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Abstract

This paper document several experiments and improvements made on the basis of an ODE
solver using Piecewise Linear Approximations and the impact when Fuzzy Clustering is used
to decide the allocation of the simplex divisions. A comparison is analyzed in order to compare
the potential applicability of the Fuzzy clustering for a stable and unstable ODEs using different
number of simplices and number of points to produce the Piecewise Linear (PWL) approxima-
tion. The case with stable ODEs is considered first focusing in the reduction of a predefined
global error when decreasing vector fields are used. The less smooth nature of the Fuzzy ap-
proximations when compared to the classic Equidistant basis is researched using two different
number of points and analyzing the changes into the PWL slopes from simplex to simplex. The
asymptotic behavior of the error bounds in the case of stable ODEs is also considered showing
the tightness of the bounds ast goes to infinity. This is of crucial collaborative importance
for existent techniques like validated interval methods, etc. Unstable ODEs can be also inte-
grated with the methodology in this paper but the analysis of the required predefined domain
and number of points for the PWL approximate vector field is not so straight as in the case of
stable ones. Finally some conclusions and future directions for further improvements in such a
methodologies applying PWL approximations for ODEs are depicted.

Keywords: Nonlinear Vector Fields; ODE system, ODE solver, Interval Methods, Vali-
dated Methods.
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1 Introduction

Solutions to Ordinary Differential Equations (ODEs)
has been always a topic of interest since they are the
heart of many modelling processes. In the particular
case of Initial Value problems, let say when an ODE
system and an initial condition are given and a solution
must be provided, the available tools nowadays are all
based on Taylor series (see [1] for a complete survey).

One of the problems arising in these methodologies
based on Taylor series is the calculation of the Taylor’s
coefficients, either for first approximations like the clas-
sical Euler’s method or whit bigger degrees like Runge-
Kutta ([1], pp. 297 and references therein). On the other
hand is well known that for these classical numerical
methods using Taylor series is not possible to write an
explicit expression for the error of truncation neither an
explicit bound.

This is one of the reasons why Interval Methods was
introduced by Moore in 1966 [2] and improved by
Krückeberg [3], Eijgenraam [4], Lohner [5], Berz [6],
Nedialkov [7] and many others (see the survey by
Corliss in [8]) where instead of using an approximate
solution to the true one and then try to guess a bound
for the error committed, intervals are calculated for ap-
proximate solution and error. Between these techniques
we can find one using piecewise approximations mini-
mizing the size of the interval for the approximate so-
lutions whit respect to the initial conditions, in other
words we are looking for an appropriate initial condi-
tions for each instant of time where the solutions have
to be approximated (this idea regarding the initial con-
dition selection is known asshadowing, see the survey
in [9]).

On the other hand all of the methodologies surveyed
up to now are explicit providing an approximation to
the true solution in discrete instants of time, besides,
there exists implicit methods where algebraic formulas
has to be resolved on line to obtain approximate tra-
jectories (see [10], [11]). Is worth to notice that all of
these methodologies only ensures bounds of the solu-
tions for a certain period of time and just a few articles
addressed algorithms allowing valid bounds for large
intervals (see for instance [12], [13], [14] and [15]).

As a last detail in these existent tools for numerically
approximation of ODEs, we notice that in general the
improvements regarding error bounding requires the
consideration of higher order Taylor coefficients (see
[10] and [16]). This is computationally expensive and
for large systems could be difficult to solve for on-line
applications of real-time tools. In this way, if instead
an approximation of a vector field with any desired de-
gree of accuracy is considered using a Piecewise Linear
Vector fields (from now on called as PWL), then is pos-
sible to easily implement in a computer or even faster
in a chip (see [17]).

Only a few results were addressed in this direction (see
[18], [19]) showing some results using an equidistant
simplex division for the considered State-Space Do-
main for smooth vector fields. Even when the cases in

both papers ([18]) and ([19]) are using different method
for generating the PWL approximation the idea of an
equidistant simplicial division it seems not be so ap-
pealing.

In this paper the concept of Fuzzy Simplicial Division
is introduced providing a unequal spaced simplices but
usingFuzzy Clusteringtheory to stress the zones of the
domain where the vector field is more nonlinear. We ex-
pect with this idea to improve the errors in the approx-
imation in such a way that the proposed ODE solver
can be tested with some benchmark ODE system while
with the approximation in the works up to now is not
possible due to the increasing errors with time.

Several simulations are presented in order to compare
the present work with the one in [19] using two classes
of ODEs: one stable (whit one half-stable equilibrium
point) and one Unstable whit no equilibrium points.

