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Abstract

In this paper we apply the Grobner Bases Techniques to solve one type of multivariate
polynomial interpolating problem which has applications in modeling finite discrete time

series. Consider a set of n-dimensional points T ={P,,P,,---,P,,P..,} over the field R of real
numbers. The multivariate polynomial interpolation problem with respect to the set
T'={P,P,,---,P,} is stated as: given b = (b,b,,---,b,)€R"™, find a polynomial f (in n
variables) such that f(P)=Db forall i=1,2,---,m. We call such an f an interpolator on or

on T' targeting at b. Further, we view the set T as a discrete time series. A polynomial model
of T is a function f ={f,f,,---, f } such that f(P)=P,, forall i=1,2,---,m. Each f, is an

i+1

n-variable polynomial interpolator on T'. We demonstrate methods using different monomial
orders (or term orders) to construct polynomial interpolators of different types. A Maple code
is developed based on the Buchberger-Mdéller Algorithm to construct separators which play a
key role in the interpolation. We show that the set of separators constructed by the algorithm
under a fixed order is unique. The behavior of two term orders, the lex order and the graded
reverse order, in the construction of the interpolators are investigated. A relationship between
the number of variables appearing in the constructed interpolator and its total degree is given.
A method to construct single variable interpolators is discussed. Examples are provided to
illustrate the process.
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1 Introduction targeting atb. The vectoib is also called the target of

The polynomialinterpolating problemis a classic math-f'

ematics problem which attracts many researchers. Al- |

though rr?uch work has been done )c/m single variablPefinition 1.3 Let b = [by, b, ---, by] be a vec-
polynomial interpolation, multivariate interpolation re- 1OF Of real numbers. The set of interpolators on
ceived much less attention because of its difficulty’t: £2 " Pm targeting atb is denoted by
[1, 2]. Our initial approach is to construct polynomial B — N — ;
models inn variables to fit a finite set af dimensional (Pryooes P D) = {f € R | f(Py) = b forall i}.
points over a field, which represents a discrete tim
series. This is really a multivariate polynomial inter-
polation problem on the considered time series point
A polynomial model of a discrete time series with
points is ann-variable polynomial which interpolates
the points in an iterative way. We apply thedbrier (p, p, ... P, : b)= fo+ (P, Ps,---,Pp : 0),
Bases Techniques [3] and the well-known Buchberger-

Mbller Algorithm [4] to construct multivariate polyno- Wheref; is any fixed polynomial i P, - - - , P, : b).

mial interpolators for the time series points which canThus a particular interpolator and a generating set for
also serve as a model for the time series. It provides dhe ideall = (P, Py, - - -, P, : 0) build all the inter-
algebraic approach to solving certain multivariate poly{polators. By Grobner bases thechniques, for each order-
nomial interpolation problems. A key element of ouring of monomials off?, there exists a unique generating
construction is to find correlative separators which aré€tgi, g2, - - -, g» of I, called “ the reduced Grobner ba-
different under a different monomial order. sis for I [3]. Every interpolator has the form of

Many real world problems can be formulated as cer- fo+higi +---+ hrg..

tain time series problems. Motivated by the increas-

ing trend in genetic studies and fast growing computef "€ basis shown above can provide valuable informa-

technologies, the study of discrete time series is gaiﬁon about the interpolators. We give a brief background
ere.

ing more and more attention [5, 6, 7, 8]. Such a tim
series can be obtained from data achieved from scien-

tific experiments or social activity surveys. We focus orP€finition 1.4 A term order (or monomial order)>,
n-dimensional points over the fielik of real numbers. on the set of monomials d®, {x* [« € Z%,}, is a
Throughout, we assume the time series in consideratiaotal ordering and well ordering such that* >, x”
have no identical rows and in most cases, the number pfiplies x> >, x**7 for all o, 3, € Z%,.

points is less than or equal ta The setting and noat- B

?nterpolators targeting at the zero vector plays an
important role here. It is known that the set
Py, Py, -+, Py, : 0) forms a finitely generated ideal
of the ring R. Furthermore,

ions are as follows: For example, a term order, called Graded Reverse Lex
Consider the fieldR and the polynomial ringg = Order, satisfies the following conditions: for any two
Rlz1, 22, , a4 (n > 0). Supposem is a posi- Monomialsx® andx”, wherea, § € Z>o, x* >, x”
tive integer. Consider a discrete time serigg P, If l| > [B] orif |a| = || but the right most nonzero
<+, P, Pri1, Where eactP; = (pi1, pio, -+ - ,pin) € €Nty ofa— s negative. Under this order, <, y <,
R". T <g 92 <o Y <¢o z? <o yg <o ny <o xQ?J <o
23 <, yt <, - inR[z,y].

