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Abstract

In the latest years, the research in the field of equation discovery focused from quantitative
to qualitative model discovering. This requires a different design of experiment and only a
few techniques are currently available to learn qualitative models. Among them random design
is still the most adopted for qualitative analysis. This work proposes a methodology to adapt
effective experiment design techniques for quantitative discovery to the qualitative field. The
proposed methodology can be described as an incremental design technique, where the learning
of the qualitative model is a cyclic refinement process. At each cycle, the methodology focuses
the new experiment in those areas of the design space which are less covered by the previous
experiment and where the current model exhibits a lower performance.
In this work, the proposed methodology is applied to alphabetic optimal and latin hypercube
designs. An evaluation of the efficacy of the proposed solution applied to the two design tech-
niques with respect to a random design is proposed within a robotic application. The perfor-
mance of the design are assessed by means of a new index called E-Index based on the qualita-
tive model extracted from the full design space. This new index is able to distinguish between
the performances of the experiment design and of the learning algorithm.

Keywords: Qualitative Equation Discovery, Design of Experiment, Optimal Design, Cov-
erage Design
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1 Introduction
In the latest twenty years, the research in the field of
equation discovery focused from quantitative to quali-
tative models. This growing interest is shown by the ex-
istence of several automatic tools for the identification
of qualitative models, which have been used in different
fields, such as economics [1], medicine [2], and chem-
istry [3]. In order to build an expressive model for these
applications, a preliminary phase to collect data from
the real world is necessary. The cost of this expensive
phase can be lessened by developing design methods to
reduce the number of measurements required to obtain
a good qualitative model.

A few design methods have been proposed for qualita-
tive equation discovery, but random design is still the
most adopted for qualitative analysis. The aim of this
work is to investigate whether effective design tech-
niques for quantitative model discovery problems can
be applied to qualitative analysis. A methodology is de-
scribed and applied to alphabetic optimal [4] and to the
latin hypercube [5] experiment designs. The proposed
methodology is evaluated in a robotic application where
the two design techniques are compared with a random
design. Finally, a novel index (E-index) is also intro-
duced to assess the performance of each technique.

The paper is organized as follows: next section intro-
duces the proposed methodology. The benchmark is
presented in Section 3. The E-index is introduced in
Section 4 and the comparison results are discussed in
Section 5. Finally, a summary of the current work is
given. Mathematical details about the derivation of the
benchmark model are summarized in the appendix.

2 Methodology
A relation that links a variable y ∈ Y with a vector vari-
able x ∈ X can be modeled using two main techniques:
qualitative or quantitative. The former approach aims
at identifying a function f : X 7→ Y that is as close as
possible to the true relation. The latter is not interested
in the numerical evaluation of y, but looks for the qual-
itative behavior of y when a change on x is observed.
Roughly speaking, this model tries to answer the ques-
tion about what happens to y if x changes. This ap-
proach aims at identifying a map G : X 7→ Yb where
Yb is the collection of all the qualitative behaviors that
the variable y can show, such as “y increases when x
decreases”.

Among the several qualitative predictive models that
maps observation about a system to conclusions about
the dependent variable behavior, this work concentrates
on qualitative trees [6]. A qualitative tree (Figure 1) is
a binary tree with internal nodes called splits and qual-
itatively constrained functions in the leaves. The splits
define a partition of the state space into regions with
common qualitative behavior of the dependent variable.
A leaf represents qualitatively constrains given the re-
gion defined by the path from the root.

Figure 1 shows a qualitative model for the benchmark
proposed in Section 3. The qualitative tree includes two

Fig. 1 Qualitative Model for the proposed benchmark.

predictor variables Angle and Dist and defines the fol-
lowing four regions (β defined in Equation 3):

X1 := {(Angle, Dist) : Angle < 0 ∧ Angle − β(Dist, f) > AM}
X2 := {(Angle, Dist) : Angle < 0 ∧ Angle − β(Dist, f) < AM}
X3 := {(Angle, Dist) : Angle > 0 ∧ Angle + β(Dist, f) < AM}
X4 := {(Angle, Dist) : Angle > 0 ∧ Angle + β(Dist, f) > AM}

Each region is then characterized by a qualita-
tively constrained function. As an example, for
region X1 (leftmost leave of the qualitative tree),
Q(+Angle,−Dist) means that the dependent variable
is stricktly increasing in its dependence to Angle and
stricktly decreasing with Dist.

