach. Both methods 
describe (complex) systems by definition of local 
interactions. The interaction of CA is a very limited 
and strict one. Whereas AB-systems lack a clear and 
strict definition, but provide much more flexibility. 
Numerous varying definitions can be found 
throughout literature, with one possible definition 
(adapted from [2]) being the following: 

An agent is a computer system situated in an 
environment, it has the capabilities to flexibly and 
autonomously act in this environment in order to reach 
its (predefined) objectives/goals. Which leaves three 
terms that need further specification: 

• Situated in our case means that the agent is 
interacting with its environment. The agent is 
capable to receive input from the surrounding 
(generally via sensors) and can also manipulate it to 
some extent. 

 

 

 

• The definition of autonomy needs to be handled 
with care, as we are talking about a pre-
programmed computer system. Thus it is 
satisfactory if the agent can reach decisions without 
(human) interaction. 

• Flexibility is required in multiple ways. Firstly one 
demands that the system is operating and acting in 
reasonable time. Secondly the agents are not to be 
solely reactive but goal-oriented or in the best case 
anticipating. And thirdly agents may have the 
capability to communicate or interact with other 
agents and/or real humans. 

In MAS now several of such agents are interacting. 
Such multi-agent-systems are characterized by: 

• agents have a limited point of view (incomplete 
information and/or problem solving capabilities), 

• the absence of global system control, 

• decentralized data and 

• asynchronous computation of the agents. 

2 Modeling 
2.1 Simulation Environment – AnyLogic 

AnyLogic is a programming and simulation 
environment, mainly aiming at modeling of hybrid 
systems, based on JAVA. It allows the user to 
combine different techniques and approaches such as 
differential equations, discrete events and agent based 
systems. These combination possibilities make it a 
very interesting tool for simulation of complex 
systems. 

AnyLogic’s newest version 6.0 is focusing mainly on 
the agent-based approach and business simulation, but 
allows other methods to be used. A drawback for the 
simulation of exact systems is the lack of a state event 
finder in the newest version. It is still available in 
version 5.5 but was dropped in 6.0 to improve 
runtime. On the other hand the performance of and 
possibilities for modeling of agent-based systems has 
largely increased. Numerous processes have been 
optimized and simplified. 

A clear advantage of AnyLogic is the possibility to 
use JAVA code at any place of the program and thus 
expand or adopt the model to the programmers needs. 
Another neat feature of AnyLogic is the possibility to 
immediately create a JAVA applet of a working 
model, allowing it to be put on websites or distributed. 
In version 5.5 it took quite some time until one 
became accustomed with the program-layout, version 
6.0 restructured the GUI, but still requires the user to 
get acquainted with it. 
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2.2 Definition of Task 

The problem that we are going to conquer 
subsequently is a slight modification of the 
ARGESIM Comparison 17 (see [3]). This comparison 
does ask for the simulation of a SIR-type epidemic by 
means of lattice gas cellular automata (LGCA). At the 
end of this paper we will compare the outcome of such 
an approach with our ABS-result. 

The task is to model a SIR-type epidemic, an epidemic 
simplified in several ways. For example we assume a 
constant population over the whole simulation, thus no 
births or deaths may occur. Further there is no 
incubation period or delay time between infection and 
infectivity of an agent. 

CA are defined via their neighborhood, this means 
that we need an equivalent to the CA-neighborhood 
for our MAS. We are going to solve this by defining a 
field of view for our agents. This field of view is set 
via two parameters: vision-range or -distance and 
angle of vision (see Fig.1). 

 
Fig.1 Field of View of Agent 

The transmission of infection is being modeled as 
follows: if an agent crosses another agent’s field of 
view they establish contact (for this every agent holds 
a Boolean control variable). In case that any of the 
agents is infected the infection is triggered 
probabilistically by a trigger-event. 

Recovery of the agents is also reached stochastically, 
although with a given minimum for the duration of the 
disease. A recovered agent cannot become infected 
again, thus it is immune to the disease. This is leading 
to two possible scenarios: 

• The disease infects all agents in our simulation 
resulting in a full immunization of our Population. 
The infection dies out because of lack of vectors 

 

• The infection does not find any new vectors (e.g. 
the density of agents is too low) and thus cannot 
reach all individuals of our population before dying 
off. This leaves a partially immunized and partially 
susceptible population. 

2.3 Model Set-up 

As already stated in section 1.2, the basic element of 
an AB-model is the agent itself. Thus we start by 
creating an agent. This is done in AnyLogic by 
creating a new class. The agent is assigned 5 variables, 
two real variables for the X- and Y-coordinate of the 
agent and another two real variables for the X- and Y-
component of its movement. All four of these 
variables are random numbers with an upper limit - 
either a given maximum speed or the boundaries of 
the simulation environment. The fifth variable is, as 
said before, Boolean and in charge of controlling the 
contact status of our agent. 

The health status of our agent is controlled by a state-
chart which represents the possible states and defines 
the state-transitions and actions for these transitions 
(see Fig. 2 for the health state chart). 

 
Fig.2 State chart “health” of agent 

The circled B’s in the chart represent branches where 
(in our case) probability comes into play. By this we 
also model the initial infection of the population. 

Next we need to define the state chart for movement 
and contact of our agent. This is accomplished by the 
state chart presented in Fig. 3. 
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Fig. 3 State chart “movement” of agent 

The transitions within the state charts need to be 
triggered by certain events. An example is the 
procedure of infection that was already mentioned in 
section 2.2. On contact the health states of both agents 
are checked for an infected. If an agent is infected and 
its contact susceptible, a message is sent to the contact 
(with given infection probability). If such a message is 
sent, it triggers the state transition from susceptible to 
infected. 

A transition (within the state chart movement) is 
triggered in case that an agent reaches the border of 
the simulation environment. In this case several 
options are possible. Since our population must stay 
constant we can either reflect the agent into the 
environment (by simply switching its direction) or we 
can periodically insert it on the opposite side of the 
environment. 

In AnyLogic it is also possible to add visualization to 
every class. This allows specifying a shape for out 
agent which can range from a simple dot to a complex 
object. We can keep it simple and just use colored 
dots that change color according to the status of the 
agent. 

In a next step we replicate our object “agent” as often 
as required. This is very well supported by AnyLogic 
and the agents can be placed easily in the main 
simulation. The overall simulation visualization is also 
located in this main environment, together with 
control elements. These can be slide bars to change 
certain parameters during runtime, graphs that show 
the current number of infected individuals, etc. 

3 Experiments 
3.1 Variation of Movement Speed 

First we will take a look on how variation of the 
maximum speed affects our model. As implied before, 
the speed of the agents is not the same, but assigned 
randomly within a certain interval from 0 to 
maxSpeed. 

Figures 4, 5 and 6 do show the variation of the 
maxSpeed from 10 to 30 and 60 units. (The vision 
range is kept at 15 during all experiments of this first 
set, allowing better comparability with the second set 
of experiments). 

 
Fig. 4 maxSpeed of Agents set to 10 

(Figure corresponds to Fig. 8) 

One can easily see the difference between the runs if 
looking at the subpopulation of infected agents. The 
outcome becomes even more obvious if one is 
observing the subpopulations of the susceptible or 
immune agents and the differences between the 
graphics. 

We further notice, that all three settings of the model 
lead to the case we mentioned before, in which the 
infection dies out before reaching all individuals of 
our population. 

 
Fig. 5 maxSpeed of Agents set to 30 

 
Fig. 6 maxSpeed of Agents set to 60 
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3.2 Variation of Size of Vision Field 

In a next step we will alter the size of the vision field 
of the agents. If we take another look at Fig. 1, we can 
easily see that this can be done in two different ways. 
We may either in-/decrease the distance or the angle 
of the vision field. In either way we will reach the 
same result as the area of the field is in-/decreased and 
thus the probability that another agent passes trough it. 
The shape of the vision field is of no importance. 

We choose to modify the vision distance from 5 to 15 
and 25 units. For better comparability with the first set 
of experiments the maxSpeed of the agents is set to 10 
throughout this set. Thus Fig. 8 corresponds to Fig. 4 
of the first set of experiments. 

 
Fig. 7 Vision range of agents set to 5 

 
Fig. 8 Vision range of agents set to 15 

(Comparable to Fig. 4) 

 
Fig. 9 Vision range of agents set to 25 

This set of experiments presents similar results as the 
ones obtained from simulations in the first set. This is 
not further surprising, as both parameter variations are 
leading to a higher contact rate between the agents in 
the system. 