Definition 1.1 A model for the time serieq” = Basically, aterm order makes a line-up for all the mono-
{P\,Py, -, Py, Pmy1} overRR is a functionf from mials of R so.tha.t one can perform necessary long di-
IR" to IR such thatf(P,) = P,,, for eachi = Vision of multivariable polynomials similarly to that of
1,2,...,m. If all the components of are polynomi- Single varable polynomials. Several software packages,
als (inn variables), we say is a polynomial model. ~ such asSingular[9], Macaulay[10, 11], andCoCoA

[12], are available to perform the computation needed

o , in finding the desired bases. We focus on constructing

In detail, if f = (f1, f2,..., fn) is @ model forT, interplators by finding separators with a pre-selected
then for eachj from 1 ton, f;(P;) = p(ii1); fOr  term order. A Maple code was developed and applied

alli = 1,2,...,m. Each componenf; of f serves i the computation based on the Buchberger-Moller Al-
as ann-variable polynomial interpolator on the points gqrithm.

Py, Py, -, P, with certain special “targets”. Finding . _ _ _
such a model for the time series is equivalent to solvinghe main results, which characterize some properties
the following interpolation problem repeatedly for theand structures of the seperators and interpolaors, are

specified ”-values stated in the problem below: given in section 3.

Problem 1.2 The Interpolation Problem 2 The Roles of Seperators and their Sup-
Givenb = [by,ba, -+ ,by] € R™, find a polynomial ports

f € Rsuchthatf(P;) = b; forall i = 1,2,...,m. Finding a particular interpolator is not a problem. As
We call such anf an interpolator onPy, P»,---, P,, inthe single variable case, we can always find one by
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computing a product of appropriate linear polynomialsHere is the main precedure of the algorothm.
But such an interpolator has a total degree much higher .
thann, the numbgr of variables. In th(geJ single variable®, S€lect a term orderr on the monomials of
case, a traditional method to construct interpolators i [#1, 22, -, 2]

through building the separators. Then an interpolatos Input the points irl".

is obtained by taking an appropriate linear combination
of the separators. In this section, we show a similar ag*
proach. Our focus is on the role of separators in build-

The output will be:

ing interpolators. (1) The unique reduced Grobner Basis =
{91, .., g5} for I(T);

Definition 2.1 Let U be a subset oR™ and P be a (2 AI.iSt of separatorss = {si,. .., fg””}’ where .each

pointinIR™. A separator of” from U, denoted by p, is si is a separtor of; from 7', fori = 1,...,m;

a polynomial inR such thatsp(P) = 1 butsp(u) =0 (3) A setV of monomials ofR which forms a basis

forallue U\ {P}. for the m-dimensionalR-vector space?/I(T).

Definition 2.2 For a given polynomialf(z), the sup- 1N€ computation complexity is Quadratic in the num-
port of f is defined to be the set of all monomials in-Per () of variables and cubic in the numben] of the
volved in f which have nonzero coefficients. It is de-P0iNts [4]. We developed Elaple code to perform the
noted by suppf). For example, supBz2z3 — 5z4 +  computation.

2) = {x7a3, =3, 1}. Simultaneously, the algorithm produces the unique
Grobner basis fod (T'), a set of separators @f; from

eT (¢ = 1,2,...,m), and a vector space badis of
R/I(T) made ofm monomials. All of these products
can help constructing interpolators @f and identify-

ing the types of the interpolators. Since these sepa-
rators are built along with the reduced @hrier Basis,
they have been through the “reduction process”. In par-
ticular, when a degree-preferred term order is selected,
rthe total degree of the produced interpolator is usually
rr%uch lower than the ones constructed by other meth-
r$_ds. At each step, the algorithm always searches and
icks functions with leading terms as “small” (under

Now consider the interpolating problem 1.2. Assum
for eachi, we have a separatep, of P; from the rest
of the points. Then an interpolatgy is obtained as a
linear combination of the seperators:

fo= bisp, +basp,+- - --i-bm5pm S (Pl, R S b).

Thus the interpolator obtained from a set of separato
as above is determined by the form of the separato
For instance, if all the separators are linear, then the i

terpolator produced is linear. If all the spereators ar e selected term order) as possible. Thus one can con-

single-variable polynomials involving the same vari- s ) .
able, then the interpolator produced is also the samtéoI the types of resulting interpolating polynomials by

) selecting appropriate term orders. In addition, thel5et
type which must have total degree nomore thar 1. is produced form the non-leading terms of the unique
The advantage of applying Gbher bases techniques is Sbner basis of ()
that we can pre-select a term order to produce a set 91! '
separators in our favor. For example, if we want to geBriefly, the process of the algorithm starts with the con-
an interpolator with the least total degree, a degree prgtant monomial 1 and updates it to a new functices a
ferred term order, such as the graded reverse lex ordentential function that vanishes all the pointsin(i.e.,
should be chosen. h(P;) = 0forall P, € T). At each compuation cycle,

. if h vanishes all the points ifi’, thenh goes through a
Another approacrfl IS mbased on the fact thakeduction procedure%nd thenis adde% into thengelf
R/I(Py, 'H"P"”) = H? as a vectofr space ovefr not, the algorithm will search the first poif such that
115 [3]. }; € supg)orts Od certzgln_sets 0 separatorz OFL(PL') # 0. An appropriate scale multiple of the leading
1, ..., Pm CaN be used to obtain a vector space basis, oiqjent (under the selected term order) is subtracted
(over R for R/I(PL, ..., Py)). Such a basis can also g 1 <o that one more point iff’ vanishes under the
be used to construct an interpolator for Problem 1.2. modifiedh. This / is added to the sef and the pre-
vious elements irb will be updated based on this new
3 Applying Buchberger-Moller Algo- member so that the separating property is reserved. The
rithm searching and reduction process makes it possible that
all the members produced fat and.S have the lowest
An effective algorithm,Buchberger-Moller Algorithm possible monomial terms under the pre-selected term
[4], can be applied to construct interpolators stated irder. By the design of the algorithm, the 3étis sim-
Problem 1.2. We give a brief description of the pro-ply the set of monomials appearing in the non-leading
cess. Recall that our propurse is to interpolate thgerms of all members it (including their factors). We
points P, P, ..., P, at the valuesh,...,b,. Let callthisthefactorial property The supportof each sep-
T={P,P,...,P.}. arator is also made of elements frdm

We define a relative degree of with respect taS as
Algorithm 3.1 Buchberger-Mdller Algorithm follows:
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Definition 3.2 Use the above notation, define 1. If f is linear, thenf has the form:f = a;,z;, +
QiyTiy + -+ + 4, Ti,,_, + a;,,, Wherea;, are

degg(x;) = mﬁmx{r €”Zy |z} € H}, nonzero real numbers for eagh

2. If fisasingle variable polynomial, theteg(f) =

where H is the set of all monomial factors of the ele- m— 1

ments inU™, Supfs; ).

Proof.
Theorem 3.3 Consider the Problem 1.2. Assume the

Buchberger-Moller Algorithm is applied to obtain the For (1), if f is linear thenV C {1,zy,...,z,} and

setsG, S, andV as above ang = bys1 + -+ bmsm i+ Ti,, ) S V because supg] is included in
be the interpolator obtained. Then V. Also V must contain 1 by the factorial property.

Since the size d¥ ism, thenV = {1, z;,,..., 2, _, }.

: . Thusf has the indicated form.
1. V = u,{all monomial factors of elements in !

supp(s;)} and itis uniquely determined by the pre- For (2), letzj be the leading monomial of. Then
selected term order; {1, 25,22 ..., 27} = V implies thatdim(V) = r + 1.
Thusr =m — 1.
. The output sef is unique among all the sets of

separators with supports included iri; In [7] and [13], the existence and construction of linear

interpolators are discussed. From the above, we see that
Y ey degg(i) <m—1; linear interpolators invole the most number of variables.
o In contrast, a single variable interpolator has higher de-

. The output interpolatoyf involves at most: — 1  grees. Furthermore, certain single variable interpola-
variables and it is the “smallest” possible (in the tors can be constructed easily using the Vandermonde
meaning of the leading monomial is the smallestmatrix.
interpolator under the given term order;

Proposition 3.5 If the jth components of all interpo-
lating points are distinct, then a single variabe interpo-
lator in the variablex; exists.