A tree can be ”learned” through the identification of the
qualitative model based on a collection of N real cou-
ple measurements (x, y). The whole data set is usu-
ally called experiment, while number N is its size. The
objective of the design of experiment is to carefully
choose the values of the predictor variable x within the
design space X to reduce the size of the experiment re-
quired to learn a good model. The set of the chosen x
values are usually returned row wise in a design ma-
trix D.

This paper presents an experimental design method-
ology for the determination of qualitative tree mod-
els. The methodology can be described as an incre-
mental design technique, where the learning of the
qualitative model is a cyclic refinement process (Fig-
ure 2). This process involves three agents: the Learner,
the Designer, and the Executer. At each cycle, the
Learner identifies a qualitative model, called current
model, from a set of measurements (current experi-
ment). Both current model and current experiment are
analyzed by the Designer which identifies a new design
matrix. The Executer will complete the new experiment
E′(D) adding to the design matrix the measured de-
pendent variable values. The new data are then added
to the previous ones and constitute the new current ex-
periment used by the Learner to build the new model
in the next cycle. The overall process is iterated until a
suitable model quality is achieved.

To summarize, we can define the design problem as:
At each cycle t, given a design space X(t), a current
experiment E(t), and a current model M(E(t)), de-
fine a design matrix D(t) of N independent variables,
that will improve the quality of the next cycle model
M(E(t + 1)), where E(t + 1) = E(t)

⋃
E′(D(t)).
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Fig. 2 Learning cycle process for the discovery of qual-
itative models.

2.1 Design strategy

The design strategy proposed in this paper aims at solv-
ing the design problem for qualitative models applying
effective design techniques borrowed from the quanti-
tative model discovery research field.

As previously mentioned in this work, the model M (a
qualitative tree) partitions the design space X into R
regions with common qualitative behavior (Br ∈ Yb)
of the dependent variable. Each region of the current
qualitative model can be evaluated based on the cov-
erage of past experiments (Covr) and accuracy of the
qualitative behavior Br (Acr). These are two unrelated
characteristics of the model: a region could have good
accuracy of Br, i.e. the modeled behavior is coherent
with the real collected data of the experiment, and poor
coverage, i.e. only a small amount of experimental data
are located in the region.

The proposed methodology uses Covr and Acr to fo-
cus the new experiment in those regions which are less
covered by the current experiment and exhibits a lower
accuracy. Therefore, the size of the experiment in each
region, Nr, has an inverse relation with accuracy and
coverage measures, i.e. the worst is the model and the
less are the information, the larger will be the number
of measurements that will be executed in this region.
If the two measures are supposed uncorrelated, a linear
distribution assigns to each sub-design the size of the
experiment according to:

Nr = N
1− Covr + 1−Acr∑R

i=1(1− Covr + 1−Acr)
=

= N
2− Covr −Acr

2R−
∑R

i=1(Covr + Acr)
(1)

with
N =

∑
Nr

Once that the values of Nr are defined for the R re-
gions, a design matrix can be construct applying a stan-
dard quantitative design algorithms, such as random,
latin hypercube, or lattice sampling (Section 2.2) to the
design space Xr of each region. The use of quantita-
tive design algorithms requires an additional assump-
tion as some of them assume to know the structure of
the quantitative function of model M while qualitative

models only provide a qualitative constrain. This con-
strain asserts that the sign of the entries of the quanti-
tative model gradient have a constant and known sign
within the design space Xr. Several structure of quan-
titative functions are compatible with this requirement
and we decided to adopt a linear structure, the simplest
possible model. This solution does not prevent model-
ing real scenarios with more difficult structures as the
complexity can be dealt with through a larger number
of regions.

The proposed strategy is summarized in Algorithm 1.

Algorithm 1 Design Methodology
for each Region r do // analysis of the current model

Evaluate the coverage Covr

Evaluate the accuracy Acr

end for
for each Region r do // design

Evaluate the size of the experiment Nr according
to equation 1
Determine the design space Xr

Apply the design algorithm considering a linear
model

end for
Compute the overall design: D =

⋃
Dr

The process to evaluate coverage (Covr) and accu-
racy (Acr) is not specified in Algorithm 1 because it
is strictly dependent on the application at hand. Ad-
ditional details can be found in Section 3.3 describing
how they are computed for the proposed benchmarks.

2.2 Application to qualitative designs

The proposed methodology was used to extend two well
known quantitative design techniques, the alphabetic
optimal design and the latin hypercube design, to the
area of qualitative analysis.

2.2.1 Latin hypercube design

The latin hypercube design [7] is a coverage design al-
gorithm that defines the experiment with the goal of
maximizing the number of different levels (values) of
each variable.

