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Abstract  

In the field of vehicle development, numerical simulations are essential due to the complexity 
and the high costs of full scale crash tests. Hence, numerical methods are used for the 
development and optimization of restraint systems (belt pretensioner, airbags, etc.). The 
numerical simulation of an airbag inflation is very time consuming because the volume 
enclosed by the airbag is dynamic and such complex surfaces are generated. The aim of this 
work is to develop a robust, stable and fast algorithm for handling the fluid structure 
interaction problem in airbag inflation. The mechanical structure problem is solved with 
commercially available finite element software. A three dimensional Navier-Stokes-Code for 
compressible fluids is developed to solve the fluid mechanic problem. For this purpose, an 
explicit TVD upwind method by Roe is implemented. For reasons of stability, a fixed 
rectangular grid is used. The outer contour of this grid adjusts automatically to the surface of 
the airbag during the calculation. The contour adjustment is achieved by blocking off the 
outer cells, which can be switched on or off as the airbag surface passes by. To provide a 
conservative system during the contour adjustment, a special method for the handling of the 
boundary was developed. For the validation of the developed method, analytically solvable 
examples were used. These analytically solved solutions were compared with the numerically 
calculated solutions. To verify the suitability of the developed method, an airbag inflation was 
simulated. 

Keywords: airbag, fluid-structure interaction, fixed rectangular grid, moving boundary,  
3D Navier-Stokes-code. 
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1 Introduction 
In the field of vehicle development, numerical 
simulations are essential due to the complexity and the 
high costs of full scale crash tests. Hence, numerical 
methods are used for the development and 
optimization of restraint systems (belt pretensioner, 
airbags, etc.). The numerical simulation of an airbag 
inflation is difficult because the airbag inflation is a 
complex surface-coupled-multifield-problem of fluid 
structure interaction. The fields which must be 
described are the gas flow (gas generator, gas flow 
inside the airbag, etc.) and the airbag inflation 
(inflation, strength, etc.). The computer applications 
used in the field of vehicle safety were originally pure 
finite element (FE) programs. To realize a fluid 
structure interaction, all established numerical finite 
element programs which are normally used to improve 
the vehicle structure have a CFD solver implemented. 
In nearly all programs, the two fields (CFD, FE) are 
solved alternately and mechanical properties of the 
airbag surface are treated with common FEM. 
Programs differ with respect to the description of the 
gas flow. In the following section, the most commonly 
used methods for the numerical simulation of airbag 
inflations are briefly described. 
 

1.1 Uniform Pressure and Temperature Model 

This method is implemented in nearly all programs 
(Madymo, LS-Dyna, Pam Crash, etc.). The gas in the 
airbag chamber, which is composed of membrane 
elements, is treated as an ideal gas. Inside the chamber 
the state values pressure, density and temperature are 
constant. The airbag inflation itself is modelled as an 
expanding volume, where mass can exhaust or inflow 
within the volume. Many analytic models for gas 
generators are implemented in order to model the 
influence of the inflow jet. In every time step, the gas 
volume which is enclosed by the airbag membrane is 
determined. The energy equation is solved with the 
pressure of the previous time step (tn-1) in order to 
determine the temperature. So the pressure of the 
actual time step (tn) can be solved with the gas state 
equation. Due to the fact that the state values are 
constant inside the airbag, the uniform pressure 
method is unsuitable for the simulation of out of 
position (OOP) situations. The assumption that the 
values are constant has only a marginal influence on 
the overall shape of the airbag at the end of the 
inflation. Since the Navier-Stokes equations do not 
have to be solved, the uniform pressure model saves a 
good deal of CPU time. Therefore, this method is 
often used for the optimization of different parameters 
(e.g. fire time of the airbag). 
 

1.2 Finite Pointset Method (FPM) 

This method is implemented in Pam Crash starting 
from the version 2004 [1]. The FPM method was 

originally developed by Kuhnert [2] and is a grid free 
method which is based on the Lagrange approach. The 
values which describe the gas flow (velocity, density 
and temperature) are stored on freely positioned 
particles. These particles move with the local flow 
velocity. Due to the fact that the FPM needs no grid, 
the method has advantages in terms of grid generation 
and grid adaptation. Therefore the FPM method is 
suitable for applications in which the geometry of the 
flow area changes strongly over time. The particles are 
generated automatically and the gradients of the flow 
are determined by the interpolation of surrounding 
particles. The radius (smoothing length [3]) which 
defines the influence area is the most important 
parameter of the finite pointset method. The smaller 
the smoothing length, the more particles are required. 
Due to weighting the neighbours, which are close to 
the considered particle, are taken more into account. A 
lot of integration points (smoothing length of about 
15mm [4]) are required for realistic numerical 
simulations, thus the calculation time is considerably 
greater. 
 

1.3 Arbitrary Lagrangian Euler Method (ALE) 

Another possibility to capture the gas dynamic effects 
in a more precise way (compared to the uniform 
pressure method) is the ALE method [5]. For example, 
LSTC implemented this method in their FE code (LS-
Dyna). In this method, multi-field problems can be 
solved in a mathematically elegant manner. The 
method is based on a combination of the Euler and 
Lagrangian approach, and can be divided into two 
phases. In the first phase (Lagrange), the grid can be 
deformed if needed. The movement of the grid is 
based on the airbag motion. Therefore the ALE 
method is able to depict the surface of the airbag 
precisely. In the second phase, the flow field is frozen 
and a mesh smoothing is performed. Afterwards the 
solution of the deformed mesh is assigned to the 
smoothed grid. Hence the simulation procedure is a 
three step approach [6]: 
 

a. Lagrangian step 
b. Mesh smoothing 
c. Remapping the solution to the smooth mesh – 

advection step 
 
The ALE method is very CPU-intensive because the 
time step can’t be arbitrarily large. This is due the fact 
that the mesh isn’t deformed much between two time 
steps. Additionally, the cost (CPU time) of an 
advection step is typically two to five times the cost of 
the Lagrangian time step. [6]. 
 

1.4 Selection of the numerical method 

Even today, the numerical simulation of an airbag-
deployment is time-consuming so it is often difficult 
to optimize the airbag systems within the demanded 
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time frame. Therefore the aim of the work was to 
prove that the calculation time can be reduced with the 
help of a specially developed boundary condition, 
which also should be as numerically stable as 
possible. The two-field problems are solved 
alternately. The results computed by the two 
independent programs are exchanged through an 
interface. 
 

• Structural mechanic problem 
Commercial available FE-program LS-Dyna 
 

• Fluid mechanic problem 
Developed CFD program “Bagjet” 

 
The developed research CFD code is a three 
dimensional Euler-Code for compressible fluids. To 
solve the Euler equation an explicit TVD (Total 
Variation Diminishing) upwind method by Roe [7], 
which is a Godunov type method [8], is implemented. 
To get a fast and stable algorithm a fixed rectangular 
grid is used. The outer contour of the grid adjusts 
automatically to the surface of the airbag during the 
calculation. For the time integration two explicit 
methods are implemented. (First order explicit 
method, 4-Step-Runge-Kutta-Method [9]). 
 