This paper is organized as follows: Section 2 presents
the formal statement of the problem addressed here,
Section 3 is the heart of the paper introducing the
idea of Fuzzy simplicial division applied to ODEs and
making a deep comparison between classic equidistant
PWL technique and this new idea of clustering. Sec-
tion 4 is stressing the impact on inappropriate domain
to consider for the evolution of the ODE trajectories and
the effect of Curvature Changes into the errors, finally
Section 5 presents some conclusions and future direc-
tions for research.

2 Problem Statement
The problem considered in this paper is known as Initial
Value Problem (IVP) for ODEs and can be written as
follows:

{
Ẋ = f(X)
X(0) = X0;

(1)

wheref(X) is a smooth vector field in<n andX is the
state vector with initial condition given byX(0). Then
the request is to provide a vector function oft, let’ say
X(t,X0).

Since is not possible in general for any nonlinear vec-
tor field f(X) to obtain a closed-form expression for
X(t,X0), only approximate solution are to be expected
in practice. In this way the proposed methodology in
this report make use of PWL approximations to approx-
imate the nonlinear vector fieldf(X) with one linear by
simplices.

As reported in [18] and later in [19] this kind of tech-
niques for ODEs only provide enough accuracy for suf-
ficient smooth vector fields while many benchmarks for
ODEs are not of this class (consider for example the
Van der Pol system).

It seems that this limitations are due to the equidistant
simplicial division used to produce the PWL approxi-
mation because this ”a priori” constant grid of the con-
sider domain in state space is not capturing the main
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nonlinearities of the vector fieldf(X). In this regard,
is an appealing idea to use Fuzzy Clustering to decide
where the divisions of the domain should be placed.

On the other hand in the case of [19] a PWL basis in the
spirit of [20] was used taking advantage of the contin-
uous characteristic of this basis and its computational
efficiency. However, this showed to be not so effective
when applied for nonlinear vector fields with different
velocities for each state space variable (that means the
directions of the local linear approximation are very dif-
ferent).

A possible explanation for this failing can be provided
noticing that even when a reduction of the grid size
should relies on more accurate results, this reduction
is moving the PWL basis components for the whole do-
main improving the zone where we were experiencing
problems but may be worsening other zones where the
approximation was good enough before.

This lack of flexibility can be relaxed in a very natural
way which concentrates a good grid size for those zones
whit more nonlinearities and leaving a less accurate ap-
proximation for other more linear. This technique is the
well knownFuzzy Clustering, in this way the algorithm
is then defined to decide using this fuzzy technique the
allocation of the simplex divisions and after based on
this division to produce a PWL vector field.

Once the setup of the problem addressed in this pa-
per was presented, next section is showing some re-
sults using fuzzy clustering and a brief overview of this
method.

3 Improving the Simplex Domain Divi-
sion using Fuzzy Clustering

The theory of Clustering was built in the heart of iden-
tification data, in fact was developed to separate a set
of data point into ”clusters” of classes where point be-
longs differently, this subdivides de complete set of data
into subsets classified according to some rules of iden-
tification. (see [21] and [22] for a nice tutorial about
clustering in general and Fig. 1 for a visual scheme).

Fig. 1 General Idea of Clustering

On the other hand Fuzzy clustering is a particular case
of clustering where the separation into classes is made
according to a least squares criterion and in particular
Gustafson-Kessel algorithm is forming the clusters us-
ing ellipsoids (se Fig. 2).

Since now we are in a fuzzy context one of the out-
comes of the Gustafson-Kessel algorithm are the mem-
bership functions for identification of the different clus-

Fig. 2 Gustafson-Kessel clustering.

ters, in this way is possible to apply this theory of clus-
tering for a set of points coming from our nonlinear vec-
tor field in Eq. (1) in order to identify a possible simplex
division using some predefined amount of clusters.

In what follows we are going to settle experiments us-
ing a scalar ODE taken from [23] and [1], which is of
the form:

ẋ = f(x) = −x(t)2 (2)

A posterior analysis will be focused on non-increasing
ODEs possesing no equilibrium points in order to con-
clude about the error and error bounds in unstable sys-
tems. The considered ODE for this unstable case is:

ẋ = f(x) =
1

x(t)2 + 1
(3)

3.1 A comparison whit the classic equidistant sim-
plicial division

Given the ODE system whose solution has to be ap-
proximated, the PWL approximation technique intro-
duced in [18] and [19] need a simplicial division of the
state-space with some specified amount of simplices
and providing also the limits for the working domain
(the case of [19] made use of the basis developed in
[20]).

In this way let’s start by considering 2 simplices and a
total amount of 500 points to produce the approxima-
tion. It turns out that the traditional PWL basis is com-
pared whit this new clustering idea where a PWL basis
is used in the Fuzzy case but shifting the elements of the
basis (see for instance [24] to visualize how this shifting
is carried out). In Fig. 3 and 4 we see the trajectories
and the PWL approximation for both: Equidistant and
Fuzzy basis, then is clear that for such a few amount
of simplices the classic equidistant method is working
better than the new version using Fuzzy clustering (in
the sense of absolute error and error bounds), since the
number of simplices (clusters in the context of Fuzzy
clustering) is too scanty then the separation in clusters
is also too poor and we will expect that for some rea-
sonable bigger amount of simplices the situation turns
the other way around (as we will see for 8 simplices).

We present also the membership functions arising in the
G-K algorithm applied to this vector fieldf(x) = −x2

in Fig. 5, notice that the simplex changing is moved
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Fig. 3 Equidistant simplicial Division using 2 simplices
whit 500 points.

Fig. 4 Fuzzy Clustering simplicial Division using 2 sim-
plices whit 500 points.

from 2.5 in the case of equidistant division to2.6 in
the Fuzzy case. It turns out that in order to decide au-
tomatically where the change of the simplices have to
be allocated a curve fitting is carried out of the mem-
bership functions resulting in the G-K algorithm using
Gaussian curves. In this sense the simplex division is
decided using the crossing point of the Gaussian fitting
curves.

If we perform several experiments for different amount
of simplices keeping the number of points (500) to pro-
duce the approximation of the vector field, then we
get the results summarized in Fig. 6. In this fig-
ure is presented the values of the Steady-State errors
since this ODE posses a half-stable equilibrium point at
x = 0 (see [25] for a formal definition of half equilib-
rium points). We clearly see that there exists a lower
limit (in the number of simplices) where the classic
PWL exhibits less steady-state error, after this value (7
simplices) the Fuzzy clustering systematically exhibits
lower values than the classic equidistant PWL basis.

The important partial conclusion up to now is that the
Fuzzy idea improves the steady-state errors when a suf-
ficiently big number of simplices is used, this is the case
from a practical point of view because even when we
are requiring a bigger number of simplices when com-
pared whit the classic equidistant PWL case, then the

Fig. 5 Membership Functions using 2 simplices and 500
points.

steady-state error is reducing more and more according
to the increase of the number of simplices used.

In other words for low number of simplices the classic
equidistant simplex division is working better (from a
steady-state point of view) but then to the time we want
a reduction of the errors an increasing of the number of
simplices is required turning the Fuzzy clustering more
appropriate. On the other hand taking into account that
the G-K algorithm is working on the basis of points, we
know that the bigger number of points is used, the better
cluster separation is obtained. In this way the question
is: Does the clustering technique produce better steady-
state errors using bigger number of points for the vector
field approximation?.

Fig. 6 Steady-State errors using 500 points for several
number of simplices.

In order to answer this question and extract more con-
clusions, we run more experiments but this time using
only Fuzzy clustering for 500, 1000, 2000 and 5000
points to produce the vector field approximation and
then the separation into clusters keeping fixed the num-
ber of clusters (simplices) into 6. The results can be
summarized in Tab. 1.

whereλ is the maximum error committed in the PWL
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Tab. 1 Different Number of Points using 6 simplices and
Fuzzy clustering.

Number Points λ Steady-State Errors
500 0.1568 0.0897
1000 0.1568 0.0904
2000 0.1549 0.0909
5000 0.1548 0.092

approximation of the vector field, i.e:

λ = maxx∈D|(f(x)− fPWL(x))| (4)

whereD is the whole domain for the approximation
of the vector field. In this way in the view of Tab. 1,
we see that while the number of points to produce the
approximation is augmented (yielding a more accurate
approximation in the vector field) the parameterλ is
decreasing but the steady-state error increases (2 and
6 percent respectively), this is telling that in the Fuzzy
case the relation between number of points and accu-
racy in steady-state present an inverse behavior when
compared whit the case of fixed number of points and
increasing the number of simplices.

The reason for this ”inverse” behavior lies into the clus-
tering technique which in fact produces a better ap-
proximation (in the sense ofλ quantity) but also a less
smooth approximate vector field, that is, the slopes
from one simplex to another suffer a bigger change
when less amount of points is used. To see this effect
see Fig. 7 where the number of simplices was fixed in
6 but two approximations are shown for 500 and 1000
Points in the first and second simplices using Fuzzy
clustering.
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Fig. 7 Two PWL approximations using Fuzzy clustering
for 500 and 1000 points.

It worth to mention that this behavior is not observed
if the same set of experiment as in Table 1 using the
equidistant PWL basis, this is clear because the borders
(delimiters) for each simplex are fix anytime for any
number of points to produce the vector field approxima-
tion. Also notice that even when the Fuzzy technique is
improving a lot the results for a big enough number of
simplices the error bounds are more tighter in the clas-
sic equidistant case, this is a trade-off we should made

to the time we decide which of these methodologies is
suitable for a particular application (see Figs. 8 and 9)
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Fig. 8 Fuzzy clustering and 500 points.
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Fig. 9 Equidistant division and 500 points.

Next subsection is providing a further analysis using the
ODE introduced in Eq. (3) to contrast results whit the
present case (see the ODE in Eq. (2)) and showing that
the Fuzzy idea also works and improves results for un-
stable systems.

3.2 Analysis for Unstable ODEs

The ODE in Eq. (2) posses a half-stable equilibrium
point in x = 0, however the accurate results obtained
in previous section are due to the fact that the system
is non-increasing in the considered domain (that isx ∈
[0, 5]). Now the point is to make more clear this idea
by providing experiments whit a similar system (in the
sense that is non-increasing inx ∈ [0,∞]) but whit the
particularity of possessing no equilibrium points.

In this way the considered ODE will be in this case the
one in Eq. (3) in a domainx ∈ [0, 5], the focus will be
in experimenting for the same number of simplices as
in previous section (let’s say 4 to 10) and the same num-
ber of points for the approximation (500 to 5000). One
of the most desirable properties using PWL approxi-
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mations is a decreasing error whit an increment in the
number of simplices.

Let’s run a simulation using 500 points to produce
the PWL approximation whit 2 simplices and a classic
equidistant simplicial division (this time the initial con-
dition X(0) will be 0.1, since the ODE is unstable and
increasing values ast goes to infinity). The results are
shown in Fig. 10, clearly the accuracy is not as good as
it was for 2 simplices in the case of the ODE in Eq.(2),
however the error is decreasing after 40 seconds and
we expect that the error (and error bounds) will suffer a
sudden decrease as the number of simplices increases.

In order to conclude about the Fuzzy method, we run
a simulation whit the same setup for the Fuzzy clus-
tering method. The results shown in Fig. 11 tells that
even when the peak of the absolute error is bigger (1 for
Fuzzy and 0.8 for the classic case), the error is not all
the time bigger (see Fig. 12). Moreover the interval of
time t ∈ [45secs, 50secs] shows that the error decays
much faster for the Fuzzy technique.
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Fig. 10 Equidistant simplicial Division using 2 sim-
plices whit 500 points.
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Fig. 11 Fuzzy simplicial Division using 2 simplices
whit 500 points.

In order to observe precise conclusions for the present
unstable case about the errors several experiments were
run for 4 to 10 simplices keeping the number of points
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Fig. 12 Comparison between classic and Fuzzy cluster-
ing using 2 simplices whit 500 points.

in the approximation in 500, the results are shown in
Figs. 13 and 14 for the classic case while Figs. 15 and
16 show the results for the Fuzzy one.

Fig. 13 Absolute Errors using 500 points and equidis-
tant simplicial division.

The conclusion when unstable ODEs have to be inte-
grated whit a PWL simplicial division technique (clas-
sical or Fuzzy) is that the error is not following the
strict reducing path as in the stable case (Compare Fig.
13 and 9 for instance). The point is to realize that
even when the on-propose ODE in Eq. (3) was cho-
sen in such a way that is monotonically decreasing in
x ∈ [0,∞], is unstable (in fact posses no any equilib-
rium points) amplifying any small error into the approx-
imation of the trajectories. However as shown in Figs.
13 to 16 we encounter several points where the error
coincide in zero yielding the clue that the error bound
for a non-increasing vector field is tight.

Incidentally notice that the bounds in Figs. 10 and 11
are blowing up due to the bad approximation observed
for only 2 simplices, while we are expecting a stable
error bound this is not the case for 2 simplices. Instead
in Fig. 17 the error and error bounds for Equidistant
and Fuzzy are shown where the expected stable bounds
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Fig. 14 Absolute Errors using 500 points and equidis-
tant simplicial division.
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Fig. 15 Absolute Errors using 500 points and Fuzzy
clustering.

can be depicted. This is important in the sense that also
for unstable ODEs (decreasing) the bounds also tend to
a constant value ast goes to infinity.

4 Curvature changes affect the approxi-
mate trajectories behavior

As it was introduced in [19] the considered domain for
the vector field approximation has to be predefined by
the user in advanced, in this way one can decide for the
former ODE considered in this paper in Eq. (2) in an
initial domainx ∈ [−5, 5].

Since the vector field approximation is improving whit
the increment of the number of simplices used (see
[20]) then is natural to expect that increasing the num-
ber of simplices the error into the approximate trajecto-
ries for the PWL ODE is also reduced in accordance.
Unfortunately as we will see in the next set of ex-
periments this is not happening either for the classical
equidistant PWL basis or the new Fuzzy clustering idea.

In order to get a flavor of this phenomenon let’s start
using 3 simplices and 500 points to produce the ap-
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Fig. 16 Absolute Errors using 500 points and Fuzzy
clustering.
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Fig. 17 Error and Error Bound using 9 simplices and
500 points.

proximation, the results are shown in Fig. 18 for the
equidistant case and Fig. 19 for the Fuzzy one. Notice
that even when the true nonlinear ODE is stable, the ap-
proximate solution we obtain whit the classic equidis-
tant PWL method is blowing up.

The point to investigate here is that the changes into the
curvature of the given nonlinear ODE is affecting the
PWL approximation even when this ODE is stable. In
this way and to verify that the error in trajectories is not
reduced by an increasing of the number of simplices
let’s run a simulation using 4 simplices. The results
are shown in Fig. 20 and 21, this time the situation
is reversed yielding a more accurate approximation for
the equidistant classical case. As we can see there is
no a uniform pattern to follow in deciding which is an
appropriate number of simplices to use when the vector
field of the ODE is notmonotonicallydecreasing (stable
or unstable).

The general conclusion here can be depicted saying that
the case of ODEs possessing changes in its curvature
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Fig. 18 Equidistant Domain division using 500 points.
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Fig. 19 Fuzzy Clustering Domain division using 500
points.

should be integrated whit PWL techniques in several
steps, let’s say isolating regions where no any change
of the curvature is observed.

5 Conclusions and Future Work

An alternative to the classic equidistant simplicial divi-
sion applied to the approximation of ODE trajectories
was presented. The set of experiments carried out using
two ODEs (Eq. (2) and Eq.(3)) showed the advantages
of using Fuzzy clustering in deciding the allocation of
the simplex division once the number of simplices and
the domain of the state-space is decided.

However as reported in subsection 3.2, the case of Un-
stable decreasing ODEs presents a different behavior,
the error is not monotonically tending to any fixed value
but oscillating and touching the zero several times.
When compared whit the classic PWL basis the con-
clusion is not so straight except for the faster decaying
to zero in some intervals of time.

Moreover even when the focus of this paper is a com-
parison between classic equidistant PWL and Fuzzy
clustering, is also possible in these experiments to make
clear that the case of vector fields (ODEs) whit a de-
creasing behavior in the state-space is suitable for be-
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Fig. 20 Equidistant Domain division using 500 points.
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points.

ing integrated whit PWL techniques since the error and
error bounds tends to constant values whent goes to in-
finity. On the other hand the error bounds (introduced
in [19]) showed to be tight for the cases analyzed in this
paper and it is expected to be the case for many ODEs
presenting a decreasing structure.

It turns out that the improvements observed whit the
Fuzzy idea introduced in this work is contributing and
not opposite to the algorithms in use in Interval methods
for ODEs, for instance can be applied to develop an ”a
priori” bound needed in ”Algorithm I” of the method
of Nedialkov (see [7]). Finally notice that this kind of
methods applying PWL techniques provides not only
an interval where the true solution belongs but also an
approximate trajectory to be considered as real if the
error bounds are tight.

Future directions could bring light in several regions of
the theory and practice of PWL basis applied to the in-
tegration of ODEs, some of them are:

1. Improvements of clustering for multivariate sys-
tems stressing the regions of nonlinearities keep-
ing a predefined degree of smoothness.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM



2. Improvements of the error bounds for systems pos-
sessing positive eigenvalues in its PWL approx-
imation allowing a constant asymptotic behavior
(as opposed to the present case where the bound
tend to infinity)

3. The possibility of including equilibrium points
into the approximation in a such a way that both:
PWL and real systems share the same set of equi-
librium points
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