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Abstract

This work tackles the problem of object concept detection in the domain of robot vision. Au-
tonomous robots are supposed to navigate in unknown environments, facing objects that have
appearances the robot has never seen before. As a concept of an object we define the collection
of necessary properties (philosophically speaking, the thing-in-itself), which is oftennot (only)
its appearance but could be any combination of properties (e.g. shape, function, etc.). As a first
implementation, we therefore use only a qualitative description of the spatial relations of the
parts that make up an object concept. This qualitative information is stored in an ontology that
is used for checking relations of object parts found in the robot’s camera images. An additional
technique used in this approach is abstraction: Abstracting several connected parts to a bigger
one leads to a reduction of the overall number of participating objects. Therefore, the specific
instance of the object concept found in the image is reduced to its defining high-level shape,
which in turn complies to the definition stored in the ontology. One of the tackled questions is
therefore how specific the object concept is to be defined in the knowledge repository. We show
that with this approach we can discover a column or an arch that is made up of an arbitrary
number of parts.
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1 Motivation

A burning issue in robot vision is the representation and
detection of objects including their structural and task-
related properties. Imagine a home robot whose cur-
rent task for whatever reason is to detect the chairs in
a room. Of course, it is wishful that the robot does not
only detect those chairs it has previously been trained
to detect but every object in the room that fulfils the
function of being a chair. Now, the main question that
arises is, how do we define or represent something like
a chair? A famous example would be the definition by
Stark and Boyer [1] who thin out every aspect of a chair
to the functional description of having a sit-able sur-
face along with stable support. Further classification,
if needed, could comprise the check for having back or
arm support, as [1] actually do.

However, the problem is the detection of parts of ob-
jects or objects. One classical approach to re-cognise
a part or object is learning-from-prototype, which is
a shortcut from pixels to objects but suffers from the
problem that it is not possible to arrive at generic ob-
ject recognition or to detect generic properties or parts.
Another frequently used possibility is the use of mod-
els, i.e. shape-cues, to re-cognise an object. Again, due
to the difficulty to detect these shape cues in images
directly, often they are broken, superfluous or missing.
Yet another possibility is perceptual grouping: finding
low-level features and organising them into Gestalts,
eventually ending at a proto-object level, e.g. grouped
lines forming a closed contour. Here, our approach
steps in: out of these grouped proto-objects, concepts
of objects are to be detected, easing the bridging to the
semantic object level.

Having a robot in mind that tries to gain knowledge
about its environment, our approach tries not to redetect
– already perceived – instances of objects but rather to
group features to a more general object concept. We
start with having a rather simple task such as finding
something in a room while keeping in mind to extend
this approach to a wider variety and complexity of ob-
ject concepts and application fields.

Questions that are tackled in this paper concern the no-
tion of objects and the role of their parts: what parts
are a necessary condition for the object and which are
supplemental. For example, a column can be built up or
detected in an image of one homogeneous solid or can
be made up of several parts stacked on top of each other.
Hence we need to find an approach that tackles this is-
sue, correlated with the question of abstraction. On the
other hand, a column can be made of stone, steel, wood
or any other material – hence, in this case, the appear-
ance of the object (its colour) is probably no defining
criterion.

Arguing from a philosophical point of view, we are try-
ing to model a sort of thing-in-itself. The discussion
about what constitutes an object is practically as old as
philosophy itself. Starting from Plato’sideasthat – ac-
cording to him – we have seen in heaven and that we
can recall when encountered with a specific (unideal)

instance, to Aristotle who introduced his well-known
categories, culminating in Immanuel Kant’s distinction
between the thing-in-itself, which is inherently not as-
certainable, and the thing-for-us. Our (subjective) re-
ality is made up of appearances that come from but are
not the same as the things-in-theirselves. The latter only
affect our senses. Nicolai Hartmannscritical realism
purges the Kantian position even more from metaphys-
ical touches. In his opinion, we are actually able to per-
ceive important traits of the thing-in-itself and not only
the thing-for-us. For him, this is the reason for us being
able to talk about things, that we did not actually per-
ceive. The object concept that we would like to suggest
in this paper as foundational object representation for a
robot is the thing-in-itself in the Hartmann sense.

