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Abstract 

Obtaining a useful model in a given domain depends on the complexity of the model, the 
learning algorithm, and on the input data. While a specific task limits the choice for the model 
and the algorithm, the required quantity and distribution of the data could be less well defined, 
and may in turn be dependent on yet to be determined model parameters. To explore the weak 
points of an unreliable model, we introduce a data collecting agent, guided by the model. The 
agent must be able to cope with little data and unreliable model, to collect new data required 
to improve the model. This paper presents an algorithm, inspired by adaptive robot 
controllers, that uses local models and strategy search based on measured progress to 
efficiently collect data required to improve the model of the domain. The algorithm is tested 
in a simple robot-object domain used in the European project XPERO, which is about 
autonomous discovery through robot’s experiments in its environment.
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1 Introduction

Automated modeling of a robot’s environment poses 
various challenges related to generality and efficiency 
of the learning methods, the use of prior and learned 
domain knowledge and the control of the robot in a 
way to use and improve the current model of the 
domain. Efficient and robust control facilitating the 
use and improvements of the current model, as 
addressed in this paper, can be seen as a prerequisite 
for autonomous learning and discovery through 
robot’s interaction with the environment.  In this 
respect this work is a part of the Sixth Framework 
European project XPERO[1] with the scientific goal 
to investigate mechanisms of autonomous discovery 
through experiments in a robot’s environment, as for 
example in systems [2,3,4].

The fundamental goal of the XPERO project is to 
identify a small set of basic principles that enable such 
discovery without substantial amount of prior 
knowledge. Initial experiments with machine learning 
from experimental data collected by a mobile robot 
presented in [5] implicate the need for a corresponding 
model-guided data-collection algorithm. The 
algorithm described in this paper will be used in 
XPERO to control the robot towards the regions of the 
state space where the reliability of the current model is 
low, or where the machine learning methods induced 
some interesting, but unexpected hypotheses. The 
collected data would be repetitively used to improve 
the control of the robot and to update the induced 
model of the environment to support robot learning 
and autonomous discoveries.

In the next section we define the problem, 
terminology and the robot-environment experimental 
domain. In section 3 we briefly describe an existing 
method and developed enhancements to control the 
robot in such a way to approach a desired region in the 
observation space. Note that this is a difficult problem 
since the relation between robot’s actions and their 
effects is not known in advance, and has to be learned. 
Section 4 describes some initial experiments in the 
robot-object domain. At the end we discuss results, 
relation to XPERO project and future work. 

2 Problem definition

The task of automated modeling includes the 
environment we wish to model and the agent to 
perform the assignment. The quantities of the 
environment the agent can directly observe will be 
referred to as the agent's observation vector, or 
observations. The interface by which it can influence 
the environment will be called the action. The 
problem is to obtain a model of the environment 
which, given the agent’s current observations and goal 
state, enables to determine an agent’s action that will 
result in agent reaching the goal.

Even for domains with a simple environment and 
simple agent, such as a moving robot, the direct 
relationship between the action variables and
observation vector tends to be complex. Such relations 
may be expressed by complex equations, that are 
difficult to simplify without guessing suitable 
intermediate variables. On the other hand, part of the 
environment independent of the robot, which will be 
referred to as the narrow environment, can be modeled 
by simpler equations. Simpler models corresponding 
to the narrow environment are usually easier to learn. 
In the case when an explicit global model of the 
environment is not required, the problem can therefore 
be split into two parts. The first is the problem of 
determining the data points in the narrow environment 
required to make the model, while the second problem 
is to choose the actions that will guide the robot to the 
required points. This paper presents how a robot 
controller can be employed for the latter task.

3 Methods and algorithms

As the function of the data-collecting algorithm is 
limited to providing the means for higher process 
exploration, the problem can be posed as the task to 
reach a given position in the observation space and to 
gather examples there. To this end, an algorithm must 
already posses some notion of the effect actions have 
on observations. The general idea is that this notion 
does not need to be globally correct, and that the 
effects of the actions are therefore easier to model than 
the model corresponding to the higher process.

Given the goal position in the observation space where 
examples are lacking, the algorithm could perform as 
follows. First, in the vicinity of its current position, 
examples of various actions and the resulting 
observations would be gathered. When this data would 
be deemed sufficient, a model would be created, and 
this model would then be used to determine an action 
that moves the robot closer to the goal position. This 
process would be repeated until the goal position is 
reached.

