
AUTOMATED MODELING IN A ROBOT-OBJECT
DOMAIN

Sunil Sah, Ivan Bratko, Dorian Šuc

University of Ljubljana, Faculty of computer and information science,
1000 Ljubljana, Tržaška 25, Slovenia

sunil.sah3@gmail.com (Sunil Sah)

Abstract

Obtaining a useful model in a given domain depends on the complexity of the model, the
learning algorithm, and on the input data. While a specific task limits the choice for the model
and the algorithm, the required quantity and distribution of the data could be less well defined,
and may in turn be dependent on yet to be determined model parameters. To explore the weak
points of an unreliable model, we introduce a data collecting agent, guided by the model. The
agent must be able to cope with little data and unreliable model, to collect new data required
to improve the model. This paper presents an algorithm, inspired by adaptive robot
controllers, that uses local models and strategy search based on measured progress to
efficiently collect data required to improve the model of the domain. The algorithm is tested
in a simple robot-object domain used in the European project XPERO, which is about
autonomous discovery through robot’s experiments in its environment.

Keywords: Modeling robot environment, Robot-object domain, Shifting setpoint
algorithm, Locally weighted learning, Action planning.

Presenting Author’s biography

Sunil Sah. Sunil Sah is a student at the Faculty of computer and
information science. He is interested in AI and machine learning, and has
been doing research in the Faculty’s AI Lab within the European project
XPERO.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

Automated modeling of a robot’s environment poses
various challenges related to generality and efficiency
of the learning methods, the use of prior and learned
domain knowledge and the control of the robot in a
way to use and improve the current model of the
domain. Efficient and robust control facilitating the
use and improvements of the current model, as
addressed in this paper, can be seen as a prerequisite
for autonomous learning and discovery through
robot’s interaction with the environment. In this
respect this work is a part of the Sixth Framework
European project XPERO[1] with the scientific goal
to investigate mechanisms of autonomous discovery
through experiments in a robot’s environment, as for
example in systems [2,3,4].

The fundamental goal of the XPERO project is to
identify a small set of basic principles that enable such
discovery without substantial amount of prior
knowledge. Initial experiments with machine learning
from experimental data collected by a mobile robot
presented in [5] implicate the need for a corresponding
model-guided data-collection algorithm. The
algorithm described in this paper will be used in
XPERO to control the robot towards the regions of the
state space where the reliability of the current model is
low, or where the machine learning methods induced
some interesting, but unexpected hypotheses. The
collected data would be repetitively used to improve
the control of the robot and to update the induced
model of the environment to support robot learning
and autonomous discoveries.

In the next section we define the problem,
terminology and the robot-environment experimental
domain. In section 3 we briefly describe an existing
method and developed enhancements to control the
robot in such a way to approach a desired region in the
observation space. Note that this is a difficult problem
since the relation between robot’s actions and their
effects is not known in advance, and has to be learned.
Section 4 describes some initial experiments in the
robot-object domain. At the end we discuss results,
relation to XPERO project and future work.

2 Problem definition

The task of automated modeling includes the
environment we wish to model and the agent to
perform the assignment. The quantities of the
environment the agent can directly observe will be
referred to as the agent's observation vector, or
observations. The interface by which it can influence
the environment will be called the action. The
problem is to obtain a model of the environment
which, given the agent’s current observations and goal
state, enables to determine an agent’s action that will
result in agent reaching the goal.

Even for domains with a simple environment and
simple agent, such as a moving robot, the direct
relationship between the action variables and
observation vector tends to be complex. Such relations
may be expressed by complex equations, that are
difficult to simplify without guessing suitable
intermediate variables. On the other hand, part of the
environment independent of the robot, which will be
referred to as the narrow environment, can be modeled
by simpler equations. Simpler models corresponding
to the narrow environment are usually easier to learn.
In the case when an explicit global model of the
environment is not required, the problem can therefore
be split into two parts. The first is the problem of
determining the data points in the narrow environment
required to make the model, while the second problem
is to choose the actions that will guide the robot to the
required points. This paper presents how a robot
controller can be employed for the latter task.

3 Methods and algorithms

As the function of the data-collecting algorithm is
limited to providing the means for higher process
exploration, the problem can be posed as the task to
reach a given position in the observation space and to
gather examples there. To this end, an algorithm must
already posses some notion of the effect actions have
on observations. The general idea is that this notion
does not need to be globally correct, and that the
effects of the actions are therefore easier to model than
the model corresponding to the higher process.

