
ALGEBRAIC METHODS IN MULTIVARIATE 
POLYNOMIAL INTERPOLATION 

Aihua Li1, Xiangjuan Min2 

1Montclair State University, Department of Mathematical Science 
Montclair, New Jersey, 07043, USA  

2University of Science and Technology Beijing, Beijing, China 

lia@mail.montclair.edu (Aihua Li) 

Abstract  

In this paper we apply the Gröbner Bases Techniques to solve one type of multivariate 
polynomial interpolating problem which has applications in modeling finite discrete time 
series. Consider a set of n-dimensional points 1 2 1{ , , , , }m mT P P P P +=  over the field of real 
numbers. The multivariate polynomial interpolation problem with respect to the set 

 is stated as: given b = , find a polynomial f  (in n 
variables) such that 

1 2' { , , , }mT P P P= 1 2( , , , )mb b b ∈ m

i( )if P b= m for all 1,2, ,i = .  We call such an f  an interpolator on  or 
on '  targeting at b. Further, we view the set T as a discrete time series. A polynomial model 
of T is a function 

T
1 2{ , , , }nf f ff =  such that 1( )i if P P+=  for all 1,2, ,i m= . Each if  is an 

n-variable polynomial interpolator on T . We demonstrate methods using different monomial 
orders (or term orders) to construct polynomial interpolators of different types. A Maple code 
is developed based on the Buchberger-Möller Algorithm to construct separators which play a 
key role in the interpolation. We show that the set of separators constructed by the algorithm 
under a fixed order is unique. The behavior of two term orders, the lex order and the graded 
reverse order, in the construction of the interpolators are investigated. A relationship between 
the number of variables appearing in the constructed interpolator and its total degree is given. 
A method to construct single variable interpolators is discussed. Examples are provided to 
illustrate the process. 

'
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1 Introduction
The polynomial interpolating problem is a classic math-
ematics problem which attracts many researchers. Al-
though much work has been done on single variable
polynomial interpolation, multivariate interpolation re-
ceived much less attention because of its difficulty
[1, 2]. Our initial approach is to construct polynomial
models inn variables to fit a finite set ofn dimensional
points over a field, which represents a discrete time
series. This is really a multivariate polynomial inter-
polation problem on the considered time series points.
A polynomial model of a discrete time series withn
points is ann-variable polynomial which interpolates
the points in an iterative way. We apply the Gr¨obner
Bases Techniques [3] and the well-known Buchberger-
Möller Algorithm [4] to construct multivariate polyno-
mial interpolators for the time series points which can
also serve as a model for the time series. It provides an
algebraic approach to solving certain multivariate poly-
nomial interpolation problems. A key element of our
construction is to find correlative separators which are
different under a different monomial order.

Many real world problems can be formulated as cer-
tain time series problems. Motivated by the increas-
ing trend in genetic studies and fast growing computer
technologies, the study of discrete time series is gain-
ing more and more attention [5, 6, 7, 8]. Such a time
series can be obtained from data achieved from scien-
tific experiments or social activity surveys. We focus on
n-dimensional points over the fieldIR of real numbers.
Throughout, we assume the time series in consideration
have no identical rows and in most cases, the number of
points is less than or equal ton. The setting and noat-
ions are as follows:

Consider the fieldIR and the polynomial ringR =
IR[x1, x2, · · · , xn] (n > 0). Supposem is a posi-
tive integer. Consider a discrete time seriesP1, P2,
· · · , Pm, Pm+1, where eachPi = (pi1, pi2, · · · , pin) ∈
IRn.

Definition 1.1 A model for the time seriesT =
{P1, P2, · · · , Pm, Pm+1} over IR is a functionf from
IRn to IRn such thatf (Pi) = Pi+1 for each i =
1, 2, . . . , m. If all the components off are polynomi-
als (in n variables), we sayf is a polynomial model.

In detail, if f = (f1, f2, . . . , fn) is a model forT ,
then for eachj from 1 to n, fj(Pi) = p(i+1)j for
all i = 1, 2, . . . , m. Each componentfj of f serves
as ann-variable polynomial interpolator on the points
P1, P2, · · · , Pm with certain special “targets”. Finding
such a model for the time series is equivalent to solving
the following interpolation problem repeatedly for the
specified “b”-values stated in the problem below:

Problem 1.2 The Interpolation Problem

Givenb = [b1, b2, · · · , bm] ∈ IRm, find a polynomial
f ∈ R such thatf(Pi) = bi for all i = 1, 2, . . ., m.
We call such anf an interpolator onP1, P2, · · · , Pm

targeting atb. The vectorb is also called the target of
f .

Definition 1.3 Let b = [b1, b2, · · · , bm] be a vec-
tor of real numbers. The set of interpolators on
P1, P2, · · · , Pm targeting atb is denoted by

(P1, · · · , Pm : b) = {f ∈ R
∣∣ f(Pi) = bi for all i}.

Interpolators targeting at the zero vector plays an
important role here. It is known that the set
(P1, P2, · · · , Pm : 0) forms a finitely generated ideal
of the ringR. Furthermore,

(P1, P2, · · · , Pm : b) = f0 + (P1, P2, · · · , Pm : 0),

wheref0 is any fixed polynomial in(P1, · · · , Pm : b).
Thus a particular interpolator and a generating set for
the idealI = (P1, P2, · · · , Pm : 0) build all the inter-
polators. By Gröbner bases thechniques, for each order-
ing of monomials ofR, there exists a unique generating
setg1, g2, . . . , gr of I, called “ the reduced Gröbner ba-
sis forI” [3]. Every interpolator has the form of

f0 + h1g1 + · · ·+ hrgr.

The basis shown above can provide valuable informa-
tion about the interpolators. We give a brief background
here.

Definition 1.4 A term order (or monomial order)>σ

on the set of monomials ofR, {xα |α ∈ ZZn
≥0 }, is a

total ordering and well ordering such thatxα >σ xβ

implies xα+γ >σ xβ+γ for all α, β, γ ∈ ZZn
≥0.

For example, a term orderσ, called Graded Reverse Lex
Order, satisfies the following conditions: for any two
monomialsxα andxβ , whereα, β ∈ ZZ≥0, xα >σ xβ

if |α| > |β| or if |α| = |β| but the right most nonzero
entry ofα−β is negative. Under this order,1 <σ y <σ

x <σ y2 <σ xy <σ x2 <σ y3 <σ xy2 <σ x2y <σ

x3 <σ y4 <σ · · · in IR[x, y].

Basically, a term order makes a line-up for all the mono-
mials of R so that one can perform necessary long di-
vision of multivariable polynomials similarly to that of
single varable polynomials. Several software packages,
such asSingular [9], Macaulay[10, 11], andCoCoA
[12], are available to perform the computation needed
in finding the desired bases. We focus on constructing
interplators by finding separators with a pre-selected
term order. A Maple code was developed and applied
in the computation based on the Buchberger-Möller Al-
gorithm.

The main results, which characterize some properties
and structures of the seperators and interpolaors, are
given in section 3.

2 The Roles of Seperators and their Sup-
ports

Finding a particular interpolator is not a problem. As
in the single variable case, we can always find one by
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computing a product of appropriate linear polynomials.
But such an interpolator has a total degree much higher
thann, the number of variables. In the single variable
case, a traditional method to construct interpolators is
through building the separators. Then an interpolator
is obtained by taking an appropriate linear combination
of the separators. In this section, we show a similar ap-
proach. Our focus is on the role of separators in build-
ing interpolators.

Definition 2.1 Let U be a subset ofIRn and P be a
point in IRn. A separator ofP fromU , denoted bysP , is
a polynomial inR such thatsP (P ) = 1 but sP (u) = 0
for all u ∈ U \ {P}.

Definition 2.2 For a given polynomialf(x), the sup-
port of f is defined to be the set of all monomials in-
volved inf which have nonzero coefficients. It is de-
noted by supp(f). For example, supp(3x2

1x
3
2 − 5x4

3 +
2) = {x2

1x
3
2, x4

3, 1}.

Now consider the interpolating problem 1.2. Assume
for eachi, we have a separatorsPi of Pi from the rest
of the points. Then an interpolatorf0 is obtained as a
linear combination of the seperators:

f0 = b1sP1+b2sP2+· · ·+bmsPm ∈ (P1, . . . , Pm : b).

Thus the interpolator obtained from a set of separators
as above is determined by the form of the separators.
For instance, if all the separators are linear, then the in-
terpolator produced is linear. If all the spereators are
single-variable polynomials involving the same vari-
able, then the interpolator produced is also the same
type which must have total degree no more thanm− 1.
The advantage of applying Gr¨obner bases techniques is
that we can pre-select a term order to produce a set of
separators in our favor. For example, if we want to get
an interpolator with the least total degree, a degree pre-
ferred term order, such as the graded reverse lex order,
should be chosen.

Another approach is based on the fact that
R/I(P1, . . . , Pm) ∼= IRm as a vector space over
IR [3]. The supports of certain sets of separators for
P1, . . . , Pm can be used to obtain a vector space basis
(over IR for R/I(P1, . . . , Pm)). Such a basis can also
be used to construct an interpolator for Problem 1.2.

3 Applying Buchberger-Möller Algo-
rithm

An effective algorithm,Buchberger-Möller Algorithm
[4], can be applied to construct interpolators stated in
Problem 1.2. We give a brief description of the pro-
cess. Recall that our propurse is to interpolate the
points P1, P2, . . . , Pm at the valuesb1, . . . , bm. Let
T = {P1, P2, . . . , Pm}.

Algorithm 3.1 Buchberger-Möller Algorithm

Here is the main precedure of the algorothm.

• Select a term orderσ on the monomials of
IR[x1, x2, . . . , xn].

• Input the points inT .

• The output will be:

(1) The unique reduced Gröbner BasisG =
{g1, . . . , gs} for I(T );

(2) A list of separatorsS = {s1, . . . , sm}, where each
si is a separtor ofPi from T , for i = 1, . . . , m;

(3) A setV of monomials ofR which forms a basis
for them-dimensionalIR-vector spaceR/I(T ).

The computation complexity is Quadratic in the num-
ber (n) of variables and cubic in the number (m) of the
points [4]. We developed aMaplecode to perform the
computation.

Simultaneously, the algorithm produces the unique
Gröbner basis forI(T ), a set of separators ofPi from
T (i = 1, 2, . . ., m), and a vector space basisV of
R/I(T ) made ofm monomials. All of these products
can help constructing interpolators ofT and identify-
ing the types of the interpolators. Since these sepa-
rators are built along with the reduced Gr¨obner Basis,
they have been through the “reduction process”. In par-
ticular, when a degree-preferred term order is selected,
the total degree of the produced interpolator is usually
much lower than the ones constructed by other meth-
ods. At each step, the algorithm always searches and
picks functions with leading terms as “small” (under
the selected term order) as possible. Thus one can con-
trol the types of resulting interpolating polynomials by
selecting appropriate term orders. In addition, the setV
is produced form the non-leading terms of the unique
Gröbner basis ofI(T ).

Briefly, the process of the algorithm starts with the con-
stant monomial 1 and updates it to a new functionh as a
potential function that vanishes all the points inT (i.e.,
h(Pi) = 0 for all Pi ∈ T ). At each compuation cycle,
if h vanishes all the points inT , thenh goes through a
reduction procedure and then is added into the setG. If
not, the algorithm will search the first pointPi such that
h(Pi) 6= 0. An appropriate scale multiple of the leading
coefficient (under the selected term order) is subtracted
from h so that one more point inT vanishes under the
modifiedh. This h is added to the setS and the pre-
vious elements inS will be updated based on this new
member so that the separating property is reserved. The
searching and reduction process makes it possible that
all the members produced forG andS have the lowest
possible monomial terms under the pre-selected term
order. By the design of the algorithm, the setV is sim-
ply the set of monomials appearing in the non-leading
terms of all members inG (including their factors). We
call this thefactorial property. The support of each sep-
arator is also made of elements fromV .

We define a relative degree ofxi with respect toS as
follows:

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM



Definition 3.2 Use the above notation, define

degS(xi) = max
H

{ r ∈ ZZ>0 | xr
i ∈ H},

whereH is the set of all monomial factors of the ele-
ments in∪m

i=1Supp(sj).

Theorem 3.3 Consider the Problem 1.2. Assume the
Buchberger-Möller Algorithm is applied to obtain the
setsG, S, andV as above andf = b1s1 + · · ·+ bmsm

be the interpolator obtained. Then

1. V = ∪m
i=1{all monomial factors of elements in

supp(si)} and it is uniquely determined by the pre-
selected term order;

2. The output setS is unique among all the sets of
separators with supports included inV ;

3.
∑

i: xi∈V degS(xi) ≤ m − 1;

4. The output interpolatorf involves at mostm − 1
variables and it is the “smallest” possible (in the
meaning of the leading monomial is the smallest)
interpolator under the given term order;

5. The total degree of eachsi and thus that off is at
mostm − 1.

Proof.

(1). It is shown in [4] thatV is uniquely determined by
the term order. SinceR/I(T ) ∼= IRm it is obvious that
if a monomial belongs toV then all the factor mono-
mials are also inV . By the procedure, each separator
created has terms chosen from the non-leading mono-
mial terms and their factors of the current members of
G. Thus (1) is true.

For (2), assumeS = {s1, . . . , sm} and S′ =
{s′1, . . . , s′m} are two sets of separators with nonzero
terms inV . Then(si − s′i)(Pi) = 0 for all i and so
si − s′i ∈ I(T ). But si − s′i is a linear combination
over IR of monomials in the vector space basisV of
R/I(T ) as a vector space overIR. So all (real number)
coefficients in the combination have to be zero. Thus
si − s′i = 0 =⇒ si = s′i.

(3) If xi ∈ V and degS(xi) = r > 0, then
1, xi, x

2
i , . . . , x

r
i ∈ V , giving at leastr + 1 elements

in V . But V consists ofm linearly independent mono-
mials overIR and has the factorial property, so1 +∑

i: xi∈V degS(xi) ≤ m. Thus (3) is true.

(4) is from the design of the algorithm. In every step, it
is searching the “smallest” candidate for the separators
that buldt the interpolator.

(5) is an immediate consequence of (3).

An immediate corollary follows.

Corollary 3.4 Let f be the output interpolator as
above. Then

1. If f is linear, thenf has the form:f = ai1xi1 +
ai2xi2 + · · · + aim−1xim−1 + aim , whereaij are
nonzero real numbers for eachj;

2. If f is a single variable polynomial, thendeg(f) =
m − 1.

Proof.

For (1), if f is linear thenV ⊆ {1, x1, . . . , xn} and
{xi1, . . . , xim−1} ⊆ V because supp(f) is included in
V . Also V must contain 1 by the factorial property.
Since the size ofV ism, thenV = {1, xi1, . . . , xim−1}.
Thusf has the indicated form.

For (2), let xr
i be the leading monomial off . Then

{1, xi, x
2
i . . . , xr

i} = V implies thatdim(V ) = r + 1.
Thusr = m − 1.

In [7] and [13], the existence and construction of linear
interpolators are discussed. From the above, we see that
linear interpolators invole the most number of variables.
In contrast, a single variable interpolator has higher de-
grees. Furthermore, certain single variable interpola-
tors can be constructed easily using the Vandermonde
matrix.

Proposition 3.5 If the jth components of all interpo-
lating points are distinct, then a single variabe interpo-
lator in the variablexj exists.

Proof. Consider the setT = {P1, . . . , Pm}, where
Pi = (pi1, pi2, . . . , pin), as before. Without loss of
generality, assumep11, p21, . . . , pm1 are all distinct.
Then the Vandermonde matix

M =




1 p11 p2
11 · · · pm−1

11

1 p21 p2
21 · · · pm−1

21

· · · · · · · · ·

1 pm1 p2
m1 · · · pm−1

m1




.

is invertible. So the matrix equationMyt = bt has
a unique solution, whereb = [b1, . . . , bm] is the tar-
get of the interpolation problem. The solution vector,
[a0, a1, . . . , am−1]t, gives the coefficients for the sin-
gle variable interpolator:

f(x1, . . . , xn) = am−1x
m−1
1 + · · ·+ a1x1 + a0.

It satisfiesf(Pi) = bi for i = 1, 2, . . ., m.

4 Examples and Applications
Example 4.1

Let T = {P1, P2, P2, P4}, where

P1 = (0, 0, 0, 0, 0, 0)
P2 = (1, 10, 3,−5,−2,−1)
P3 = (10, 10,−6,−14,−2,−10)
P4 = (−22,−22, 15, 38, 17, 13).
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Let τ be the Lex order andσ be the Degree reverse lex
order [3]. For the lex order<τ , xα <τ xβ if and anly
if there exists ani: α1 = β1, . . . , αi−1 = βi−1, αi <τ

βi. The orderτ favors certain variables and it is given
by:

1 <τ x6 <τ x2
6 <τ x3

6 <τ · · ·
<τ x5 <τ x2

5 <τ · · · <τ x1 <τ x2
1 <τ · · ·

<τ x6x5 <τ x2
6x5 <τ · · · .

The graded reversed lex order<σ favors polynomials
of lower total degrees:

1 <σ x6 <σ x5 <σ · · · <σ x1

<σ x2
6 <σ x6x5 <σ · · · <σ x6x1

<σ x2
5 <σ x5x4 <σ · · · <σ x5x1 <σ · · · .

Applying the Buchberger-Möller Algorithm we obtain
two sets of separators. Underτ , the separators are

s1 = − 1
130

x3
6 + 1

65
x2

6 + 133
130

x6 + 1

s2 = 1
126

x3
6 − 1

42
x2

6 − 65
63

x6

s3 = − 1
2070

x3
6 + 2

345
x2

6 + 13
2070

x6

s4 = 1
4086

x3
6 + 11

486
x2

6 + 5
2093

x6.

Underσ, the separators are

r1 = 19
18x4 − 29

18x5 − 19
18x6 + 1

r2 = −8
9x4 + 11

9 x5 + x6

r3 = − 1
18x4 + 1

6x5 − 1
18x6

r4 = −1
9x4 + 1

9x5 + 1
9x6.

Correspondingly, we can obtain two very different in-
terpolators ofT targeting atb1, b2, b3, b4:

f = b1s1 + b2s2 + b3s3 + b4s4 and

g = b1r1 + b2r2 + b3r3 + b4r4.

It shows thatf is a single variable interpolator involving
only x6 but the degree 3 is higher than the total degree 1
of g. While g has the lowest possible total degree, i.e.,
g is linear, but it involves more variables (x4, x5, x6).
The supports off andg are quite different because of
the selection of different term orders. The point is, one
should choose an appropriate term order based on the
type of interpolator she/he favors. For the above exam-
ple, the orderτ gives interpolators with less number of
variables but higher degrees. On the other hand, the or-
derσ produces interpolators with low total degrees but
more variables.

Example 4.2 Leth(x, y) be any real function overIR2.
We choose six points inIR2: P1 = (3, 1), P2 =

(2, 2), P3 = (1, 3), P4 = (1/2, 2), P5 = (2/3, 4),
P6 = (3/2, 1/2). Assume the values ofh on theP ′

is
are 10, 6, 4, 9/4, 40/9,11/4 respectively. our goal is
to construct an interpolatorf(x, y) such thatf(Pi) =
h(Pi) for all i. The problem is to find an interpola-
tor on the T = {P1, . . . , P6} with the targetb =
(10, 6, 4, 9/4, 40/9,11/4).

By computing the separators using the graded reverse
lex order, we obtain the following interpolator:

f(x, y) =
59
9

x2 +
100
27

y2 +
250
27

xy − 875
27

x − 24y +
1100
27

.

The next example shows an application of the previ-
ously mentioned interpolating methods in modeling a
time series from a real data.

Example 4.3 Consider a data table representing the
energy consumption of a region in China from 1980 to
1985 (Tab. 1):

Tab. 1 Regional Energy Consumption in China

Year Total C P NG WE
1980 60257 72.10 20.85 3.06 3.99
1981 24947 72.75 20.00 2.74 4.51
1982 62646 74.02 18.58 2.48 4.92
1983 66040 74.27 18.07 2.40 5.26
1984 70904 75.31 17.45 2.33 4.91
1995 77020 75.92 17.02 2.23 4.83

Here each row represents the data from one year. The
first component is the total amount in ten thousand
tons of consumption of all four categories of energy.
The second, third, fourth, and fifth components are the
percentage of the consumption of coal (C), petroleum
(P), natural gas (NG), or water/electricity (WE), respec-
tively. We view the set of the first five row vectors,
T = {P1, . . . , P5}, as a discrete time series. For a fixed
term order, we apply the Buchberger-Möller Algorithm
to interpolate the point setT ′ = T \ {P5} at the five
specially selected values so that we can get five interpo-
lators to form a polynomial modelf for the time series
T ′. That is,f (Pi) = Pi+1 for i = 1, 2, 3, 4. We use the
last data point,P6, to measure how closeP6 is to the
predictionf (P5) by the modelf .

Using the same two term ordersτ andσ as before, we
obtain two polynomial modelsf = (f1, f2, f3, f4, f5)
underτ andg = (g1, g2, g3, g4, g) underσ, shown be-
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low:

f1 = −16805600
2091 x2

5 − 141167408
2091 x5 + 86550846

425

f2 = 2276
697 x2

5 − 525942
17425 x5 + 6108403

42500

f3 = −1616
2091x

2
5 + 315947

52275 x5 + 299259
42500

f4 = − 10
697x2

5 − 417
6970x5 + 12927

4250

f5 = −5182
2091x

2
5 − 2530013

104550 x5 − 571733
10625

and

g1 = 2100700
139 x4 + 2482800

139 x5 − 8245552
139

g2 = 1707
278 x4 + 626

139x5 + 512693
13900

g3 = −202
139

x4 − 301
139

x5 + 449361
13900

g4 = − 15
556

x4 − 59
278

x5 + 12201
3475

g5 = −2591
556

x4 − 591
278

x5 − 189571
6950

.

One can check that

f (Pi) = g(Pi) = Pi+1 for i = 1, 2, 3, 4.

To compare the predictions of these two models
with the real data pointP6 = (77020, 75.92, 17.02,
2.23, 4.83), we evaluate each of the models atP5 and
compute the differences between them andP6:

f (P5) = (65925.07, 74.25, 18.09, 2.40, 5.26)

g(P5) = (63594.44, 73.30,18.31,2.41, 5.98) with

d1 = P6 − f (P5)
= (11094.93, 1.67,−1.07,−0.17,−0.43);

d2 = P6 − g(P5)
= (11094.93, 1.67,−1.07,−0.17,−0.43).

If we use the regular vector norm (square root of the
sum of squares of all components) to measure the dif-
ferences, we have‖d1‖ ≥ ‖d2‖. So the orderσ gives
a better prediction ofP6. We also observe that most
errors are from the first component. The error for the
other components are relatively much smaller. More
work needs to be done to understand the reason for this
result.

5 Conclusions
So far we have focused on only two term orders. It
shows that the selection of term orders may have sig-
nificant impact on the output interpolator. There are
infinitely many different term orders which we can play
with [3]. We will explore other term orders and develop
selection criteria for different types of data and desired
interpolators. We will develop a more efficient algorith-
mic code for lager scale computation. We will target
real world data and use our interpolating techniques to

build needed interpolators or desired polynomial mod-
els of the time series involved.

Another direction to go would be to study what set of
monomials of sizem can form a vector space basis for
R/I(T ). Such a set has the factorial property and can
help construct an interpolator more rapidly.
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