There are several properties that an appropriate 
algorithm for the task should posses. It would have to 
be able to start with no specific knowledge of the 
domain, the modeling and moving process would have 
to be automatic, it should perform with as few 
examples as possible, and it would have to be able to 
reach an arbitrary position in the observation space. 
An attractive method for this problem is locally 
weighted learning[6], and Shifting setpoint 
algorithm[7] has many of the needed  characteristics.

3.1 Basic algorithm

Shifting setpoint algorithm, or SSA, has been 
developed as a general robotic controller with the 
ability of self calibration. Its main characteristic is the 
execution on two levels. The lower level works as a 
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dynamic regulator, enabling the robot to preserve its 
position in the environment, while the higher level 
guides the robot to the given goal. The switch between 
the lower and the higher level is determined by the 
reliability of the collected data. If a model constructed 
from the collected data has a higher reliability score, 
there is a greater probability that the action based on 
the model will move the robot closer to the goal state.

The algorithm has been tested in a real application 
using linear models and with an optimization criterion 
that minimized both the state error and the size of the 
action by implementing linear quadratic regulation. 
With these mechanisms it has successfully learned the 
task of juggling a stick on a two dimensional plane[7].

3.2 Modifications of the basic algorithm

Our task of continuously guiding the robot in 
observation space has a few notable differences 
compared to the task of learning to juggle[7]. In both 
problems the autonomy of the learning process is 
desired, with as little of human intervention as 
possible. However, due to inherent instability of the 
juggling dynamics, it is unlikely that the problem 
could be solved without manually reseting the state of 
the environment at each failed attempt. On the other 
hand, with data collecting task, the robot itself could 
be constructed in a way to increase stability, thus 
reducing the need for environment resets. 

Simplifying the problem of determining actions that 
preserve the robot observation state, more focus can 
be put into other areas, such as reliably detecting weak 
dependencies, accounting for the possible 
dependencies of action variables, and improving the 
greedy nature of the goal approaching process. 
Following these newly defined directions, 
modifications to the basic algorithm include 
introduction of exploratory behaviour in the lower 
level of the SSA, using a higher order model in the 
upper level, and coupling it with a progress based 
search algorithm. 

The following sections describe the choices for the 
models and training methods, the procedures to 
determine appropriate actions based on the models, 
the methods that use these actions to collect relevant 
data, and the ways to approach the goal state.

3.2.1 Local models

To model the relationship between actions and 
observations two approaches can be used, and inverse 
and forward one. An inverse model is supplied the 
goal observations and computes the actions, while the 
forward model computes observations from the 
actions. To be able to independently define the 
domain of valid actions, we use the forward model.

To reduce the number of required data points to create 
a reliable model, simpler models are preferred. On the 
other hand, in situations where there are pairs of 

dependent action variables, at least a quadratic model 
is required. Depending on the task we employ a linear 
or quadratic model, while both are trained using linear 
regression.

3.2.2 Action selection

Using forward models enables us to choose an action 
and simulate the resulting change in observations. 
This enables us to freely constrain the actions, for 
example by a predefined action cost. The negative 
effect is that the action is not calculated directly, and 
requires an optimization algorithm.

If the action variables are limited by thresholds, the 
model used is linear, and the error is measured by 
absolute difference, we can use linear programming as 
an optimization algorithm by introducing new 
variables and constrains representing error intervals at 
each observation variable. The optimization criterion 
is then to minimize the size of these intervals. 

Using a quadratic model or a different measure for 
error makes the search for optimal action less 
straightforward. A simple solution is to use a general 
but slow and possibly imprecise grid search algorithm.

3.2.3 Data collection

Data collection is based on the paradigm of lazy 
learning, where all the past experience is stored. To 
this effect, following every action issued to the robot, 
the example is added to the database. The example 
contains starting observation, action, and the resulting 
observation, and is indexed by starting observation. 
Starting observation defines locality of our models, 
and this organization enables fast retrieving of data for 
a required model. The model is trained using the 
actions and changes of observations.

3.2.3.1 Data quality

The usefulness of the induced model depends on its 
reliability and on the portion of the observation space 
it covers. The reliability is directly linked to the 
number of gathered examples and their distribution. 
Given a distribution of examples in the observation 
space, a model with a larger neighbourhood will be 
more reliable, yet also more averaged and as such 
possibly too ambiguous to be useful. A model built on 
a smaller neighbourhood will have fewer examples 
and be less reliable, but this can be remedied by 
accumulating more examples. 