. The total degree of each and thus that off is at
mostm — 1.

Proof. ;
00 Proof. Consider the séf = {P,..., Py}, where

(1). Itis shown in [4] thatl” is uniquely determined by P; = (p;1, pi2, ..., pin), as before. Without loss of
the term order. Sinc&/1(T) = IR™ itis obvious that generality, assume; 1, p21,...,pm1 are all distinct.
if a monomial belongs td” then all the factor mono- Then the Vandermonde matix
mials are also iri/. By the procedure, each separator

created has terms chosen from the non-leading mono- (1 pu Pl Pt ]

mial terms and their factors of the current members of

G. Thus (1) is true. Y 1 pa p3h Pyt

For (2), assumeS = {si,...,s,} and &' = -

{s},...,s,,} are two sets of separators with nonzero

terms inV. Then(s; — s})(P;) = 0 for all + and so 1 9 me1

si — s, € I(T). Buts; — s, is a linear combination L+ Pml Pmi Pm1 -

over R of monomials in the vector space badisof . . . . . P

R/I(T) as a vector space ovB. So all (real number) ' invertible. So the matrix equatiofly” = b* has
g unique solution, wherd = [b1,...,by,,] is the tar-

coefficients in the combination have to be zero. Thu
s$i—8=0=s =s.

() If ; € V and degg(z;) r > 0, then
Lx,23,...,2f € V, giving at leastr + 1 elements
in V. ButV consists ofn linearly independent mono-
mials overIR and has the factorial property, do+
> i wiev degg(xi) < m. Thus (3) is true.

get of the interpolation problem. The solution vector,
lag, a1, ..,am—1]t, gives the coefficients for the sin-
gle variable interpolator:

f(xl, ..
It satisfiesf(P;) =b; fori =1,2,...,m.

m—1

-;xn) = Qm—-1T7 + -4 a1z + ap-

(4) is from the design of the algorithm. In every step, it

is searching the “smallest” candidate for the separator Examples and Applications

that buldt the interpolator.
(5) is an immediate consequence of (3).
An immediate corollary follows.

Corollary 3.4 Let f be the output interpolator as
above. Then

ISBN 978-3-901608-32-2

Example 4.1
Let T = {P1, P2, P5, P4}, where

Pl = (050505050) 0)

P, = (1,10,3,-5,-2,—1)
P, = (10,10,—6,—14,—2,—10)
Py = (-22,-22,15,38,17,13).
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Let 7 be the Lex order and be the Degree reverse lex (2,2), Ps = (1,3), P, = (1/2,2),P5 = (2/3,4),
order [3]. For the lex order<,, x* <, x? ifandanly Ps = (3/2,1/2). Assume the values éfon the P/s
if there exists an: a3 = f1,..., ;-1 = Bi—1,s <, are 10,6,4,9/4,40/9,11/4 respectively. our goal is
B;. The orderr favors certain variables and it is given to construct an interpolatoy (x, y) such thatf(P;) =
by: h(P;) for all &. The problem is to find an interpola-
) 5 tor on theT = {Pi,..., Ps} with the targetb =
1<; 26 <r x5 <r o5 < (10,6,4,9/4,40/9,11/4).
< Xy <y Xy K Ty g X g
<r TeTs <, x§x5 <f; e
By computing the separators using the graded reverse
The graded reversed lex order, favors polynomials lex order, we obtain the following interpolator:
of lower total degrees:

1<0'x6<0'x5<0'"'<0-x1 f(xay):
59 , 100 , 250 875 1100

<o x% <o TeTs5 <5 '+ <o TeT1 9$ 27y 2—7xy—Wx—24y+2—7

<o T2 <o T5Ty < <o T5TL g

Applying the Buchberger-Mbller Algorithm we obtain The next example shows an application of the previ-
two sets of separators. Under the separators are ously mentioned interpolating methods in modeling a
time series from a real data.