Given the goal position in the observation space where
examples are lacking, the algorithm could perform as
follows. First, in the vicinity of its current position,
examples of various actions and the resulting
observations would be gathered. When this data would
be deemed sufficient, a model would be created, and
this model would then be used to determine an action
that moves the robot closer to the goal position. This
process would be repeated until the goal position is
reached.

There are several properties that an appropriate
algorithm for the task should posses. It would have to
be able to start with no specific knowledge of the
domain, the modeling and moving process would have
to be automatic, it should perform with as few
examples as possible, and it would have to be able to
reach an arbitrary position in the observation space.
An attractive method for this problem is locally
weighted learning[6], and Shifting setpoint
algorithm[7] has many of the needed characteristics.

3.1 Basic algorithm

Shifting setpoint algorithm, or SSA, has been
developed as a general robotic controller with the
ability of self calibration. Its main characteristic is the
execution on two levels. The lower level works as a

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

dynamic regulator, enabling the robot to preserve its
position in the environment, while the higher level
guides the robot to the given goal. The switch between
the lower and the higher level is determined by the
reliability of the collected data. If a model constructed
from the collected data has a higher reliability score,
there is a greater probability that the action based on
the model will move the robot closer to the goal state.

The algorithm has been tested in a real application
using linear models and with an optimization criterion
that minimized both the state error and the size of the
action by implementing linear quadratic regulation.
With these mechanisms it has successfully learned the
task of juggling a stick on a two dimensional plane[7].

3.2 Modifications of the basic algorithm

Our task of continuously guiding the robot in
observation space has a few notable differences
compared to the task of learning to juggle[7]. In both
problems the autonomy of the learning process is
desired, with as little of human intervention as
possible. However, due to inherent instability of the
juggling dynamics, it is unlikely that the problem
could be solved without manually reseting the state of
the environment at each failed attempt. On the other
hand, with data collecting task, the robot itself could
be constructed in a way to increase stability, thus
reducing the need for environment resets.

Simplifying the problem of determining actions that
preserve the robot observation state, more focus can
be put into other areas, such as reliably detecting weak
dependencies, accounting for the possible
dependencies of action variables, and improving the
greedy nature of the goal approaching process.
Following these newly defined directions,
modifications to the basic algorithm include
introduction of exploratory behaviour in the lower
level of the SSA, using a higher order model in the
upper level, and coupling it with a progress based
search algorithm.

The following sections describe the choices for the
models and training methods, the procedures to
determine appropriate actions based on the models,
the methods that use these actions to collect relevant
data, and the ways to approach the goal state.

3.2.1 Local models

To model the relationship between actions and
observations two approaches can be used, and inverse
and forward one. An inverse model is supplied the
goal observations and computes the actions, while the
forward model computes observations from the
actions. To be able to independently define the
domain of valid actions, we use the forward model.

To reduce the number of required data points to create
a reliable model, simpler models are preferred. On the
other hand, in situations where there are pairs of

dependent action variables, at least a quadratic model
is required. Depending on the task we employ a linear
or quadratic model, while both are trained using linear
regression.

3.2.2 Action selection

Using forward models enables us to choose an action
and simulate the resulting change in observations.
This enables us to freely constrain the actions, for
example by a predefined action cost. The negative
effect is that the action is not calculated directly, and
requires an optimization algorithm.

If the action variables are limited by thresholds, the
model used is linear, and the error is measured by
absolute difference, we can use linear programming as
an optimization algorithm by introducing new
variables and constrains representing error intervals at
each observation variable. The optimization criterion
is then to minimize the size of these intervals.

Using a quadratic model or a different measure for
error makes the search for optimal action less
straightforward. A simple solution is to use a general
but slow and possibly imprecise grid search algorithm.

3.2.3 Data collection

Data collection is based on the paradigm of lazy
learning, where all the past experience is stored. To
this effect, following every action issued to the robot,
the example is added to the database. The example
contains starting observation, action, and the resulting
observation, and is indexed by starting observation.
Starting observation defines locality of our models,
and this organization enables fast retrieving of data for
a required model. The model is trained using the
actions and changes of observations.

3.2.3.1 Data quality

The usefulness of the induced model depends on its
reliability and on the portion of the observation space
it covers. The reliability is directly linked to the
number of gathered examples and their distribution.
Given a distribution of examples in the observation
space, a model with a larger neighbourhood will be
more reliable, yet also more averaged and as such
possibly too ambiguous to be useful. A model built on
a smaller neighbourhood will have fewer examples
and be less reliable, but this can be remedied by
accumulating more examples.

A simple way to gather examples is by using a random
action chosen uniformly from a predefined domain.
Since the size of an action generally defines the size of
the impact on the observations, if actions are large, the
examples will be dispersed in the observation space
and the resulting model overaveraged. If the actions
are small, the changes in observations might be too
limited to include the knowledge that is necessary to

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

efficiently move in the observation space, or may
prevent the discovery of weak dependencies.