1.1 Related Work

There is a lot of research in appearance-based re-
cognition of objects, e.g. [2] which is a recent paper
dealing with learning-from-prototype. Classical works
on model-based recognition are [3] and [4]. A Gestalt-
based perceptual grouping framework which aims at
proto-object detection can be found in [5].

[6] introduces a hierarchy of primitives that is ordered
into structure-type, solid-type, face-type and pair-type.
For 3D, Biederman [7] segments images into regions of
deep concavities in order to arrange simple geometric
components to objects. In [8], for example, vehicles of
a special kind need to be classified (SUVs, Taxis, etc.).
In this paper, it is underlined that the

”
[...] extraction

of features for recognition cannot be separated from the
act of recognition itself.“.

Ontologies start being used in computer vision (beside
the typical application field of the semantic web) in the
last few years. [9] uses the large semantic ontology
WordNetfor detecting boundaries between objects lead-
ing to a segmentation of the input image into different
classes of objects. [10] uses an ontology for object cate-
gorization, combining machine learning and knowledge
representation techniques. The introduction of a visual
concept ontology bridges between domain knowledge
and the image processing.

2 Contribution
The contribution of this paper is to separate properties
that are found to be characteristic for objects (the ob-
ject concept as we call it – the abstract or generic idea
generalised from particular instances) from the specific
instance of the object in the image. The expectation is
that then we can also detect the object more easily in
the image, if it appears with changes to its shape or ap-
pearance but still constitutes the same class of object.

The difficulty is to find the ridge between getting too
specific or too general when defining an object through
characteristic properties. As a first approach, we start
with a basal description of the spatial relations between
their different parts. It leads to the usage of a naive
physics approach in which, for example, the support of
an object is defined as lying stable on top of another ob-
ject. Certainly, further work needs to implement more
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kinds of relations.

The usage of an ontology as repository of object char-
acteristics for such a system appears to be an elegant
means. This is due to the fact that

”
An ontology is an

explicit specification of a conceptualization“ as the pop-
ular definition of [11] states. The emphasis lies onex-
plicit, stating that in an ontology we model the knowl-
edge of our domain (i.e. the world our robot acts in)
clearly in natural language, making all assumptions vis-
ible. Additionally, the well-known problem of symbol-
grounding can be shortcut elegantly, too. Pure feature
extraction alone might deliver us a rectangle without
any information to what it may belong. Grouping these
features guided by an ontology allows for usage of se-
mantic knowledge stored along with the description of
the object concept in the database. This way, the con-
cept of, say, a chair immediately also helps us in retriev-
ing its function.

An important advantage is that through the decoupling
of the current hypotheses found in images and the fixed
knowledge, the expansion of the ontology is straight-
forward. New concepts can be included fast by users,
without having to pre-plan all eventualities in the vi-
sion algorithms. This is backed by the strength of an
ontology language that allows describing facts in natu-
ral language.

Last but not least, this approach enables a step-wise ab-
straction of the objects and parts in the world around us.
Starting with the identification of some part, we might
come up with a bigger object to which this part belongs
and that finally might again be part of an even larger ob-
ject. This should also accelerate the whole computation
– dealing with grouped objects instead of all subparts
highly reduces the search space. Especially in the do-
main of robots acting in cluttered environment, pixel
data is far too complex to be processed in reasonable
time. Therefore, reducing this data to higher-level ob-
jects should accelerate computation and decision mak-
ing.

3 Implementation
The implementation of ontology and image processing
is shown in the following with the help of a fundamental
example: The detection of an arch in an image. Fig. 1
shows a simple case: In this blockworld scenario, the
arch consists of two pillars and one cross-bar. The pil-
lars as well as the cross-bar are made up of one solid
piece. In Fig. 2 the result of the detection is shown.