A simple way to gather examples is by using a random 
action chosen uniformly from a predefined domain. 
Since the size of an action generally defines the size of 
the impact on the observations, if actions are large, the 
examples will be dispersed in the observation space 
and the resulting model overaveraged. If the actions 
are small, the changes in observations might be too 
limited to include the knowledge that is necessary to 
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efficiently move in the observation space, or may 
prevent the discovery of weak dependencies. 

In an attempt to accumulate all the necessary 
information, we try to define the appropriate action 
domain using the effect actions have in the 
observation space.

3.2.3.2 Model based action domain

One way to achieve an even distribution in a small 
observation neighbourhood is to use actions we expect 
to create small random changes in the observations. 
This procedure requires some prior knowledge of the 
action–observation dependencies.

To obtain such knowledge, we construct a simple 
model for this purpose. If such model is linear, only a 
few examples will need to be collected until the 
actions are appropriately chosen to produce examples 
in the neighbourhood. Even when the simple model is 
unreliable, the chosen actions most likely will not be 
worse than random ones. When there is enough 
examples, a reliable model of a higher order can be 
constructed with the data.

The drawback of this approach is that not much is 
known about the action domain the simple model 
defines, which may be very different from the one 
defined by for instance a cost an action has for the 
robot. Also, it may still limit the discovery of 
dependencies that require large actions.

Our proposed solution to this problem is the algorithm 
that uses both random actions and actions that target a 
specific observation state.

3.2.3.3 Alternating data collection algorithm

Alternating algorithm combines the uniform collection 
of examples in action space and regulation to stay in 
the narrow observation neighbourhood of interest. 
Since the tasks are mutually exclusive, the algorithm 
switches between them depending on the current 
position in the observation space. If the robot is 
currently in the neighbourhood of interest, it performs 
a random action. If the robot is outside of it, it uses the 
simple model to determine an action that will return it 
into the neighbourhood.

The regulating part of the algorithm effectively tries to 
return the robot to the original position in observation 
space to be able to perform another experiment under 
the same conditions. Although the observations do not 
contain all the information of the environment, it plays 
a similar role as a manual environment reset. 

3.2.4 Strategy search

Allowing large actions can help the algorithm in the 
upper level to accomplish an arbitrary goal. However, 
the action selection is limited by the use of a simple 
local model. To additionally help the algorithm, we 
define a process in which the goal state is replaced 

with the goal space, whose dimensionality is reduced 
each time the algorithm reaches it. If it is 
unsuccessful, the goal space is expanded and a 
different order of reduction is used. This enables the 
algorithm to approach the goal state in different 
directions, hopefully avoiding local minima.

4 Experimental results

The purpose of the tests is to examine the principal 
limitations of the basic and extended algorithms. 
Considering the difficulty of obtaining a general 
algorithm for the task, we selected a simple and easy 
to understand environment, and performed the tests 
using a noiseless computer simulation.

The goal of the tests is to assess the ability to detect 
small dependencies between actions and observations, 
and additionally the ability to reach the designated 
positions in the observation space.

4.1 Test conditions

Our environment represents a simple robot–object 
domain. Object properties are position in the xy plane 
(object_x, object_y), while robot properties are 
position (robot_x, robot_y) and orientation (robot_or). 
The robot observations are distance to the object 
(object_dist) and angle to the object from the current 
orientation (object_angle). The robot actions are the 
distance to travel with the next move (move_dist),  
and the angle to turn during the move (move_angle).

The data available to the algorithm comprises the 
observation vector: object_dist  from the interval [0, 
32] and object_angle from [-π, π], and the allowed 
actions that have move_dist from the interval [-1, 1] 
and move_angle from [-.2, .2]. The reason for such 
action domain is that the largest action normally 
produces around 3% change in the observation 
domain, which may be lower or higher depending on 
the robot state.

4.2  Detection of weak action-observation 
dependencies

The goal of this test is to determine which methods of 
example collection are appropriate or necessary to 
detect a relatively small influence an action variable 
may have on an observation variable.

Four methods of example collection are examined. RN 
method uses random actions, WN method uses a 
simple model and a wide observation neighbourhood, 
NN uses narrow neighbourhood, and AN method uses 
the alternating algorithm. Fig. 1 to Fig. 4 show typical 
distributions of examples using these methods.