1.5 Advantages and Disadvantages 

The differences between the currently used methods 
used to determine the fluid-structure interaction of 
airbag inflation are very great. It is not possible to 
give a generally valid conclusion regarding the pros 
and cons. Therefore, only the properties of the 
developed method are described in the table below. 
 

Tab. 1 Advantages/Disadvantages 
Advantages Disadvantages 
Cartesian grid: No 
transformation of the 
flux vector to a 
curvilinear grid required 

The boundary faces are 
less accurate (“stepped”). 
The emerging error can 
be reduce with AMR  

Unstructured grid: An 
automatic mesh 
refinement (AMR) can 
be easily implemented 

Unstructured grid: Due 
to additional search 
algorithm (e.g. cells 
neighbouring), additional 
CPU time is required 

Switching only on/off 
total cells: Stable 
algorithm (no grid 
deformation, no 
complicate cell cuts 
unlike by the Cut-Cell 
method [10]) 

 

 
In the next chapters, the numerical basis and the 
principles for the development of the method are 
briefly described. 
 

2 Description of flows 
The flow is characterized by the motion of fluid 
particles. Primarily two methods are used to describe 
the fluid’s motion, the Euler approach and the 
Lagrangian approach. The methods differ with respect 
to the “kind” of observer. The ALE method is a 
combination of both methods. For a graphic 
interpretation of the three approaches refer to Fig. 1. 
 

 
 

Fig. 1 Lagrangian, Euler and ALE approach [11] 
 
The Lagrangian and the ALE approach aren’t 
specifically described in this chapter. The sub-chapter 
2.1 focuses only on the Euler approach. 
 

2.1 Euler Approach 

In contrast to the Lagrangian approach, the observer is 
fixed in space. Properties of the fluid particles coming 
by are monitored by the observer. Metaphorically 
speaking, the observer stands on a bridge watching the 
particles flowing under the bridge. Due to the fixed 
nature of the observer, large particle movements can 
be treated unproblematically as compared to grid-
based Lagrangian methods [12]. To describe time-
dependent areas, an additional data structure is 
needed, which is described in chapter 4. A further 
disadvantage is the existence of the convective term in 
the balance equation, caused by the relative movement 
between the particle and the observer. The convective 
term is difficult to handle numerically. Nevertheless 
the Euler approach usually is the preferred method in 
fluid mechanics. 
 
With the help of the different approaches it is possible 
to describe the flow mathematically. These equations 
consist of a system of coupled partial differential 
equations, which are often solved numerically. The 
used numerical method is described in the next 
chapter. 
 

3 Used numerical algorithm 
The base equations (continuity-, momentum- and 
energy equation) can be easily arranged in a flux 
vector form. The mass forces are neglected as they 
influence the airbag inflation only marginally. 
 

 ( ) 0=−+
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The flux vector E is called the Euler flux or 
convective flux and contains all the rates needed to 
describe an inviscid flow. The friction term and the 
heat flow are summarized in the diffusion flux Eν. 
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Within this work only the Euler flux is considered. 
Due to the flux vector notation a friction term or a 
turbulence model can be implemented in a later stage - 
the required terms only have to be added in Eq. (1). 
 
Eq. (1) is solved with a TVD upwind method by Roe. 
To get the initial values (Q+, Q-) at the cell border for 
the Riemann problem a MUSCL method (Monotonic 
Upstream Schemes for Conservations Laws) is used. 
A polynomial approach for upwind methods is used 
together with a MINMOD limiter function by 
Chakravarthy and Osher [13].  
 
The decision for a time integration method is 
influenced by the fact that the fluid structure 
interaction problem is solved alternately. Therefore 
the time step of both solvers should be equivalent. A 
frequent value for a time step in FEM-vehicle crash 
calculations is 1.0E-06 seconds. Thus it is possible to 
calculate the Courant-Friedrich-Levy number (CFL) 
[14] for a typical grid (xGrid=1.0E-02m) used in 
numerical airbag inflation calculations. Assuming the 
flow velocity of the gas amounting to 100m/s and the 
gas having the properties of air (RGas=287J/kgK, 
T=293K, κ=1.4) at ambient temperature the CFL 
number has approximately the value 0.5. Thus the 
stability criteria for explicit methods (CFL<1) is 
satisfied. Therefore two explicit one-step methods are 
embedded: 
 

• Explicit Euler method 
• Explicit Four-Step-Runge-Kutta method 

 

4 Flows in time-dependent areas 
It is obvious that during an airbag inflation, the area 
where the Navier-Stokes equations have to be solved 
changes greatly over time, so the numerical solution 
method is required to integrate time-dependent areas. 

How boundary conditions of a time-dependent area 
are handled depends largely on the description of the 
flow (refer to chapter 2). After a brief overview of 
existing procedures for the treatment of moving 
boundaries, the procedure used in this work is 
presented. 
 

4.1 Lagrangian methods 

The grid-free Lagrangian methods are very suitable 
for handling time-dependent areas – even if 
deformations are large. The boundary is very well 
approximated given that enough particles are at the 
edge. In addition, it is easy to apply the boundary 
conditions to these particles. These advantages of 
grid-free procedures bring with them a high cost of 
computation since a collision test with geometry is 
required for every single particle [15]. Grid-based 
Lagrangian methods are sensitive to large particle 
movement in the flow. In general, the movement of 
the particles at the boundary does not cause difficulty, 
rather the flow within the flow area (vortex, etc.). This 
is caused by the fact that grid-based Lagrange 
methods cannot handle large grid deformations. The 
only way out is to remesh the area. A remeshing of the 
area is not required, given that grid-free methods are 
used. If the particle density is too low in certain 
regions, additional particles are inserted. [16] 
 

4.2 Arbitrary Lagrangian Euler methods 

ALE methods combine the advantages of the Euler 
and Lagrangian method. At the boundary, the ALE 
method behaves like the Lagrange approach therefore 
the boundary can be approximated consistently and 
accurately. The grid points inside the area can also 
move, but this movement is not coupled with the local 
flow velocity. The nodes can move freely to avoid 
large grid deformations. A disadvantage of such 
approaches is the disproportionate increase in the 
numerical calculation effort when borders are heavily 
deformed. Additionally, areas growing together are 
difficult to handle using the ALE method [11]. 
 

4.3 Euler methods 

Euler methods use fixed grids for treating time- 
dependent areas. The real calculation area is 
embedded in the base grid as is illustrated in the  
Fig. 2. 
 

 
 

Fig. 2 Surface Marker Method 
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So an additional data structure is needed. The classic 
Euler method needs to be extended in order to solve 
problems with moving boundaries. The grid 
deformation is apparently no problem, but it is 
difficult to apply the boundary conditions accurately. 
 