3.1 Ontology

As mentioned above, the first preliminary implemen-
tation accounts for spatial arrangements of simple ob-
jects, namely polygons in 2D. A vital consideration
when designing an ontology for automated interaction
with image feature extraction is to somehow cover the
span between human readability (which is a big advan-
tage of ontologies) and good automated handling pos-
sibilities. A number of different ontology languages
can be found, each with specific advantages and dis-
advantages. Our choice is to use OWL (Web Ontol-

Fig. 1 A simple blockworld example: an arch

Fig. 2 The arch of Fig. 1 found by the system.

ogy Language) [12] as recommended by the W3C. It
extends RDF (Resource Description Framework) [13]
and is therefore based on triples, consisting of a subject,
a predicate and an object. Relations between different
classes is done viaRestrictionsthat assert specific nec-
essary (and partly sufficient) conditions to classes, in
our case: object concepts that are to be detected. As
an editor to model this information, we use Protéǵe, de-
veloped by Stanford University [14]. For the handling
of the ontology,Jena[15], a semantic web framework,
is used that is capable of instantiating and querying a
given OWL ontology.

For a start, our ontology holds the classesColumnand
Arch as known object concepts as well as the defini-
tion of the following spatial relations: leftof, right of,
on top of and belowof. The latter two additionally
have subproperties defining whether the object on top
is stably supported by the subjacent object (in a naive
physics way). Of course, this is very basal and needs
to be refined in future work. A column, for example,
is currently defined as being made up of two polygons
one resting on the other. Due to the stepwise abstraction
technique, we are, of course, also able to find a column
made up of more parts as each step connects two poly-
gons to one, new larger object – which will be shown
below.
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The classColumnuses a propertyhasParticipatingOb-
jects:

”
hasParticipatingObjects exactly 2“. This ac-

counts for the fact that with the definition of a column
mentioned above, we need to detect two objects. As we
want them to be specifically arranged, we need to assert
further restrictions. In this case, this would be that one
object needs to rest stably on the other. This way, the
conceptsColumnandArchwere defined which are used
in the next step to find the arch in the actual image.

It needs to be mentioned that it is difficult to describe
relations between different classes (object concepts) in
OWL. This would imply a type of restriction applied
to a class describing the relation between two or more
other classes. This is not defined in OWL, which is
due to the fact that only triples are defined. However,
the constraint of only allowing triples has an important
advantage: it allows the usage of a description logic
reasoner in order to infer knowledge.

3.2 Combining Vision and Ontology

The vision part of the framework is liable for extracting
features from images, which is currently done using the
perceptual grouping frameworkvs2, developed by [5].
This results in polygons found in the image.

Depending on the given situation, we have the follow-
ing possibilities of using the ontology along with the
current image. Either we want to know whether any
known object structures are in the image or we have a
specific task, e.g.

”
Find an arch!“. In the first case, we

compute the relations of the objects in the image and
then look for corresponding configurations in the ontol-
ogy. The latter case comprises the following steps:

Given the task of finding anArch, a query on the ontol-
ogy first tells us that we need three objects. The spe-
cific arrangement (two being the support of one object
on top) is the result of the next query and this is checked
for compliance in the vision unit. Finally, if all restric-
tions are met, we know that there is an arch, see Fig. 2,
where the objects of Fig. 1 belonging to the concept are
marked in white.

Let’s get a bit more complex! One of the main ideas
of our work is the gradual abstraction of the features in
the image in order to actually find objects that form a
concept without having to know how much parts con-
tribute. As an example, Fig. 3 shows an arch where the
right pillar is itself composed of two objects.

A direct query for location of an arch without previous
simpler abstraction steps, leads to a finding like the one
in Fig. 4. This is due to the definition of an arch con-
sisting of three objects, two supporting one.