In an attempt to accumulate all the necessary
information, we try to define the appropriate action
domain using the effect actions have in the
observation space.

3.2.3.2 Model based action domain

One way to achieve an even distribution in a small
observation neighbourhood is to use actions we expect
to create small random changes in the observations.
This procedure requires some prior knowledge of the
action–observation dependencies.

To obtain such knowledge, we construct a simple
model for this purpose. If such model is linear, only a
few examples will need to be collected until the
actions are appropriately chosen to produce examples
in the neighbourhood. Even when the simple model is
unreliable, the chosen actions most likely will not be
worse than random ones. When there is enough
examples, a reliable model of a higher order can be
constructed with the data.

The drawback of this approach is that not much is
known about the action domain the simple model
defines, which may be very different from the one
defined by for instance a cost an action has for the
robot. Also, it may still limit the discovery of
dependencies that require large actions.

Our proposed solution to this problem is the algorithm
that uses both random actions and actions that target a
specific observation state.

3.2.3.3 Alternating data collection algorithm

Alternating algorithm combines the uniform collection
of examples in action space and regulation to stay in
the narrow observation neighbourhood of interest.
Since the tasks are mutually exclusive, the algorithm
switches between them depending on the current
position in the observation space. If the robot is
currently in the neighbourhood of interest, it performs
a random action. If the robot is outside of it, it uses the
simple model to determine an action that will return it
into the neighbourhood.

The regulating part of the algorithm effectively tries to
return the robot to the original position in observation
space to be able to perform another experiment under
the same conditions. Although the observations do not
contain all the information of the environment, it plays
a similar role as a manual environment reset.

3.2.4 Strategy search

Allowing large actions can help the algorithm in the
upper level to accomplish an arbitrary goal. However,
the action selection is limited by the use of a simple
local model. To additionally help the algorithm, we
define a process in which the goal state is replaced

with the goal space, whose dimensionality is reduced
each time the algorithm reaches it. If it is
unsuccessful, the goal space is expanded and a
different order of reduction is used. This enables the
algorithm to approach the goal state in different
directions, hopefully avoiding local minima.

4 Experimental results

The purpose of the tests is to examine the principal
limitations of the basic and extended algorithms.
Considering the difficulty of obtaining a general
algorithm for the task, we selected a simple and easy
to understand environment, and performed the tests
using a noiseless computer simulation.

The goal of the tests is to assess the ability to detect
small dependencies between actions and observations,
and additionally the ability to reach the designated
positions in the observation space.

4.1 Test conditions

Our environment represents a simple robot–object
domain. Object properties are position in the xy plane
(object_x, object_y), while robot properties are
position (robot_x, robot_y) and orientation (robot_or).
The robot observations are distance to the object
(object_dist) and angle to the object from the current
orientation (object_angle). The robot actions are the
distance to travel with the next move (move_dist),
and the angle to turn during the move (move_angle).

The data available to the algorithm comprises the
observation vector: object_dist from the interval [0,
32] and object_angle from [-π, π], and the allowed
actions that have move_dist from the interval [-1, 1]
and move_angle from [-.2, .2]. The reason for such
action domain is that the largest action normally
produces around 3% change in the observation
domain, which may be lower or higher depending on
the robot state.

4.2 Detection of weak action-observation
dependencies

The goal of this test is to determine which methods of
example collection are appropriate or necessary to
detect a relatively small influence an action variable
may have on an observation variable.

Four methods of example collection are examined. RN
method uses random actions, WN method uses a
simple model and a wide observation neighbourhood,
NN uses narrow neighbourhood, and AN method uses
the alternating algorithm. Fig. 1 to Fig. 4 show typical
distributions of examples using these methods.

The neighbourhood in observation space where the
examples are collected to train a model are referred to
as the area of the model, and its size is expressed in
the percentage of the observation domain. The area is
static when its centre is set to the robot position at the

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

start of the example collection, and dynamic when the
centre moves together with the robot as it is acquiring
new examples.

Fig. 1 shows the distribution of examples using the
RN method. Examples are collected using random
actions, until there is enough of them to form the final,
quadratic model. The final model has a dynamic 5%
area.

Fig. 2 shows the distribution using the WN method.
The actions are determined using a linear model with
dynamic 5% area that targets random points in the
area of the final quadratic model. The final model has
a 5% static area.

Fig. 3 shows the distribution using the NN method,
which is the same as WN, except that the final model
has a 1% static area.

Fig. 4 shows the distribution using an AN method. If
the current robot position is inside the final model
area, examples are collected using random actions. If
the current robot position is outside of the final model
area, the actions are determined as with the NN
method. The final model has a 1% static area.

To asses different collection methods the final model
of each method is used to predict an action that will
move the robot closer to the object. Both move_dist
and move_angle influence object_dist, but the effect
of move_angle is much smaller.

Fig. 1 Example distribution using RN

Fig. 2 Example distribution using WN.

Fig. 3 Example distribution using NN.

Fig. 4 Example distribution using AN.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

The starting robot distance to object is 7 and the
orientation is π/4 away from being directed at object.
The influence move_angle has on the object_dist
depends on move_dist, however, since the maximum
turn a robot can perform is only about 10 degrees, this
is always significantly lower than the dependency
between move_dist and object_dist.

If move_angle is selected with the correct sign, the
model is considered successful. The selection of
move_dist is trivial and is ignored.

Tab. 1 Success rates for collection methods

N RN WN NN SN

2 36 59 56 51
3 47 55 62 61
4 42 48 64 71
5 37 47 66 90
6 35 42 67 83
7 39 52 54 94
8 46 49 67 97
9 43 52 66 100
10 44 55 68 100
11 41 65 72 100
30 54 61 70 99

Tab. 1 shows the success rates for all collection
methods with N examples collected to train the final
model. The success rates are defined as the number of
successful models out of 100 trained.

Tab. 2 Efficiency of collection methods

N RN WN NN SN

2 96 59 21 20
3 72 43 32 26
4 60 49 40 27
5 55 53 46 30
6 50 50 53 31
7 44 59 55 34
8 40 64 58 35
9 34 68 62 36
10 30 63 61 38
11 28 72 65 38
30 8 86 81 44

Tab. 2 shows the efficiency for all collection methods.
The efficiency is measured as the percentage of the
examples used to train the final model from all
gathered examples.

4.3 Approaching goals in observation space

The goal of the following test is to measure the ability
of the algorithm to reach an arbitrary position in the
observation space. For this purpose, a series of
positions are chosen at random from the observation
space. The goal of the algorithm is to reach those
positions in sequential order.

An example using 16 positions is illustrated in Figs. 5
and 6. Fig. 5 shows the robot path in the in the
observation space, while Fig. 6 shows the robot path
in the environment. The position of the object is
marked with the crossed square.

Fig. 5 Robot path in observation space.

Fig. 6 Robot path in environment space.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

Tab. 3 Success rates depending on goal size

Goal size .5 1.5 5
Success rate 94 98 100

The success rates of the algorithm were measured by
the number of successfully reached positions out of
100 specified. Tab. 3 shows the results for various
goal sizes, measured in percentage of the observation
domain.

5 Discussion and conclusions

5.1 Interpretation of results

In all experiments, the maximum action is purposely
limited to produce manageable changes in the
observations. Still, collection with random actions
produces scattered examples, as seen in Fig. 1. Fig. 2
and Fig. 3 show that introducing a simple model to
focus the search alleviates this problem. Using a
combination of methods as with AN, the results are
naturally more dispersed. However the switch
criterion based on the position in the observation
space ensures the robot never leaves the vicinity of the
starting point, as happens often with random actions.
In addition, a large fraction of the examples lies in the
close vicinity, as Fig. 4 demonstrates.

Although Tab. 1 indicates the only reliable model for
any reasonable number of examples is obtained with
the AN collection method, the results of other
methods are still included as control data. As the
method WN collects the data in the roughly the same
area as AN and with the actions of the same
magnitude, the difference of success rates can possibly
be attributed to either a better distribution of examples
in action space with AN, or a WN producing too
ambiguous model due to larger area, with the latter
being more probable.

On the other hand, the comparison of AN and NN
suggests that to obtain a model focused in the narrow
area in observation space, there is a possibility that the
restriction on the actions would limit the ability to
detect weak dependencies, which are only sufficiently
exposed with large actions.

Tab. 2 provides additional insights and control
information. The efficiency of the random example
collection drops rapidly when more examples are
needed, as the chance that the algorithm will remain in
the given vicinity is smaller. WN and NN share about
the same efficiency, which becomes larger with more
examples. This is also expected, since the linear model
that guides the robot to stay inside the area that is
being investigated becomes more reliable as examples
are added. This is also true for AN. Since large
random actions almost necessarily move the robot
outside of the neighbourhood of interest, the
maximum efficiency of the AN algorithm would be a

half of the WN or NN. The results confirm this
expectation.

The efficiency of the WN, NN and AN methods show
that the linear model only rarely fails in its attempt to
guide the robot inside the defined area. Since this
problem is in many ways similar to guiding the robot
to an arbitrary position in observation space, one may
wonder why the linear approach is convenient for the
former task, but not the latter.

The necessity of having a quadratic model for guiding
the robot in the observation space follows from the
geometry of the robot movements. The direction in
which the robot turns can bring it closer or farther
away from the object, depending on whether the robot
is moving forward or backward. This dependency
between move_angle and move_dist cannot be
expressed with just a linear combination, while a
quadratic model has a possibility of modeling such
behaviour with the product of the two. Additionally,
as previously mentioned, to be able to detect minor
action-observation dependencies, the examples must
also be gathered in a relatively narrow part of the
observation space.

The reason why linear model is successful without any
of the two properties could lie in the fact that in many
cases, move_angle chiefly defines the object_angle,
and move_dist chiefly defines the object_dist. To
reach a nearby observation position, it is enough to
roughly model these two major dependencies, while
ignoring the other, minor combinations. This would
suggest that in this domain, gathering examples in the
vicinity requires less knowledge than reaching an
arbitrary position in observation space.

Tab. 3 shows the success of reaching such positions.
Judging from the experiments not presented, hard-to-
reach positions in this domain are rare among all
possible positions, so the results are expected, but not
particularly insightful. The conclusions that can be
drawn are that there are goal states that are difficult to
reach for our algorithm, although it seems that it
always manages to get in the vicinity of the goal.

5.2 Future work

One of the main topics that still require further
investigation is the relationship between the size of the
actions and convergence of the SSA. Since SSA
seems to retain many limitations of the greedy
algorithms even when used with goal space reduction,
the amount of space the robot can observe while
deciding on the next move is of critical importance.

While larger actions may help to improve convergence
to an arbitrary observation position and even make
goal space reduction search redundant, they could also
require local models to be more complex. The
usefulness of these modified methods will in part be
dependent on how easy it is to return to the vicinity of

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

the observation area that is being explored from the
area reachable by large actions.

Another important topic of research is the possibility
of using multiple local models of varying degrees and
possibly other parameters, and then choosing among
them by measures such as reliability and accuracy.
This would trade efficiency of the algorithm for
adaptability, which may be reasonable considering the
progress in hardware computing capability. In
addition, before the algorithm would be of practical
value, the sensitivity to motor and sensor noise would
have to be examined closely.

In the context of XPERO project, we plan to use the
described algorithm with machine learning methods to
close the autonomous discovery experimental loop. In
such a scenario, the robot would first randomly collect
some data that would be used to induce an initial
model of the environment. The robot would then be
required to collect the data in the regions of the state
space where the reliability of the current model is low,
or where the machine learning methods induced some
interesting, but unexpected hypotheses. The collected
data would be repetitively used to improve the control
of the robot and to update the model of the
environment.

6 Acknowledgment

This research was partly supported by the European
Commission's 6th Framework Project XPERO, and
the Slovenian research agency ARRS (research
program Artificial Intelligence and Intelligent
Systems).

7 References

[1] http://www.xpero.org.

[2] Jaime Carbonell, Oren Etzioni, Yolanda Gil,
Robert Joseph, Craig Knoblock, Steven Minton,
and Manuela Veloso. Planning and Learning in
PRODIGY: Overview of an Integrated
Architecture. In Goal-Driven Learning, Aswin
Ram and David Leake (Eds.), MIT Press, Boston,
MA, 1995.

[3] S. Yamada and R. Iwasaki. Integration of
Operator Learning, Planning and Execution in a
Heterogeneous Multi-Robot System. International
Symposium on Robotics (ISR-2001), Seoul, Korea,
2001.

[4] R. D. King, K. E. Whelan, F. M. Jones, P. G. K.
Reiser, C. H. Bryant, S. H. Muggleton, D. B. Kell,
and S. G. Oliver. Functional genomic hypothesis
generation and experimentation by a robot
scientist. Nature, 427:247-252. 2004.

[5] I. Bratko, D. Šuc, I. Awaad, J. Demšar, P.
Gemeiner, M. Guid, B. Leon, M. Mestnik, J.
Prankl, E. Prassler, M. Vincze, J. Žabkar. Initial

experiments in robot discovery in XPERO.
Workshop Concept Learning for Embodied
Agents, ICRA 2007.

[6] C. G. Atkeson, A. W. Moore, and S. Schaal.
Locally weighted learning. Artificial Intelligence
Review, 11:11-73, 1997.

[7] C. G. Atkeson, A. W. Moore, and S. Schaal.
Locally weighted learning for control. Artificial
Intelligence Review, 11:75-113, 1997.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