This algorithm is based on the concept of latin square.
In statistical sampling, a square grid containing sam-
ple positions is a Latin square if, and only if, there is
only one sample in each row and each column. A latin
hypercube is the extension of this concept to an arbi-
trary number of dimensions, whereby each sample is
the only one in each axis-aligned hyperplane contain-
ing it. The latin hypercube sampling algorithm divides
the range of each variable into M equally probable inter-
vals. M sample points are then placed to satisfy the latin
hypercube requirements. The main advantage of this
sampling scheme is that the number of samples does
not increase with the dimensions, i.e., with the number
of variables.
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2.2.2 Alphabetic optimal design

The term alphabetic optimal design [8] refers to a class
of design algorithms widely used for function estima-
tion. These algorithms aim at selecting a design matrix
that maximizes the ability of supporting the estimation
of a surface with a defined shape. This ability is quan-
tified by many different criteria [4] each one labeled by
single capital letters (A, D, I, ...). Roughly speaking,
this method aims at selecting a set of independent vec-
tor variables whose elements are uncorrelated (orthog-
onal). The use of low correlated test vectors introduces
a small bias as, if two variables are fully correlated (i.e.
they always show the same values), it would be impos-
sible to differentiate between them.

In this work we apply the A-optimal design algorithm
which adopts the following quality measure:

A(E) = trace (R′R) (2)

where the function trace(Z) indicates the sum of the
element on the diagonal of the matrix Z and R is the
regressor matrix [9] evaluated using the experiment E.
This criterion has several properties: it minimizes the
average variance of the parameters and reduces the as-
phericity of the confidence ellipsoid [10]. In practice,
A-optimality design tends to choose values on the bor-
der of the candidate set.

2.2.3 Requirements

The considered quantitative design algorithms require
two parameters: the size of the designed experiment
(N ) and a finite design space (X). The former parame-
ter is provided by Equation 1, while the latter is a req-
uisite of the design algorithms. The exact dimension of
the design space dependents on the experiment at hand
and will be evaluated in Section 3.3 for the proposed
benchmark.

2.3 Initialization of the methodology

The methodology reported in Algorithm 1 requires the
knowledge of the initial model. A natural approach is to
consider the overall design space as a single region and
apply the chosen design algorithm from the beginning
(i.e. A-optimal design or latin hypercube sampling).

This approach well suites latin hypercube design which
is a coverage design, but exhibits weaknesses with op-
timal design techniques. Alphabetic optimal design ap-
plied to linear models chooses design matrix entries in
the corner of the design space. The initial qualitative
model is therefore strongly biased while it should be
rather based on a uniform coverage of the design space.
To avoid this drawback, the initial model is built upon
a first experiment based on latin hypercube sampling
whatever design strategy will hereafter be applied.

3 The benchmark
The benchmark used in this work has been inspired
by a robotic learning scenario. This scenario includes
a robot moving in an infinite plane with a single ob-
ject (a sphere). The robot is equipped with a cam-

Fig. 3 Quantitative Function for the proposed bench-
mark.

era with a 1 mm focal length (f ) and a viewing angle
of 2π/3.9 rad (AM ). The sphere has a radius (r) of 2 cm
and its center has the same height of the camera focus.
From the sensors the embodiment can extract three fea-
tures: the distance between the object and the robot
(Dist), the area of the sphere in the image (Area) and
the angle between the focal axis and the axis connect-
ing the optical center of the camera and the sphere cen-
ter (Angle). Since the view angle is limited, the sphere
may disappear from the robot sight, for example when
the robot is turning away from it. The proximity dis-
tance sensor is instead always able to measure the Dist
value. In this benchmark the goal of the learning tool is
to identify the model that relates Area values to Angle
and Dist sensor readings.

As shown in Figure 2, the learning process of a quali-
tative model via an incremental experiment design in-
volves two different agents beside the Designer of the
experiment: the Executer and the Learner. The for-
mer measures a set of values of the dependent variable
Angle based on the design matrix. These data (current
experiment) will then be used by the Learner to identify
the qualitative model.

3.1 The executer

In this first work on this topic, it was decided to use
a simulated scenario to provide an error-free contest.
This choice was motivated by the possibility to identify
the real qualitative model, which is the final goal of the
learning process. The difference between this model
and the qualitative models proposed by the learner is
a simple measure of the performance of our methodol-
ogy.