Listed below are the established Euler methods to 
handle time-dependent areas. In principle, the methods 
can be categorized in two groups [17] 
 

a. Interface tracking methods 
The motion of the boundary is traced directly 

• Surface Marker Method 
• Level Set Method 

 
b. Interface capturing methods 

The boundary is reconstructed 
• Marker and Cell Method 
• Volume of Fluid Method 
• Cut Cell Method 

 

4.4 Method Used 

The decision as to which method is used to handle 
flexible geometry depends on the underlying problem. 
An essential aspect is the manner in which the 
boundaries are approximated by the different methods. 
Another point is the stability of the method, which is 
also influenced by the moving boundary. For this 
reason, the Euler method is chosen. The shape of the 
boundary is defined by an external FE program (LS-
Dyna). In the FE calculation, the airbag membrane is 
defined by membrane elements. 
 
Methods differ with respect to the accuracy of the 
intersecting cuts between the membrane elements and 
the grid of the CFD program: 
 

a. The cuts are calculated exactly for example 
as shown by Aftosmis et al. [18] (e.g. Cut Cell 
Methods) 

b. The exact course of the cut is replaced by a 
simplified course of the cut. (Simple Line 
Interface Calculation etc.) 

c. Similar to the Marker and Cell Method 
complete cells are switched on or off. 

 
For the decision as to which method is to be used, the 
following arguments have to be considered. The 
calculation of the cuts can be very difficult, because 
very complicated cuts can occur. Also it may be 
difficult to assess the membership of the areas (inner, 
outer) if complicated cuts appear. Another point is the 
higher calculation effort for the calculation of the 
required cuts, therefore a method is chosen which 
allows the switching on or off of complete cells 
 
To realize this assertion, all cells exhibit, in addition 
to the base properties (density, velocity, etc.), 
additional properties (cell types: inflow cells, airbag 

obstacle cells, ghost cells, fluid cells, etc.) which are 
defined by the position of the airbag membrane. The 
current position of the airbag membrane is checked at 
every time step, hence the cell type can be changed 
during the calculation. 
 
By definition, a cell exhibits the cell type “airbag 
obstacle cell” if the airbag membrane cuts a cell. 
Therefore it is not possible to suspend an airbag fold 
inside a cell, as is illustrated in Fig. 3 
 
 

Airbag Membrane 

Airbag Obstacle Cells 

 
Fig. 3 Cell type assignment: airbag obstacle cell 

 
The error emerging from this assumption can be 
reduced by an adaptive mesh refinement. 
 
 

5 Boundary conditions 
The boundary conditions are essential for the accurate 
solution of the differential equation. In this work the 
boundary conditions are applied on “ghost cells”. 
These ghost cells are attached to the calculation area 
and the values of the variables inside these cells are 
calculated in respect to the required boundary 
condition, as is shown in the Fig. 4 

x 

y 

Solid Wall 

Ghost-Cell Fluid-Cell 

P W 

R unor,P 

utan,W = utan,R = utan,P

unor,R = -unor,P 

utan,R = utan,P utan,P 

unor,W = 0 

 
Fig. 4 Ghost Cell - wall boundary condition 

 
In this work, an explicit method is used for the 
calculation of the ghost cell values. Furthermore, 
different extrapolation methods for the boundary 
condition can also be used. A linear extrapolation 
schema is implemented because the accuracy of the 
whole schema is not reduced if the schema of the 
boundary extrapolation is one order below the inner 
schema [8]. 
 
Also it is important that number of boundary 
conditions fits the number of differential equations 
[19]. If there are too many boundary conditions, the 
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problem may not be solvable. However, if there are 
not enough boundary conditions several solutions are 
possible in which some solutions are not physically 
realistic. Boundary conditions should only be 
specified if information is conveyed from the 
boundary into the calculation area – otherwise the 
boundary condition has no effect. The propagation of 
the information is described by the characteristics of 
the differential equations. Therefore, the number of 
predetermined boundary conditions should be equal to 
the characteristics which appear in the calculation 
area. The other state values have to be extrapolated 
from the flow field to the corresponding ghost cells. 
 

5.1 Boundary conditions at time-dependent areas 

In this chapter the boundary conditions for time-
dependent areas and inviscid flows are considered. 
Generally, the boundary conditions can be treated 
similar to the boundary conditions at fixed walls. For 
viscid flows, the same considerations are valid. The 
following points have to be considered for all 
boundary conditions (BC). Therefore these scores are 
also important for the BC of time-dependent areas: 
 

a. Number of predefined boundary conditions 
For inviscid BC, only the tangential condition is 
needed. 

 
b. Preservation of the conservative values 

For the system under consideration, the mass, 
momentum and energy have to be preserved 
during the calculation; e.g., due to the tangential 
condition at a fixed wall, the system is 
conserved because the velocity standard to the 
wall is zero. Therefore there is no flux inherent 
to the wall. 

 
The treatment of the boundary conditions of time-
dependent areas are strongly depending on the 
possibilities for describing flows (see also chapter 2). 
If the flow is described with a grid free Lagrangian 
method, the description of the BC of time-dependent 
areas causes no difficulties, thus the flow dynamic 
field information of the particles, which are on the 
edge of the area, accurately represents the boundary 
conditions. Therefore the state variables can be 
changed easily so that the tangential condition is 
fulfilled.  
 
The ALE method is also convenient for the 
description of BC of time-dependent areas, because 
the border cells are adapted exactly to the form of the 
boundary [20]. Due to this fact, the number of cells is 
not changing within a time step – this is an advantage 
for the preservation of the conservative variables as be 
shown later. 
 
The Euler method doesn‘t have the advantage that the 
grid can be deformed respectively as no grid is 

necessary. To take advantages of fixed grids for the 
treatment of time-dependent areas, special methods 
are developed [21, 22, et al.]. 
 
As described in chapter 4.3, the “real” calculation area 
is embedded in the base grid. Therefore the boundary 
is “moving” through the fixed base grid and limits the 
calculation area. With the help of the methods which 
are listed in chapter 4.3, it is possible to determine the 
position of the boundary for every time step. 
 
Three different cases can be distinguished as being 
caused by the moving airbag membrane within a 
Cartesian grid. 
 