If we, however, first locate the column (see Fig. 5), we
are able to use this – abstracted – knowledge as new ob-
ject for later computations. For example, this informa-
tion can be used for a query onArch now. As shown in
Fig. 6, now again three objects are used, but one having
been abstracted earlier and providing therefore a better
(abstracted) solution.

By using this kind of interaction between explicitly de-

Fig. 3 A more exciting blockworld: again, an arch con-
sisting of two pillars, but with one of them now com-
posed of two objects.

Fig. 4 Result of a direct query for finding an arch on the
input image in Fig. 3. The restrictions are fulfilled with
the set of objects marked in white. The lower block on
the right side is not considered.

fined object concepts and hard-coded image analysis,
an arbitrary object may be defined in the ontology and
as long as the properties (which is for the case of spatial
relations and naive physics a finite number) are imple-
mented in the vision algorithms, we can find its occur-
rence in the camera image. With other words, we de-
fine qualitative relationsbetween objects in the ontol-
ogy, but we retrieve aquantitative descriptionof their
existence in the current view without having a repre-
sentation of the object concept (column, arch) in the
vision part. With this combination we discover ob-
ject classes such as column or arch independent of how
many pieces contribute.

4 Conclusion

In this paper we presented an approach for combin-
ing world knowledge in an ontology with image anal-
ysis. Object concepts are defined using their neces-
sary conditions only and not their exemplary appear-
ances. Images are first pre-processed by a perceptual
grouping tool the output of which is used for check-
ing relations defined in the ontology. Currently spa-
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Fig. 5 Result of query for finding a column in the image
of Fig. 3.

Fig. 6 Result of a query for finding an arch of Fig. 3.
The information from Fig. 5 is used, the arch is there-
fore of higher abstraction than in Fig. 4.

tial relations make up the restrictions that define those
necessary conditions, the expansion of the ontology is
relatively easy. Important is the possibility to perform
abstraction: Using already found object concepts helps
finding higher-level concepts.

4.1 Further work

A hard issue is to extract the necessary conditions for
building up the ontology. As in some cases (e.g. a traf-
fic light) spatial relations might not suffice, the ontology
has to be extended to account for other types of restric-
tions as well (e.g. colour, texture,...). Furthermore, a lot
more object concepts need to be implemented to widen
possible test cases.

Another problem that will have to be tackled is to
decide which higher-level concepts found should be
stored and which underlying polygons shall be kept or
rejected. Fig. 7 shows a last example that should clarify
this point. As can be seen, again, an arch is shown, this
time built up of a lot more subparts. Fig. 8 shows the
optimal detection after intermediate abstraction steps
for retrieving the whole columns first. Fig. 9, however,
also depicts a possible retrieval of an arch, which is one
of the intermediate steps. In this case, it would be easy

Fig. 7 Another arch example. In this case, there are a lot
more parts per column (The single blocks are framed in
white in order to provide better visualisation).

Fig. 8 Optimal (highly abstracted) detection of the arch
of Fig. 7.

Fig. 9 One found arch of Fig. 7. As can be seen, the re-
sult is not optimal. This could occur if the participating
columns are wrongly chosen or detected.

to argue that the columns should be further expanded
until the result of Fig. 8 is reached and that the result
shown in Fig. 9 is not optimal. However, there are cases
where either the lower parts are not found by the seg-
mentation tool or where this lower part might itself take
part in some other object concept (say, the basement
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of the arch which shall for some reason be detected as
well). If we just keep any information, computation
time gets high due to combinatorial explosion. Further
work will have to intelligently prune the search space.

Additionally, this shows another possible extension. If
some data is missing in order to fulfil a hypothesis about
an object concept, say, one of the blocks in Fig. 7, the
system should be able to provide feedback to the seg-
mentation algorithm. As it is likely that at the gap a
block is present, this feedback might lead to a detection
by the segmentation algorithm with different parame-
ters, tuned by this high-level feedback.
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source ontology editor. online available at
http://protege.stanford.edu/, June 2007.

[15] Semantic Web FrameworkJena. online available
athttp://jena.sourceforge.net/, June 2007.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM


