
DEVELOPMENT OF WEB ACCESSIBLE MEDICAL
EDUCATIONAL SIMULATORS

Petr Stodulka, Pavol Privitzer, Jiří Kofránek, Martin Tribula, Ondřej Vacek
Institute of Pathophysiology

1st Faculty of Medicine, Charles University in Prague

petr.stodulka@gmail.com (Petr Stodulka), pavol.privitzer@lf1.cuni.cz (Pavol Privitzer)

Abstract

One of our main goals is to incorporate the usage of computers into the process of education.
The great part of our e-learning activities lies in the development of applications that would
demonstrate non-trivial physiological systems behavior, their dynamics and regulation.
Students of medicine generally differ from students of engineering and technical universities;
being less used to purely abstract mathematical thinking. Therefore it is necessary to transfer
the mathematically expressed pathophysiological concepts into more schematic, easily
understandable, yet still precise manner. Best results are achieved, when the students find the
form familiar, e.g. similar to illustrations from the textbooks. In the process of the
development of e-learning simulators, our main focus is creating the model and creating high
quality animations to visualize the simulation results. In this paper, we describe our approach
to usage of simulators in e-learning, the development of these applications, their layered
architecture and technologies we use. We use the Matlab Simulink for creating physiological
models, .NET framework or Control Web as the main platforms and Adobe Flash for
controllable animations. We describe our original tools for accessing Simulink models from
the .NET framework or Control Web and we introduce our approach to maintaining the
simulator state based on statecharts.

Keywords: e-learning, Simulation games, Simulators, Statecharts, Flash, Simulink,
.NET, Control Web

Presenting Author’s biography

Pavol Privitzer, M.Sc., MD graduated in 2001 from the Faculty of
Mathematics and Physics, Charles University in Prague, his major being
Computer Science. In 2007 graduated as Doctor of Medicine, Charles
University in Prague. Currently, he is a Ph.D student of Computer
Science in Biomedicine supervised by Jiří Kofránek, M.D.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Simulation games in e-learning
Our main motivation for developing simulators is their
ability of delivering deeper insights into real biologi-
cal systems. Important question is what properties a
simulator must have to have this ability. Another
important question is who will use the simulator.

As researchers in simulation and mathematical mo-
deling we are more technically oriented and we have
sufficient mathematical skills to understand a mathe-
matically expressed physiological model. For us a
simulator is good enough when it shows just graph
charts and enables only numerical inputs.

However, our simulators are used mainly by medical
students and such technically oriented interface seems
to them too raw and non-attractive. We have realized
that for a simulator to be successful in medical
education it must have some gaming elements in it or
even its whole architecture should be similar to a
computer game. This is why we call our applications
also simulation games. See also [1]. This concept is
nowadays recognized worldwide and there is a great
movement in the e-learning research and the computer
game industry called immersive learning simulations,
which can be divided into serious games and educa-
tional simulations [4].

Generally, children are attracted by beautiful colors,
shapes, movements and by the possibility to play.
Analogically, e-learning applications based on simu-
lation models should be styled by an artist, animated
and highly interactive, much like successful computer
games are. The concept of learning by playing games
is fundamental to education itself and goes back as far
as to the work of the great Czech scholar and didactic
Jan Amos Comenius (1592-1670) Schola ludus
(school as a game / school by play) [3].

Also our research process can be viewed from this
perspective. We have fun when we are developing a
simulation model; we are playing with the simulation,
changing the structure of the model, switching signals
and so on. At the same time we are learning and
deepening our insight of a real biological system be-
cause we are comparing and verifying the simulations
against real data and/or our observations.

We want to deliver this immersive inner experience
and fun to our medical students because then the lear-
ning and also teaching is in the form of a game.

There are two processes which can be employed for
education by simulation: creation of a model and
playing the game based on a model. Both can be used
separately or at the best together in one application.

We use Simulink for creating mathematical models. It
is too raw and technical for medical students even if
we would use prepared higher level subsystem blocks.
We need to develop some kind of a high level visual
system language for the creational part of the game

and also accompanying software framework which
can be embedded in our applications. This is going to
be a part of our future research and development.

For simulators we are using high quality animations
designed by our artists. Art styled animations provide
more attractive interfaces for our audience. This is
trying to fill the gap between technical versus educa-
tional simulator and it is our main technology impro-
vement in development of e-learning simulators based
on more complex models.

2 Architecture of e-learning simulators
The simulator application itself consists of three parts
– the model, a user interface and a control layer. The
model is the data and computational core of the
simulator. The user interface must properly present the
behavior of the model and give the user the possibility
to control it. The middle tier, so called controller,
establishes communication between the model and the
GUI and controls the simulation flow. This approach
is known as the MVC architecture (model – view –
controller) or the UCM architecture (user interface –
control object – model layer).

2.1 Model layer

The model is the implementation of the problem
domain. Our models are typically capable of pro-
ducing a timeline of outputs as they run. The inputs
are set at the beginning and can also be changed at run
time. The run of the model is controllable - it can be
paused, resumed or reset to the beginning. In the
future we are going to implement richer time control
of the model (rewinding), model cloning (to be able to
show differences between several possible prog-
ressions of the model depending on different inputs)
and the replacement of several implementations of the
model (or its parts) at runtime. That would allow the
user to focus on selected topic and replace the general
simulation model with another more precise.

2.2 Presentation layer

Fig. 1 Heart phases simulator (for .NET).

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

Rich visualization of the problem that lets the user
interacts with the model usually consists of common
UI controls like buttons or sliders, output control like
graphs and controllable animations that can also
optionally serve as an input.