It is important that for the treatment of all three cases, 
the conservative values are maintained. In the 
following the three cases, the difficulties involved are 
explained. 
 
a. Cell type does not change 

 

Fluid Cells 

t=t1 

Boundary 

t=t1+Δt 

Airbag Obstacle Cells 

 
Fig. 5 Cell type does not change 

 
During a time step, the fraction of the fluid volume at 
the cell volume and the surfaces which enclose the cell 
are changing. If the cells which are cut by the 
boundary are treated as border cells, the state values 
have to be changed so that the BC are satisfied and the 
calculation area is conservative. 
 
b. Fluid Cell before – Airbag Obstacle Cell later 

 

Fluid Cells 

t=t1 

Boundary 

t=t1+Δt 

„new“ Airbag Obstacle Cells 

Airbag Obstacle Cells 

 
Fig. 6 Fluid cell before – airbag obstacle cell later 

 
This is the case if the calculation area decreases. The 
new airbag obstacle cell is a fluid cell at time t1 and 
therefore the cell contains mass, momentum and 
energy at this time. In the next time step (t1+Δt), the cell 
changes its property from a fluid to an airbag obstacle 
cell. The conservative values which are contained in 
the new airbag obstacle cell have to be applied to the 
calculation area. 
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c. Airbag Obstacle Cell before – Fluid Cell later 

t=t1+Δt 

Fluid Cells 

t=t1 

Boundary 

„new“ Fluid Cells 

Airbag Obstacle Cells 

 
Fig. 7 Airbag obstacle cell before – fluid cell later 

 
The third case is the inverse of the case two, wherein 
the calculation area enlarges. Therefore additional 
fluid cells have to be integrated in the system. A 
problem for the integration of this cell is that the new 
fluid cell has no time background and therefore no 
initial values. Therefore the cells have to be initialized 
– the initialization has to be done in a way that the 
system is conservative. 
 
Methods for treatment of moving boundaries based on 
an Euler grid must be able to correctly handle these 
cases physically. 
 
Two methods from the literature, which can handle 
moving boundaries in combination with an Euler grid, 
are described briefly below. There are a lot of 
variations respectively combinations of different 
methods to handle these situations. 
 
Cell Merging [21, 23, et al.] 
The principal idea behind the cell merging method is 
to combine cells at the beginning of a time step and 
separate these cells at the end of the time step.  
 

tn+1 tn 

Merged Cell   
Fig. 8 Increasing area – cell merging method [24] 

 
If the cell volume and the cell surface areas are known 
for every time step, it is possible to integrate cells in a 
conservative way. No initial values are needed due to 
the merged cells. If the area decreases, the system 
remains conservative because the mass in the border 
cells at the time step tn is automatically in the border 
cell at the time step tn+1. 
 
Space Time [25] 
In the space time method, the problem of the moving 
boundaries is not only considered in the space 
geometrically. Additionally, this approach considers 
the time dimension directly in combination with the 
geometrical space, thus in this method space-time 
areas are opened or closed during a time step.  

To aid understanding, a one dimensional case is 
considered. 
 

 

x 

t 

t=n

t=n+1 

i j k 

i j’ k 

tA 
tB 

 
Fig. 9 Space time – one dimensional moving piston 

 
The Fig. 9 shows a boundary movement (red line), 
were the cell j’ is newly opened and the cell j is 
closed. The flux through the space-time for the cell k 
consists of one part of the uncropped area at the right 
side (inflow into the cell k from time tn until tn+1) and 
two parts from the left side (inflow into the cell k from 
tn until tB and a wall boundary condition from time tB 
until tn+1). To calculate the balanced equation, the 
volumes of the cut cells have to be determined, and in 
addition the wall pressure and the space time 
geometry (blue area) have to be approximated. With 
the help of these approximations, moving boundaries 
within Euler grids can be handled. The space time 
methods are described more precisely by Murman  
et al. [25]. 
 

5.2 Developed boundary conditions for time 
depending areas within an Euler grid 

In the chapter above, two methods which are capable 
of handling boundary conditions of time varying areas 
are described. In both procedures it is however 
necessary to determine the portion of the fluid volume 
of the cell volume and the flow-entering surfaces. The 
calculation effort to determine these values is high, 
especially for the three dimensional case. Another 
problem is the number of possible special cases.  
 
For this reason, a simple procedure was developed. 
For the method developed, it is not necessary to 
determine the portion of the fluid volume of the cell 
volume and the flow-entering surfaces.  
 
Only complete cells are switched on and off. For the 
boundary condition the tangential condition is used.  
 
Predefining an airbag membrane velocity and turning 
cells respectively on and off results in a flux. 
 

v_airbag „flux“ 

Airbag Obstacle Cell 

Fluid Cell 
 

Fig. 10 Developed method – conservative 
 

Consequently the calculation area (red dashed line) is 
not a conservative system. In order to prevent a non- 
conservative system, the flux across the boundary is 
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determined and the conservative “deficit values” are 
stored in the corresponding border cells (airbag 
obstacle cells). These deficit values are applied to the 
system depending on the currently occurring cell 
conditions. Therefore the cell exhibits not only the 
state vector Q, but also additional values. These 
values are the conservative “deficit values”: mass, 
momentum and energy. The dimension of the “deficit 
value vector” and the state vector are the same.  
 
The “deficit values” are calculated with the help of the 
Euler flux. 
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At the end of the time step the Euler flux Ex is known. 
Eq. 5 is a linear system of equations and the velocity u 
can be calculated with Eq. 7. 
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With the coefficient: 
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For the calculation of the “deficit values” the 
calculated velocity (u12) which diverges least from the 
airbag membrane velocity is taken. 
 
With the help of the three cases described in sub-
chapter 5.1, the developed method can be explained 
more precisely. In the following examples only the 
one dimensional case is summarized, but the same 
considerations apply to the three-dimensional case. 
Likewise, the principle of the developed method is 
only explained for the mass conservation. The same 
considerations are valid for the other conservative 
values (momentum and energy). 
 
In the following figures the values mcell, ρucell, ρvcell , 
ρwcell and ecell are the conservative “deficit values”. 
The airbag obstacle cells are marked in yellow and the 
fluid cells are marked in blue.  

a. Cell type do not change 
There are two sub-cases: 
 
Increasing area 
For the cell j the “outflow boundary condition” is 
applied if the area is increasing. Due to the direction 
of the characteristics only one value has to be 
predefined. 
 

 Conservative values (mcell, …) 

tn tn+1 

v_airbag 

C+ C- C0 

„outflow“ 

Cell i Cell j Cell k 

 
Fig. 11 BC: Case 1 – increasing area 

 
With the help of Eq. 5 the flux of the conservative 
values across the cell i and the cell j are calculated and 
stored in the cell j as additional value. 
 

dtAumm xioutflowioutflow
t

jcell
t

jcell

nn

⋅⋅⋅+=
+

.,,,

1

ρ  (10) 
 
Decreasing area 
In contrast to the increasing area the “inflow boundary 
condition” is applied to the cell j. Due to the direction 
of the characteristics two values have to be predefined. 
These are the airbag membrane velocity and the 
density of the neighbour cell. It is assumed that the 
density alteration is moderate in relation to the 
neighbour density. 
 

 Conservative values (mcell, …) 

v_airbag 

C+ C- C0 

„inflow“ 

tn tn+1 

Cell i 

Cell j 

Cell k 

 
Fig. 12 BC: Case 1 – decreasing area 

 
The flux is calculated across the cell boundary i-j and 
is subtracted from the conservative cell variables of 
the cell j. 
 
b. Fluid Cell before – Airbag Obstacle Cell later 
This case is treated as an “inflow boundary 
condition”. The airbag membrane velocity and the 
density are predefined (compare with case 1) for the 
cell j. Again it is assumed that the density alteration is 
only moderate in relation to the neighbour density. 
 
To get a conservative system, the remaining values of 
the cell k are added to the conservative value of the 
cell j. 

 

Conservative values (mcell, …)

v_airbag 
„inflow“ 

tn tn+1 

Cell i Cell j Cell k

C+ C- C0 
Fluid cells 

 
Fig. 13 BC: Case 2 – fluid before, airbag later 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM



The values inside the cell j at the time step tn are also 
added to the “deficit values”. 
 

dtAummm xjlowjlow
t

kcell
t

jcell
t
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nnn
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,inf,inf,,,

1
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c. Airbag Obstacle Cell before – Fluid Cell later 
In this case, additional fluid cells have to be integrated 
in the calculation area, and the “outflow boundary 
condition” has to be applied. Therefore only one value 
(airbag membrane velocity) has to be predetermined. 
 

 

Conservative values (mcell, …)

v_airbag 
„outflow“ 

tn tn+1 

Cell i Cell j Cell k 

Fluid cells C+ C- C0 

 
Fig. 14 BC: Case 3 – airbag before, fluid later 

 
The stored deficit values are the initial values for the 
cell j. Therefore the following operational sequence 
results: 
 

a. Time step tn: 
Conservative “deficit values” are stored in the 
cell j. 

b. Cell j is now a fluid cell 
Initial values for the density of the cell j at the 
time step tn+1 

dx
m

n

n

t
jcellt

jcell
,

,

1

=
+

ρ  (12) 

c. Extrapolation of the density and predefine the 
airbag membrane velocity for the cell k. 

d. Solve the time step tn+1 
e. The flux for the cell k is calculated and the 

deficit values are stored in the cell k 
dtAum xjoutflowjoutflow

t
kcell

n

⋅⋅⋅=
+

.,,

1

ρ  (13) 
 
Special cases 
It is easy to extend the basic one dimensional idea to 
the three dimensional case. For the multidimensional 
problems, a special case can occur. This special case is 
explained on the basis of a two dimensional 
calculation area. The increasing and decreasing areas 
are treated differently. 
 
a. Increasing area 
The green cell in the Fig. 15 has no initial values, 
because the green cell has no fluid cell as its direct 
neighbours. Therefore no conservative “deficit values” 
can be stored in such “isolated” cells. 

 

Airbag Fluid Cells 

Airbag-Obstacle Cells No Initial Values

tn tn+1 
 

Fig. 15 Special case: no initial value 

This problem can be solved by an intermediate time 
step (time step bisection). The green cell is still treated 
as a border cell. In the next “half” time step, the green 
cell gets the properties of a fluid cell. 
 

Airbag Fluid Cells 

Airbag-Obstacle Cells 

tn+1 tn+1/2 

 
Fig. 16 Special case: bisection of the time step 

 
Two intermediate time steps are required for the three 
dimensional case. 
 
b. Decreasing area 
For the cell configuration illustrated in Fig. 17, the 
green cell has “deficit values”, which cannot be 
applied back to the system because this cell also has 
no fluid cells as its direct neighbours. 
 

   

Airbag Fluid Cells 

Airbag-Obstacle Conservative Values „isolated“ 

tn tn+1  
Fig. 17 Special case: isolated cell 

 
For this special case, no intermediate time step has to 
be inserted. The deficit values of the green cell are 
distributed on the corresponding cells (airbag obstacle 
cells), so the direction of the airbag membrane 
velocity of the green cell is used as criterion for the 
distribution. 
 
This procedure is shown in Fig. 18. 
 

Fluid Cells 

1. Step 

tn+1 

2. Step 

tn+1 

3. Step 

tn+1 
 

Fig. 18 Special case: division of deficit values 
 
This procedure is very stable, because there are almost 
no additional special cases. In addition, it can handle 
the three cases which are described in chapter 5.1. 
 
 

6 Fluid Structure interaction 
To solve the fluid structure interaction of an airbag 
inflation, a weakly coupled and partitioned method is 
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chosen. As was mentioned in chapter 1.4, both one 
field problems are solved alternately and the solutions 
of each programs is exchanged through a defined 
interface. 
 

a. Structural mechanic problem 
FE-Program LS-Dyna 
 

b. Fluid mechanic problem 
Developed CFD program “Bagjet” 

 
The simulation procedure is shown in the Fig. 19. The 
CFD program controls the simulation and starts the 
FE-calculation at the required time. 
 
Unfortunately the required interface in the FE-
program LS-Dyna does not exist. For this reason it is 
necessary to restart LS-Dyna at each time step. 
 

Initialization 
(LS-Dyna, Bagjet) 

 

Bagjet 

 

Restart LS-Dyna 

 

Simulation end 

time 

pressure to shell 
elements 
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Fig. 19 Simulation procedure 
 
The simulation procedure used needs two interfaces 
which are briefly described in the following sections. 
 

6.1 Interface: FE-Program 

For this work the airbag membrane is approximated 
by 4-point membrane elements. For each element, a 
corresponding pressure is determined by “Bagjet”.  
 
In a first step, the cell which contains the centre of 
gravity of a membrane element is determined. The 
pressure of the localized cell is distributed on the 
membrane element. 

 

Airbag 

pi,j 
pi,j 

Airbag-Obstacle 

Fluid Cells

 
Fig. 20 Interface: FE-program 

 

In a next step the decision is made as to which side of 
the membrane element the pressure acts. The direction 
of the element standard (initially pointing outwards) is 
compared with the position of the fluid neighbour 
cells. 
 

6.2 Interface: CFD program 

The developed CFD program requires the position of 
the airbag membrane. The positions of the membrane 
element nodes are read at every time step. Also it is 
necessary to determine a corresponding shell element 
velocity for the tangential boundary condition of the 
cells, which are intersected by the airbag membrane. 
 
Two cases are distinguished for the determination of 
the corresponding membrane velocity. 
 

Case 1 Case 2Case 1 Case 2

 
Fig. 21 Interface: CFD program 

 
If nodes from the shell elements are inside a cell, the 
node velocities are added as vectors in order to 
determine a corresponding velocity. It could also be, 
as is shown in case 2, that no node is inside a cell. In 
this case, the velocity of all four shell element nodes 
which divide the cell are used to determine a 
corresponding velocity 
 
 

7 Numerical results 
The aim of this chapter is to validate the developed 
method with the help of different examples with 
known analytic results, so the solution can be 
compared easily. Additionally the conservativity of 
the developed method is proven. To show the 
performance of the method, an airbag inflation is also 
calculated. 
 
In this paper, only three examples are chosen although 
more examples (Shock tube, Moving piston with free 
expansion…) were used for the validation of the new 
method. 
 

7.1 Maintenance of the conservative values 

In this chapter, the maintenance of conservative values 
is verified. The verification had been done using a 
defined movement of the boundary to get a time-
dependent area. One and three dimensional examples 
are simulated.  
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Only one three dimensional case is mapped in the 
following. In this example, the special cases which are 
described in chapter 5.2 are simulated. The 
conservative laws of all values (mass, momentum and 
energy) are checked. As an example, the maintenance 
of the mass is shown. 
 