The output of the execution phase is produced using
quantitative relations among the three variables. The
mathematical model1 is presented in Figure 3 where:

h(β, δ) = f2

[
β2 arcsin

δ

2β
+

πβ2

2
− δ

√
β2 − δ2

]
(3)

with:

β = arcsin
(

r

r + Dist

)
(4)

δ = 2AM − ‖Angle‖ − β (5)

1. Details about the mathematical model are presented in the Ap-
pendix.
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The real qualitative model for the benchmark shown in
Figure 1 can be obtained from the quantitative model
evaluating the sign of the partial derivative of the func-
tions on the leaves of the classification tree in Figure 3.

3.2 The learner

The qualitative tree model is identified using a two-
steps learning strategy:

1. Labeling phase: the partial derivatives (with re-
spect to Angle and Dist) are estimated for all the
measurements composing the experiment E. The
sign of the derivatives is then used to label the vec-
tor variables x composing the design matrix.

2. Rules extraction: the qualitative tree is identified
clustering the current experiment according to the
labels of the previous phase.

This strategy is implemented through the machine
learning tool Orange [11]: a learning technique based
on the Pade algorithm [12] is used for the labeling phase
and the CN2 induction algorithm [13] for the construc-
tion of the qualitative tree. Figure 4 shows the Orange
scheme used in this work and the parameter configura-
tion of each widget. The only variable parameter is the
min instance in leaves used to limit the number of re-
gions. It has been set to the 7% of the size of the current
experiment to limit the number of leaves to fourteen.

Fig. 4 Orange scheme used for the identification of the
qualitative model.

3.3 Application of the Methodology

The use of the general methodology in a specific sce-
nario requires the discretization of the design space
(Section 2.2.3) and the definition of the algorithms to
compute the accuracy (Acr) and coverage (Covr) (Sec-
tion 2.1).

As introduced in Section 2.2.3 both the latin hypercube
and the alphabetic optimal designs require a finite de-
sign space. In the proposed benchmark the design space
is defined by all the possible couples (Angle,Dist).
Therefore a design space can be limited by reducing the
admitted valued levels of both variables to a finite num-
ber. The choice of the levels can be critical because it
can prevent the acquisition of meaningful data within a
region thus making its correct identification difficult or
even impossible. We have identified in 30 a reasonable
number of equi-spaced levels. The analysis of the real
qualitative model shown in Figure 1 confirms the valid-
ity of our choice as it does not create too small regions
that would not be correctly identified.

With an error free simulated benchmark, the accuracy
of the model within a region (Acr) can be estimated
as the percentage of labels that match the behavior Br

defined by the qualitative model. As we are working
with a finite discrete design space, the coverage (Covr)
can instead be obtained as:

Covr =
Nr

Xr

where Nr is the size of the experiment in the region r
and Xr the number of possible couples (Angle,Dist)
in the region design space.

4 Performance assessment
A fairly intuitive measurement of performance of the
applied design techniques is the ”distance” between the
identified qualitative model and the real one. However,
the identification of the real model is quite complex
and the learning tools can fail. Even our rather sim-
ple benchmark results in a complex qualitative model
and the learning tool is unable to manage its complex
constrains failing in identifying the real model.

This deficiency of the learning tool can create some
difficulties in assessing the performance of the design
techniques. Indeed, when the real qualitative model is
not obtained, it becomes quite complex understanding
whether this is due to the weakness of the learning tools
or of the applied design technique. Therefore, we de-
cided to assess the performance of the design technique
in relation to a reference model, which is the model ob-
tained by the learning method when fed by the whole
design space (Figure 5).

A measurement of the performance of the experiment
design is defined by a E-index, a new index which refers
to the percentage of design space measurements that
the current model labels accordingly to the reference
model. The use of a reference model instead of the
real qualitative one is the novelty introduced by the E-
index.

The definition of the E-index requires a finite design
space that the learning tools can handle. When the
learning tool is unable to analyze the whole design
space or when the design space is infinite, the design
space is sampled and used to evaluate the reference
model. In the proposed benchmark the design space is
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Fig. 5 Reference model for the proposed benchmark,
the model returned by the learning algorithm when is
fed with the whole design space.

discrete and the learning tool can directly handle it, then
the reference model and the E-index can be evaluated
without any further action.

5 Design comparison
The proposed methodology (Algorithm 1) applied to
the latin hypercube and the alphabetic optimal design
has been compared with the random design. The pro-
posed procedure requires the definition of only one pa-
rameter: the dimension of the experiment N . At each
step, a new model will be identified by adding a new set
of N samples to the previous acquired data. N should
be small enough to appreciate the performance of the
different methods but, at the same time, the number of
samples should allow an effective refinement to the cur-
rent model. In this comparison we identified N = 90
(the 10% of the design space) as an acceptable trade off.