The neighbourhood in observation space where the 
examples are collected to train a model are referred to 
as the area of the model, and its size is expressed in 
the percentage of the observation domain. The area is 
static when its centre is set to the robot position at the 
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start of the example collection, and dynamic when the 
centre moves together with the robot as it is acquiring 
new examples.

Fig. 1 shows the distribution of examples using the 
RN method. Examples are collected using random 
actions, until there is enough of them to form the final, 
quadratic model. The final model has a dynamic 5% 
area. 

Fig. 2 shows the distribution using the WN method. 
The actions are determined using a linear model with 
dynamic 5% area that targets random points in the 
area of the final quadratic model. The final model has 
a 5% static area. 

Fig. 3 shows the distribution using the NN method, 
which is the same as WN, except that the final model 
has a 1% static area.

Fig. 4 shows the distribution using an AN method. If 
the current robot position is inside the final model 
area, examples are collected using random actions. If 
the current robot position is outside of the final model 
area, the actions are determined as with the NN 
method. The final model has a 1% static area.

To asses different collection methods the final model 
of each method is used to predict an action that will 
move the robot closer to the object. Both move_dist 
and move_angle influence object_dist, but the effect 
of move_angle is much smaller.

Fig. 1 Example distribution using RN

Fig. 2 Example distribution using WN.

Fig. 3 Example distribution using NN.

Fig. 4 Example distribution using AN.
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The starting robot distance to object is 7 and the 
orientation is π/4 away from being directed at object. 
The influence move_angle has on the object_dist 
depends on move_dist, however, since the maximum 
turn a robot can perform is only about 10 degrees, this 
is always significantly lower than the dependency 
between move_dist and object_dist.

If move_angle is selected with the correct sign, the 
model is considered successful. The selection of 
move_dist is trivial and is ignored.

Tab. 1 Success rates for collection methods

N RN WN NN SN

2 36 59 56 51
3 47 55 62 61
4 42 48 64 71
5 37 47 66 90
6 35 42 67 83
7 39 52 54 94
8 46 49 67 97
9 43 52 66 100
10 44 55 68 100
11 41 65 72 100
30 54 61 70 99

Tab. 1 shows the success rates for all collection 
methods with N examples collected to train the final 
model. The success rates are defined as the number of 
successful models out of 100 trained.

Tab. 2 Efficiency of collection methods

N RN WN NN SN

2 96 59 21 20
3 72 43 32 26
4 60 49 40 27
5 55 53 46 30
6 50 50 53 31
7 44 59 55 34
8 40 64 58 35
9 34 68 62 36
10 30 63 61 38
11 28 72 65 38
30 8 86 81 44

Tab. 2 shows the efficiency for all collection methods. 
The efficiency is measured as the percentage of the 
examples used to train the final model from all 
gathered examples.

4.3 Approaching goals in observation space

The goal of the following test is to measure the ability 
of the algorithm to reach an arbitrary position in the 
observation space. For this purpose, a series of 
positions are chosen at random from the observation 
space. The goal of the algorithm is to reach those 
positions in sequential order.

An example using 16 positions is illustrated in Figs. 5 
and 6. Fig. 5 shows the robot path in the in the 
observation space, while Fig. 6 shows the robot path 
in the environment. The position of the object is 
marked with the crossed square.

Fig. 5 Robot path  in observation space.

Fig. 6 Robot path in environment space.
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Tab. 3 Success rates depending on  goal size

Goal size .5 1.5 5
Success rate 94 98 100

The success rates of the algorithm were measured by 
the number of successfully reached positions out of 
100 specified. Tab. 3 shows the results for various 
goal sizes, measured in percentage of the observation 
domain.

5 Discussion and conclusions

5.1 Interpretation of results

In all experiments, the maximum action is purposely 
limited to produce manageable changes in the 
observations. Still, collection with random actions 
produces scattered examples, as seen in Fig. 1. Fig. 2 
and Fig. 3 show that introducing a simple model to 
focus the search alleviates this problem. Using a 
combination of methods as with AN, the results are 
naturally more dispersed. However the switch 
criterion based on the position in the observation 
space ensures the robot never leaves the vicinity of the 
starting point, as happens often with random actions. 
In addition, a large fraction of the examples lies in the 
close vicinity, as Fig. 4 demonstrates.