For this example, a box-shaped calculation area is 
used where all sides have a defined velocity, so in 
respect to the sign of the velocity the calculation area 
can either increase or decrease.  
 
As can be seen in the figure below, the box-shaped 
calculation area (blue cube) is embedded in the Euler 
grid of the CFD program. 
 

 
 

Fig. 22 3D moving boundary 
 
Area extension (Expansion) 
As was explained in section 5.2, two intermediate time 
steps are needed to get initial values for the “isolated” 
cells in the special cell configuration.  
 
Tab. 2 shows the number of fluid cells versus time 
step respective of time. 
 

Tab. 2 Number of fluid cells – expansion 
Timestep Time [s] Δt [s] Number of fluid cells

10 9.000E-05 1.000E-05 12
11 1.000E-04 1.000E-05 12
12 1.100E-04 3.333E-06 12
13 1.133E-04 3.333E-06 40
14 1.167E-04 3.333E-06 60
15 1.200E-04 1.000E-05 64
16 1.300E-04 1.000E-05 64  

 
It can be seen that the number of the fluid cell does 
not increase “directly” from 12 to 64, as it should be a 
result of the special defined boundary motion. The 
system used two intermediate time steps where certain 
cells are treated still as “border cells”. 
 
In the Fig. 23, the mass balance is mapped. In this 
figure the principles of the developed method are 
obvious. The total mass is constant during the 
calculation. 
 
The mass of the fluid cells decreases due to the flux 
“out” of the calculation area. The mass of the airbag 
obstacle cell increases in the same manner as the mass 
of the fluid cell decreases. If the motion of the 

boundary is large enough for new fluid cells to be 
integrated into the calculation area, the mass of the 
airbag obstacle cell is used as the initial mass. 
 

Mass balance: 3D, defined boundary movement - Expansion
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Fig. 23 Mass balance - expansion 
 
Area reduction (compression) 
No intermediate time-step is required for the 
compression (compare with sub-chapter 5.2). The 
conservative deficit values of the “isolated” cells (no 
fluid cell as neighbour) are distributed on the 
corresponding neighbour cells, taking the boundary 
velocity into consideration. 
 

Tab. 3 Number of fluid cells – compression 
Timestep Time [s] Δt [s] Number of fluid cells

10 9.0E-05 1.0E-05 216
11 1.0E-04 1.0E-05 216
12 1.1E-04 1.0E-05 216
13 1.2E-04 1.0E-05 80
14 1.3E-04 1.0E-05 80
15 1.4E-04 1.0E-05 80
16 1.5E-04 1.0E-05 80  

 
Due to the fact that no intermediate time step is 
required, the number of fluid cell decreases “directly” 
from 216 to 80 (see Tab.3). 
 
In this case the total mass remains constant (see Fig 
24). 
 

Mass balance: 3D, defined boundary movement - Compression
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Fig. 24 Mass balance – compression 
 

7.2 One dimensional spring mass system 

A one dimensional problem is depicted in the Fig. 25. 
A frictionless piston moves inside an infinite tube. 
The piston may displace in the x-direction and is 
supported by a spring. 
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Fluid (ρ,c) m k 

x(t) 

 
 

Fig. 25 1D spring mass system 
 
The one dimensional spring-mass problem can be 
solved analytically [26]. 
 
The equation of motion for the piston is divided by its 
area to get an area independent consideration.  
 
 ( ) ( )0

..

xxktpxm −⋅−=⋅  (14) 
 
In this equation x(t) is the position of the piston, x0 the 
equilibrium position, k the stiffness of the spring per 
piston area [N/m³], pt the pressure and m the mass of 
the piston per piston area [kg/m²]. The current 
pressure can be solved with the simple unsteady wave 
equation [27]  
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Therefore the equation of motion can be written as: 
 

 ( )
1

2

0

.

0
0

2
0

..

2
11

−
⋅

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
⋅

−
−⋅=−⋅+

κ
κ

κω
c
x

m
pxxx  (16) 

 
with the resonance frequency: 
 

 
m
k

=2
0ω  (17) 

 
One recognizes from the motion equation that the 
equation Eq. 16 represent a nonlinear oscillator with 
the following equilibrium position: 
 

 
k
pxx 0

0 +=  (18) 

 
To make the equation dimensionless a characteristic 
length L=p0/k is introduced. 
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The coefficients of this equation are: 
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The derivative of Eq. 19 is taken with respect to  
τ=t ω0 and describes the displacement of a free 
damped oscillator. Assuming α << 1 and the starting 
conditions 
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the following solution is obtained: 
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This analytical solution can now be compared with the 
numerical solution.  
 
For the numerical solution the piston (m=3 kg, 
A=1m²) is modelled using four rigid shell elements. 
The vertices of the piston are supported by a spring 
(kn=k/4). The initial values of the CFD program are: 
p0=6.0E+05Pa, ρ0=4kg/m³, κ=1.4, Tinit=293.15K.  
 
In all simulated examples, the value of α was assumed 
to be much smaller than 1 (α<< 1.) 
 
For the comparison between the numerical solution 
and the analytic solution, following parameters vary: 
 
 
The cell length of the CFD simulation 
 

Tab. 4 Variation of the grid width 
cell length timestep spring stiffness

[m] [s] [N/m]
K1 0.0025 2.00E-06 9.00E+07
K2 0.0030 2.00E-06 9.00E+07
K3 0.0040 2.00E-06 9.00E+07  

 
 
The time step of the CFD simulation 
 

Tab. 5 Variation of the time step 
cell length timestep spring stiffness

[m] [s] [N/m]
K4 0.0025 2.00E-06 9.00E+07
K5 0.0025 3.00E-06 9.00E+07
K6 0.0025 4.00E-06 9.00E+07  

 
 
The spring stiffness of the CFD simulation 
 

Tab. 6 Variation of the spring stiffness k 
cell length timestep spring stiffness

[m] [s] [N/m]
K7 0.0025 2.00E-06 8.00E+07
K8 0.0025 2.00E-06 9.00E+07
K9 0.0025 2.00E-06 1.00E+08  

 
 
In these tables the respective variation parameters are 
highlighted. 
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Results: 
 

Movement of the pistion - Different grid width 
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Fig. 26 1D piston movement – grid width 
 

Movement of the piston - Different timesteps
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Fig. 27 1D piston movement – time step 
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Fig. 28 1D piston movement – spring stiffness 
 
For these configurations, the time step and the grid 
width has no influence on the displacement. 
Obviously the calculated resonance frequency and the 
amplitude correspond with the analytic solution. 
 

7.3 Simulation of an airbag inflation 

On the basis of this example, the principal capability 
of the developed method to simulate airbag inflation is 
checked.  
 
At the beginning, the simulated airbag lies flat on a 
table. This is a common test set-up for the validation 
of airbag simulation models. In this simulation all 
respective geometric input parameters are assumed 
virtually for the following reasons: 
 

a. number of Restarts 
The required interface in the FE-program LS-Dyna 
does not exist. For this reason it is necessary to restart 
LS-Dyna at each time step. If for example the average 
airbag inflation time is about 30 ms and a common 
time step is used (1.0E-06 s), the program LS-Dyna 
has to be restarted 30,000 times. The initialization 
effort for the restarts is very high. This is explained 
later. 
 
b. missing tank test date 
In order to characterise the gas generator, a tank test 
has to be simulated. No appropriate tank test data were 
found. 
 
Description of the simulation model 
In the simulation model, as depicted in the Fig. 29, an 
airbag (diameter: 500 mm) is laid out flat on a table. A 
recess for the gas generator and the shooting channel 
is located at the table's centre. 
 

shooting chanel

table

flat airbag

arrester strap

gas generator

shooting chanel

table

flat airbag

arrester strap

gas generator

 
 

Fig. 29 Configuration of the simulation 
 
A simple cylinder is used as a firing channel. The gas 
flow, which escapes radially from the gas generator, 
turns in a way that the gas flows axially into the 
airbag.  
 
The airbag is held back during the inflation by means 
of four arrester straps, which are symmetrically 
arranged. Additionally it is assumed that the arrester 
straps do not represent an obstacle for the gas flow. 
Furthermore the gas generator, the shooting channel 
and the table are assumed to be rigid. 
 
The gas flows radially over eight symmetrical holes 
(Area: 1,96cm²) horizontal from the gas generator in 
the shooting channel (diameter: 150 mm).  
 
For the subsonic inflow boundary condition, it is 
sufficient that the mass flow, the inlet temperature, the 
inflow area and the inflow angle is given. If a 
supersonic inflow arises during the simulation, the 
inflow velocity is set equal to the speed of sound.  
 
The airbag membrane is illustrated by 948 four point 
membrane elements (thickness: 0.1mm). The smallest 
arising edge length amounts to 8 mm. Usual values for 
an airbag membrane material amount to  
ρ=8.8E-07kg/mm³, E=300N/mm², ν=0.2. For this 
example, however, the following material properties 
are selected, in order to increase the minimum time 
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step of the FE computation: ρ=9.0E-06kg/mm³, 
E=900N/mm², ν=0.3. The cell width of the CFD grid 
amounts to 17 mm in x-direction respectively, for 
14mm in y- and z- direction (coordinate direction see 
Fig. 29). Altogether the flow grid consists of 28,577 
cells. The FE (LS-Dyna) and CFD (Bagjet) time step 
are equivalent and amount for 6.00E-06 seconds. 
 
Results 
In the following figure the airbag inflation is depicted 
at the time t=0 ms, t= 2 ms t=4 ms and t=6ms. 
 

 
 

Fig. 30 Airbag inflation – FE mesh 
 
In principal, the path of the motion of the simulation 
corresponds to a real airbag inflation. It is evident that 
the result is almost rotationally symmetrical despite 
use of a regular grid. Due to the fact that only 6ms are 
simulated, the airbag is not yet fully inflated as can be 
seen in Fig. 30. 
 
In the Fig. 31, the allocation of the cell properties is 
represented during the simulation. The dark-blue cells 
represent the fluid cells. The Euler equations are 
solved only for these cells. The light blue cells 
however have the characteristics of airbag obstacle 
cells. The red cells are inflow, and the green cells are 
gas generator cells.  
 
In this illustration, one can also easily recognize the 
functional aspect of the arrester straps (yellow 
"lines"). 
 

 
 

Fig. 31 Airbag inflation – cell properties 
 
At the start, the arrester straps are folded within the 
airbag and do not limit the inflation. After they are 
completely unfolded (within approx. 5ms) they 
restrain the airbag axially. Thus the gas flow is turned 
around and the airbag spreads radially. 
 

The following three illustrations represent the density 
distribution and the velocity distribution. 
 
The distribution of velocity is symmetrical for 
approximately 4ms, although at the end of the 
simulation the distribution of the velocity is no longer 
symmetrical.  
 
The principal reasons for this are too large cell choice, 
the numeric and the used algorithm for “switching” on 
or off of the cells, as was previously described in sub-
chapter 4.4. 
 
This has the consequence that asymmetrical cell 
characteristic distributions (switching cells on/off) can 
occur. This asymmetrical cell distribution causes an 
asymmetrical distribution of the velocity. 
 

 
 

Fig. 32 Airbag inflation – absolute velocity 
 
The strongly aligned gas flow, which is produced by 
the shooting channel, can be easily recognized. If this 
arranged gas flow hits the airbag membrane, the gas 
flow is deflected and an eddy develops. The 
developing large eddies are represented in Fig. 33. 
 
This detour of the gas flow only takes place if the 
airbag is held back by means of arrester straps. 
 

 

 
 

Fig. 33 Airbag inflation –velocity 
 
The density decreases in the airbag in the course of the 
simulation, as the airbag volume more strongly 
increases than the mass inflow increases. This can also 
be seen by the mass accumulations at the sides and at 
the centre of the airbag. 
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Fig. 34 Airbag inflation – density 
 
 
Mass balance and energy balance 
In the following two illustrations, the theoretical mass 
and energy are compared with mass and energy in the 
simulation.  
 
The theoretical mass is derived from the initial mass at 
time zero and the entire mass flowing in. The 
represented simulation mass contains both - the mass 
of the fluids cells and that of the airbag obstacle cells. 
 

Mass conservation of the simulated airbag inflation
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Fig. 35 Airbag inflation – mass conservation 
 
In Fig. 35 it can be clearly seen that the system is 
conservative.  
 
The same applies to the conservation of energy as it 
shown in the Fig. 36. 
 

Energy conservation of the simulated airbag inflation

0

1000

2000

3000

4000

5000

6000

7000

8000

0.000 0.001 0.002 0.003 0.004 0.005 0.006time [s]

en
er

gy
 [k

gm
²/s

²]

Total energy: Theoretical (energy_t0 + inflow) Total energy: Simulation  
 

Fig. 36 Airbag inflation – energy conservation 
 
 

Computational time 
The necessary CPU time (1 AMD Opteron 246, 1 GB 
RAM) is divided into four sub processes: 
 

a. The process "LS Dyna" covers the entire FE 
computation and the "waiting period" before 
calling and after terminating the FE program 
(altogether three seconds for each time step). 
This waiting period ensures that each program 
is terminated "definitely". 

 
b. The process time "Bagjet" contains the entire 

time necessary for the flow simulation 
 

c. In the process time "Read node position" the 
flow program reads the node positions written 
by the FE computation. For this, the LS Dyna 
output file, which contains the node positions, 
is read in. 

 
d. The process time "Refresh cell properties" 

covers the CPU time, which is required, in 
order to update the cell properties (Airbag 
obstacle cell, fluid cell, etc.). 