Figure 6 shows the evolution of the identified mod-
els for the proposed benchmark using a random de-
sign (first column), and the proposed methodology us-
ing both the latin hypercube (second column) and the
alphabetic optimal design (third column). In order to
have a quantitative and synthetic evaluation of the dis-
tance between the identified models and the reference
model, the E-indexes were computed. As shown in Fig-
ure 7, when a limited number of samples is used to iden-
tify the model, the E-indexes of the proposed method-
ology is higher than the E-index of random design thus
indicating a slightly better performance of latin hyper-
cube and alphabetic optimal design techniques.

6 Conclusions
This paper proposes a methodology to extend some
standard design techniques for quantitative model dis-
covery problems to the qualitative analysis. The ben-
efits of the described solution have been evaluated
through a comparison between a random design and the
proposed methodology using the latin hypercube or the
alphabetic optimal design techniques. A new index (E-

Fig. 6 Evolution of the identified model using a ran-
dom design (first column), and the methodology re-
ported in Algorithm 1 using both latin hypercube (sec-
ond column) and the alphabetic optimal (third column)
designs.
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Fig. 7 E-index of the identified models.
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Fig. 8 Bird-view when the sphere is fully visibile.

index) was introduced, able to distinguish between the
performance of the experiment design and of the learn-
ing algorithm.

The design comparison is limited to a simple exper-
iment and we are aware that additional research is
required to assess the performance of the introduced
methodology. At the time of writing, further investiga-
tions are under analysis. Nevertheless, the early results
and the new solution to evaluate the performance of the
designer (E-index) are already quite promising.
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Appendix
This section summarizes the mathematical details of the
model used to simulate the real scenario in the execu-
tion phase. The scenario at hand supposes that the cen-
ter of the sphere and the focal point of the concave lens
are at the same height and that the distance between the
robot and the sphere is always available. Moreover, the
model considers that the lens has a finite dimension that
limits the maximum visible angle to AM . The model
also supposes that the vision sensor does not deform
the object. This assumption can be modeled consider-
ing a curved image surface with a curvature equal to the
focus length.

In this model, two distinct states are possible: full or
partial visibility of the sphere.

Full visibility

Figure 8 shows the bird-view when the sphere is fully
visibile. In this case, the sensed image includes a full
disk whose diameter d is the arc B′A in Figure 8 and is
equal to:

d = 2fβ. (6)

where the angle β is evaluated as:

β = arcsin(
r

r + Dist
) (7)

with r, radius of the sphere. Then, the area is computed
as:

Area = πf2β2. (8)

It is important to remark that the center of the image M
coincides with the projection of the sphere center on the
lens.
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Fig. 9 Bird-view when the sphere is partially occluded.

Fig. 10 Image (full line) printed in the image plan from
the scenario reported in Figure 9. The image is placed
in a Cartesian coordinate system centered onthe center
of the full sphere (dot line).

Partial visibility

Figure 9 shows a bird-view when the sphere is partially
occluded, i.e. only a partial disk is visible on the lens.
The center (M ) of this partial disk does no longer coin-
cide with the center of the sphere (C ′′). The model is in
this state when the following equation is not satisfied:

‖Angle‖+ β < AM . (9)

The diameter of the full sphere is (6), while the width d′

of the partial disk in the image is the arc B′A in Figure
9. This figure shows that the arc B′M is subtended by
the angle AM −Angle, therefore:

d′ = 2f (AM − α) (10)

The computation of the Area is slightly more difficult
than in the previous state. Figure 10 shows a partial
disk where the Cartesian coordinate system is centered

in the center of image of the full sphere. The Area can
be evaluated as:

Area = 2
∫ q

− d
2

√
d2

4
− x2δx =

= 2

[
d2

4
arcsin

2x

d
+

x

2

√
d2

4
− x2

]q

− d
2

=

=
d2

4
arcsin

2q

d
− q

√
d2

4
− q2 +

d2π

8
(11)

where q = d′ − d
2 . Recalling 11, 6 and 10, the Area

value is given by:

Area = f2

(
β2 arcsin

δ

β
− δ

√
β2 − δ2 +

πβ2

2

)
(12)

where
δ = 2AM − 2‖Angle‖ − β (13)

The model described in this section allows to determine
the quantitative tree in Figure 3: the node thresholds are
defined using the equation 9 while the leafs include the
Area values from equations 12 and 9.
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