The infection and recovery rates have not been 
changed through all of these experiments. By 
modification and parameterization of all available 
parameters one can adjust the model to fit the curves 
produced by the Kermack and McKendrick ODE-
system presented in Eq. (1). Although in general the 
infection and recovery rates will not be the same. 

3.3 Expansion of Model – SIRS 

Now we will expand our SIR-type model to simulate a 
SIRS-type epidemic, this epidemic pattern is 
characterized by the fact that recovered (immunized) 
agents do become susceptible again, allowing them to 
get infected repeatedly. This changes the whole 
behavior of the system, as it adds the possibility, that a 
disease does not get instinct but becomes endemic 
within the population. 

In our case the modification necessary to achieve such 
a model behavior is very simple, the implementation 
in AnyLogic fast and convenient. 

We remember, the state chart “health” (see Fig. 2) of 
our agents that controls the health status and now 
return to this state chart to add another transition, 
which takes just three clicks, and modifies our state 
chart as follows (see Fig. 10). 

 
Fig. 10 Modified state chart “health of the agents. 

Notice the additional transition on the far right 
from recovered to susceptible. 

Of course we can implement several triggers for the 
recovery transition. This for example can be done 
either stochastically, such as infection and recovery or 
by timeouts or a combination of both. We will use a 
fixed timeout in order to obtain “nice” results. 
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Fig.13 Duration of immunity set to 30 units of time

 
Fig.12 Duration of immunity set to 20 units of time 

 
Fig.11 Duration of immunity set to 10 units of time 

In the subsequent set of experiments we will change 
the duration of the immune period, starting from 10 
units of time and raising it to 50 units by steps of 10. 

In such a modified system one notices the earlier 
mentioned behavior – the disease becomes endemic 
and does not die out, but keeps at a more or less 
constant level (see Fig. 11). 

If we now increase this parameter we will notice a 
nice effect – the epidemic will come in waves (see 
Fig. 12, 13 and 14). 

These experiments show very clearly that with 
increasing length of immunity the frequency of the 
epidemic waves decreases. 

 
Fig.14 Duration of immunity set to 40 units of time 
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Fig. 15 Duration of immunity set to 40 units of time 

In Fig. 14 the curve of the infected population already 
almost reaches the lower bound. If this happened there 
would be no more infected individuals within the 
systems meaning that the infection would have died 
off. This is the case if we further increase the duration 
of immunity (see Fig. 15). The epidemic dies out and 
after a delay (the duration of immunity) the whole 
population becomes susceptible again. 

If we compare the epidemic patterns to results 
obtained using a lattice gas cellular automata (LGCA) 
for the modeling of a SIRS-type epidemic, we can see 
that the qualitative behavior is fairly similar (see Fig. 
16). 

 
Fig. 16 Simulation of SIRS-type epidemic using 

LGCA (implementation in MATLAB) 

The smoothness of curves in Fig.16 is explained by 
the fact that the graph represents the average obtained 
in 40 consecutive simulation runs (Monte Carlo 
method). 

Of course the quantitative behavior of the models 
differs, but this again can be solved by a proper 
parameterization of the model(s). 

4 Conclusion 
This simulation of a SIR-type epidemic using an 
agent-based approach in AnyLogic shows some quite 
interesting things. One notices, that the qualitative 
outcome of the model corresponds to expected system 
behavior known from other modeling techniques, such 
as ODE-systems or CA-approaches. Thus using the 
agent-based approach appears to be legitimate – at 
least in this case. 

Further AnyLogic proved to be a sufficient platform 
for the modeling of MAS as it provides effective and 
helpful tools to the programmer. Especially the 
implementation of state charts and state events is very 
convenient. On the other hand it also showed some 
short comings, especially in terms of data post-
processing. It does not offer a built in functionality to 
store the data obtained during simulations. Since 
AnyLogic is based on JAVA this can be conquered by 
a JAVA-based work around, e.g. exporting data to a 
spreadsheet or csv-file during runtime. Although this 
work around needs to be implemented manually. 

A big advantage of the agent-based approach was 
shown in section 3.3 when the model was expanded. 
Additions or modifications of the model can be 
implemented very easily by simply adding the desired 
features to the agent. 

Although major improvements in terms of runtime 
have been achieved from AnyLogic 5.5 to version 6.0 
a weakness still remains when simulating huge 
systems. But altogether simulation of systems using 
MAS appears a convenient and effective method for 
certain applications, especially for socio-economic 
problems where many aspects and interactions need to 
be considered. 
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