 
The required CPU time is depicted by process in  
Fig. 37. Obviously the sub process "Read node 
position" needs the most CPU time. 
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Fig. 37 Distribution of the CPU time – overview 
 
The reason for the large CPU time demand for the 
"Read node position" process is caused by the 
interface used (file with the node position) for data 
exchange between the FE program and the flow 
program.  
 
The output file used cannot be "deleted" after a time 
step and the current node positions are attached to the 
previous output file. Thus as the size of the output file 
increases, the more membrane elements for the 
modelling of the airbag are used.  
 
In Fig. 38, the necessary CPU time is represented for 
each time step. 
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Detailed distribution of the CPU time during the simulation 
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Fig. 38 Distribution of the CPU time - detailed 
 
The program Bagjet needs more time as the number of 
fluids cells increases during the simulation. The 
increase of the CPU time for the process LS-Dyna is a 
result of the longer initialization time. Also the strong 
increase of the CPU time for reading the node position 
is obvious in Fig. 38.  
 

8 Potential improvements 
In the course of this work only the fitness in principle 
of this new method was examined for the simulation 
of an airbag inflation. In this chapter covering 
individual program sections, improvements are 
suggested and their implementation is described 
briefly. The fact that an improvement in one section 
may be counter-effective to another program-section 
must always be considered. Thus, an improvement in 
the accuracy of the flow computation for example 
causes a rise in the computation time. These possible 
side effects are not described in this chapter. 
 

8.1 Flow model 

Diffusion term 
As was already described, only the Euler flux, which 
contains all portions for the description of frictionless 
flows, was implemented. The diffusion flux Eν, which 
contains the friction terms and heat flow, is left out. 
On average, it takes approximately 20 to 30ms to 
inflate the airbag. Due to this short time period, the 
heat transfer between the gas and the airbag 
membrane is negligible. During the inflation, the gas 
flow may show large velocity gradients. These 
gradients play a crucial role for the computation of the 
shear stresses. The influence of the shear stresses on 
the simulation accuracy has to be analysed. 
 
Implicit method 
The CFL condition indicates the maximum time step 
of the numeric procedure. With explicit procedures, 
the CFL number must be smaller than 1 – as for 
implicit procedures the CFL number can amount to 
100 or more. Implicit procedures show temporally a 
very dissipative behaviour and are maximally second 
order exact, while for example a four step Runge 
Kutta method is fourth order exact. 

The accuracy and the stability are not only influenced 
by the time step. Additionally the time step should be 
selected in such a way that the moved edge does not 
“skip” complete cells (geometrical restriction).  
 
Therefore the time step cannot be selected arbitrarily. 
Due to the possible higher temporal accuracy and the 
"geometrical" restriction during an area enlargement, 
explicit methods are preferred over implicit methods 
for the developed procedure. 
 
Adaptive mesh refinement 
For the developed procedure, the convention was 
made that as soon as the airbag membrane divides a 
cell, this cell gets the characteristics of a boundary cell 
so a "level" edge develops. For this reason it would be 
wise to implement an adaptive net refinement in the 
peripheral areas. This would help in making the 
procedure more exact and minimizing the algorithm-
conditioned errors as they are depicted in the figure 
below. 

 
Fig. 39: Adaptive mesh refinement  

 
In order to facilitate an implementation of an adaptive 
mesh refinement, an unstructured grid is used. 
 

8.2 Internal program improvements 

Search algorithm 
An additional data structure is needed when using an 
unstructured grid. In order to be able to address an 
adjoining cell, for example, it is not sufficient to 
simply change the cell index. It is necessary to search 
in the additional data structure for the appropriate cell. 
 
In the context of this work all computation cells are 
stored, including the characteristics (density, etc.), in a 
vector. A unique number is assigned to each 
computation cell. However, this "computation cell 
vector" contains no information about the grid 
structure. 
 
To reconstruct the grid structure a matrix is used 
which contains only cell numbers. Each line in this 
matrix is assigned to a computation cell. In the first 
column the cell numbers of the computation cells are 
located. In the additional columns the neighbour cell 
numbers are stored. Therefore it is possible to 
reconstruct the structure of grid with this matrix. 
 
If for example the velocity of a cell is searched, the 
"computation cell vector" is scanned downwards line 
by line until the appropriate cell is found. It would be 
wise to change the vector structure in such a way that 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 16 Copyright © 2007 EUROSIM / SLOSIM



faster search algorithms can be implemented. By an 
appropriate tree structure [28] the search algorithm is 
accelerated and therefore the numeric computation 
time is reduced.  
 
Parallelization of the CFD program 
Using computational clusters, it is wise to split the 
computation into sub-problems meaning that the 
computation time can be reduced significantly. 
Parallelization can be applied well in explicit methods. 
 

8.3 Interface: FE – CFD program 

Ideally the developed program is to implement in a FE 
program. The direct access to the data will lead to a 
noticeable reduction in the computation time. 
 

8.4 Validation examples 

It would be reasonable to validate the developed 
procedure using real airbag inflations.  
 
Eventually a comparison of the computing time of the 
developed procedure with the computing times of 
other procedures (ALE, etc.) should be carried out. To 
do so, a fast interface is required. 
 

9 Summary 
The goal of this work was to develop as stable a 
procedure as possible for the surface-coupled multi-
field problem of an airbag inflation which could be 
expected to yield shorter computing times. As a 
solution procedure for this fluid structure interaction, a 
weakly partitioned procedure was used. For the 
solution of the structure-mechanical problem, the 
commercially available finite elements program LS 
Dyna was chosen. 
 
For the solution of the flow mechanical problem a 3D-
Euler code was developed. A TVD Upwind procedure 
by Roe and for the temporal discretization an explicit 
Euler procedure and a four step Runge Kutta 
procedure were implemented.  
 
The area of an airbag inflation, where a solution of the 
Navier Stokes equations is searched, is subject to a 
temporal change. This change is caused by the 
deformation of the edge of area, so the procedure must 
be able to include time-dependent areas into the 
solution process. The outer contour of the grid adjusts 
automatically to the surface of the airbag during the 
calculation. The contour adjustment is achieved by 
blocking off the outer cells, which can be switched on 
and off during the calculation process.  
 
By means of the characteristic theory, the boundary 
conditions were applied. Additional it is important that 
the procedure remained conservative. For this reason, 
a special conservative procedure for the treatment of 

the boundary condition was developed which permits 
the use of a regular grid. This method allows the 
switching on or off of complete cells.  
 
For the examination of the developed flow program, 
examples were used in which the analytic solutions 
are known, meaning that the numeric and analytic 
solutions could be compared. Furthermore, on the 
basis of examples it was shown that the procedure is 
conservative. As a further example, an airbag inflation 
was simulated in order to be able to examine the 
fitness of the developed procedure. 
 
Finally, possible improvement suggestions and 
extensions were described. Particularly the missing 
suitable interface between LS Dyna and the developed 
CFD program was described. 
 
Finally it can be said that the procedure used is very 
stable, including the developed boundary condition for 
the simulation of an airbag inflation and suggests short 
computing times. 
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