- 1 .34 1.2, 133

s1 = 13676 T 5526 T 13006 T 1
_ 1 3 1.2 65

S2 = 12676 — 2276 — 6316

Example 4.3 Consider a data table representing the
S3 = —5ogTe + 755 T8 + F5576 energy consumption of a region in China from 1980 to
1985 (Tab. 1):

S4 = ﬁx% + %:lﬁxg + ﬁxg.
Undero, the separators are Tab. 1 Regional Energy Consumption in China
o= By Lgy - as 41 Year | Total | C P NG | WE
1980 | 60257 | 72.10| 20.85| 3.06 | 3.99
ry = —%m + %x5 + 76 1981 | 24947 | 72.75| 20.00| 2.74 | 4.51
1982 | 62646 | 74.02| 18.58| 2.48 | 4.92
ry = —%m + %% _ 11_8356 1983 | 66040 | 74.27| 18.07| 2.40 | 5.26
1984 | 70904 | 75.31| 17.45| 2.33| 4.91
ry = —ém + é% + éxs. 1995| 77020| 75.92| 17.02| 2.23 | 4.83

Correspondingly, we can obtain two very different in-
terpolators ofT" targeting atby , b, bs, ba:

f ="b1s1 +basa + b3ss + basy and
Here each row represents the data from one year. The
g = byr1 + barg + byrs + byry. first component is the total amount in ten thousand
tons of consumption of all four categories of energy.
It shows thatf is a single variable interpolator involving | "€ Second, third, fourth, and fifth components are the

ia i f the consumption of coal (C), petroleum
only z¢ but the degree 3 is higher than the total degree ?F?rcentage 0 08 ,
of g. While g has the lowest possible total degree, i.e.(P): natural gas (NG), or water/electricity (WE), respec-
g is linear, but it involves more variables:{, zs, ). tively. We view the set of the first five row vectors,

The supports off andg are quite different because of . = 1£1. - .. Ps}, as adiscrete time series. For a fixed
the selgcgion of{iiﬁeregnt ter?n orders. The point is, ond€"™M order, we apply the Buchberger-Maller Algorithm
should choose an appropriate term order based on tfginterpolate the point sef” = T'\ { P} at the five
type of interpolator she/he favors. For the above exanf—pec""‘”y selected values so that we can get five interpo-
ple, the orderr gives interpolators with less number of AL0rS to form a polynomial mod for the time series
variables but higher degrees. On the other hand, the ciT Thatis,f(P;) = Py, fori =1,2,3,4. We use the

der o produces interpolators with low total degrees buf@St data pointls, to measure how closg; is to the
mor% E)/ariables. P g predictionf (Ps) by the modef.

Using the same two term ordersando as before, we

Example 4.2 Leth(z, y) be any real function oveR?.  gbtain two polynomial model§ = (f1, f2, f3, f1, [5)
We choose six points iflR*: P, = (3,1), P, = underr andg = (91, 92, 93, 94, 9) undero, shown be-
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low:
fi = 16805600, _ 141167408 | 86550846
1 = 2091 %5 2091 5 425
_ 2276,.2 _ 525942 6108403
f2 = 697 L5 — 17425 U5 T ~42500
_ 16162 , 315947 299259
fs = 2091%5 T 52275 ¥5 T T2500
_ 10,2 417 12927
fa = 507 %5 ~ 597025 T 250
£ = _ 51822 _ 2530013, _ 571733
5 = 209175 ~ 104550 5 T 10625
and
2100700 2482800,. _ 8245552
g1 = 1390 Y4t TH39 5 139
_ 1707 626 512693
92 = 278 T4 T 13975 T 3900
_ 202, _ 301 449361
gs = 13904 — 13975 T T3900
_ 15, 59 12201
94 = 55604 ~ 27885 T 3475
_ 2501, _ 591 189571
95 = 556 14 — 278T5 T T6950 °

One can check that

f(PL) = g(PL) = PH—I fori = 1,2,3,4.

To compare the predictions of these two models

with the real data point’s = (77020, 75.92,17.02,
2.23,4.83), we evaluate each of the modelsftand
compute the differences between them &jd

f(Ps) = (65925.07, 74.25,18.09, 2.40, 5.26)

g(Ps) = (63594.44,73.30,18.31,2.41,5.98) with

dy = Ps —£(Ps)
— (11094.93, 1.67, —1.07, —0.17, —0.43);
dy = Ps — g(Ps)

= (11094.93,1.67, —1.07, —0.17, —0.43).

9-13 Sept. 2007, Ljubljana, Slovenia

build needed interpolators or desired polynomial mod-
els of the time series involved.

Another direction to go would be to study what set of
monomials of sizen can form a vector space basis for
R/I(T). Such a set has the factorial property and can
help construct an interpolator more rapidly.
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