Although Tab. 1 indicates the only reliable model for 
any reasonable number of examples is obtained with 
the AN collection method, the results of other 
methods are still included as control data. As the 
method WN collects the data in the roughly the same 
area as AN and with the actions of the same 
magnitude, the difference of success rates can possibly  
be attributed to either a better distribution of examples 
in action space with AN, or a WN producing too 
ambiguous model due to larger area, with the latter 
being more probable.

On the other hand, the comparison of AN and NN 
suggests that to obtain a model focused in the narrow 
area in observation space, there is a possibility that the 
restriction on the actions would limit the ability to 
detect weak dependencies, which are only sufficiently 
exposed with large actions.

Tab. 2 provides additional insights and control 
information. The efficiency of the random example 
collection drops rapidly when more examples are 
needed, as the chance that the algorithm will remain in 
the given vicinity is smaller. WN and NN share about 
the same efficiency, which becomes larger with more 
examples. This is also expected, since the linear model 
that guides the robot to stay inside the area that is 
being investigated becomes more reliable as examples 
are added. This is also true for AN. Since large 
random actions almost necessarily move the robot 
outside of the neighbourhood of interest, the 
maximum efficiency of the AN algorithm would be a 

half of the WN or NN. The results confirm this 
expectation. 

The efficiency of the WN, NN and AN methods show 
that the linear model only rarely fails in its attempt to 
guide the robot inside the defined area. Since this 
problem is in many ways similar to guiding the robot 
to an arbitrary position in observation space, one may 
wonder why the linear approach is convenient for the 
former task, but not the latter. 

The necessity of having a quadratic model for guiding 
the robot in the observation space follows from the 
geometry of the robot movements. The direction in 
which the robot turns can bring it closer or farther 
away from the object, depending on whether the robot 
is moving forward or backward. This dependency 
between move_angle and move_dist cannot be 
expressed with just a linear combination, while a 
quadratic model has a possibility of modeling such 
behaviour with the product of the two. Additionally, 
as previously mentioned, to be able to detect minor 
action-observation dependencies, the examples must 
also be gathered in a relatively narrow part of the 
observation space.

The reason why linear model is successful without any 
of the two properties could lie in the fact that in many 
cases, move_angle chiefly defines the object_angle, 
and move_dist chiefly defines the object_dist. To 
reach a nearby observation position, it is enough to 
roughly model these two major dependencies, while 
ignoring the other, minor combinations. This would 
suggest that in this domain, gathering examples in the 
vicinity requires less knowledge than reaching an 
arbitrary position in observation space.

Tab. 3 shows the success of reaching such positions. 
Judging from the experiments not presented, hard-to-
reach positions in this domain are rare among all 
possible positions, so the results are expected, but not 
particularly insightful. The conclusions that can be 
drawn are that there are goal states that are difficult to 
reach for our algorithm, although it seems that it 
always manages to get in the vicinity of the goal.

5.2 Future work

One of the main topics that still require further 
investigation is the relationship between the size of the 
actions and convergence of the SSA. Since SSA 
seems to retain many limitations of the greedy 
algorithms even when used with goal space reduction, 
the amount of space the robot can observe while 
deciding on the next move is of critical importance.

While larger actions may help to improve convergence 
to an arbitrary observation position and even make 
goal space reduction search redundant, they could also 
require local models to be more complex. The 
usefulness of these modified methods will in part be 
dependent on how easy it is to return to the vicinity of 
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the observation area that is being explored from the 
area reachable by large actions.

Another important topic of research is the possibility 
of using multiple local models of varying degrees and 
possibly other parameters, and then choosing among 
them by measures such as reliability and accuracy. 
This would trade efficiency of the algorithm for 
adaptability, which may be reasonable considering the 
progress in hardware computing capability. In 
addition, before the algorithm would be of practical 
value, the sensitivity to motor and sensor noise would 
have to be examined closely. 

In the context of XPERO project, we plan to use the 
described algorithm with machine learning methods to 
close the autonomous discovery experimental loop. In 
such a scenario, the robot would first randomly collect 
some data that would be used to induce an initial 
model of the environment. The robot would then be 
required to collect the data in the regions of the state 
space where the reliability of the current model is low, 
or where the machine learning methods induced some 
interesting, but unexpected hypotheses. The collected 
data would be repetitively used to improve the control 
of the robot and to update the model of the 
environment.
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