2.3 State management

Since the logic of a simulator can be rather complex
we found out that we need a way to maintain the state
of the simulation (and of the application as a whole)
and to react to its change. The trivial solution – set of
state variables with centralized control logic – soon
becomes too complicated and difficult to maintain as
the complexity of the simulator grows. We have found
the solution in hierarchical state automata (or
Statecharts). We use the statecharts for design of the
simulation flow logic and timing. Afterwards they are
automatically used to control the application.

Hierarchical state automata are a concept introduced
by David Harel [5] for defining complex state
information and well-defined transitions between
states. Harel’s statecharts were further extended in the
Matlab Stateflow tool and one variant is now a part of
the UML 2.0 specification. Statecharts are based on
finite state automata and extend them by providing
high level modeling possibilities such as hierarchy of
states and concurrency (more active states at the same
time). The hierarchy reflects the fact that subsystem
cannot be activated unless its supersystem is active.
The concurrency (sometimes referred as “and”
machines) brings the possibility to model several
parallel subsystems in one statechart. The automaton
is controlled by events coming from outside or raised
in the automaton itself, which can cause a change of a
state and an execution of an action. Actions can be
defined in states and on transitions. Additionally
statecharts allow specifying guard expressions on
transitions.

We map user interactions onto events for the state
machine and the machine can in response control the
model (starting it, pausing, resetting), the controls of
the user interface (enabling/disabling some controls,
setting boundaries of the input controls) or change the
interconnection infrastructure (switching controls to
display another model outputs, disabling some
connections). See also [2].

We have developed a standalone IDE for visual design
and debugging of hierarchical state automata. The
statechart is exported in the form of its source code
and compiled to be used as a part of the simulator
application.

2.4 Interconnection infrastructure

After the creation of our first few simulators we felt a
need for an infrastructure that would help us bind the
UI controls with the model data. We developed a
interconnection middleware framework that supports
binding several UI controls to one model input or
output, two-way propagation of data, which ensures

that all controls display consistent values, custom data
conversion, automatic checking of input boundaries
and custom handlers on value change. Connections
can be temporarily enabled or disabled. This solution
automates the data flow control and makes it trivial to
add or remove UI controls. In the future we are going
to extend this infrastructure with the possibility of
recording of user actions and the work of a simulator.
Replaying will give us a possibility to create tutorials.

3 Software technologies
We are using more software technologies to build
simulators, because we haven’t found a single envi-
ronment that would satisfy all our needs regarding to
effective visual expressiveness of physiological
models, richness and maturity of the resulting
simulator’s user interface and the ability to produce
standalone and web-accessible applications. Generally
we use either Microsoft .NET or Control Web as the
base platforms we build upon. The models are created
in Matlab Simulink and the animations used as a user
interface are created in Adobe Flash.

We have spent significant amount of time on
development of our own unique tools that allow the
Simulink model to be used in a .NET or Control Web
application. Flash animations are inserted in the form
of ActiveX objects.

Light

Watch
en:co.resetSWTime();
du:co.GetTime();

SWTime
du:co.setSWTime();

Time
en:co.setColonSep();
co.setBlinkSep();
du:co.setDigitTime();

on
en:co.setOnShine();

off
en: co.setOffShine();

StopSWTime

SetHr
en:co.setBlinkLeft();
on rudown:co.incHr();
on ludown: co.decHr();
ex:co.stopBlinkLeft();

Normal
on luhold:co.setOnShine();
on luup: co.setOffShine();

SetMin
en:co.setBlinkMed();
on rudown:co.incMin();
on ludown: co.decMin();
ex:co.stopBlinkMed();

ResetSWTime
en:co.resetSWTime();
ex: co.startSWTime();

RunningtSWTime

SetSec
en:co.setBlinkRight();
on rudown:co.resetSec();
ex:co.stopBlinkRight(); rdhold

rddown

rdhold rddown/co.stopSWTime();
rddown/co.startSWTime();

rddown
rddown

rdhold

rddown

luup
ludown

H
ruup ruup

Fig. 2 Sample statechart. Fragment of the wristwatch
simulator.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

Fig. 3 Development cycle of a simulator application.

3.1 Simulink

Matlab Simulink is a modeling tool that provides
graphical design and simulation of mathematical
models. Elements of a model can be grouped and
hierarchically ordered, giving rise to subsystems with
user defined inputs and outputs. We have adopted the
concept of simulation chips that represent the building
blocks of our simulation models.

Another Matlab toolbox, Real-Time Workshop
(RTW), exports the model as a C/C++ code. This code
consists of a routine that executes the model logic, a
structure that holds the model data and an ODE solver.
We have developed two new RTW targets (we call
them Wizards) that transform this code to be
compatible with the .NET or Control Web. For the
.NET the code is wrapped in a C++ .NET class that
exposes the model’s inputs and outputs as its inter-
face. For Control Web the code is transformed into a
C++ class that implements the interface making it
possible to be used as a virtual driver in a CW
application. Thus, the final output of the Wizards is a
Matlab independent dynamic library.

3.2 The .NET platform

The .NET represents a modern and strong platform
that allows rapid and comfortable application develop-
ment with support for visual design of the GUI,
creation of custom visual controls and the web
deployment.

The .NET platform is nowadays most supported for
Windows, but open source projects such as Mono or

Portable.NET promise the future of portable simul-
ators based on this platform.

3.3 Control Web

Control Web (Moravian instruments inc., Czech
Republic) is a platform mainly intended for develop-
ment of industrial visualization and control applica-
tions on the WIN32 platform. It is optimized for real-
time controlling and visualization. Its visual frame-
work is component based and gives a great efficiency
and rapid application development.

Fig. 4 First prototype of renal function simulator

(Control Web implementation).

We used the Control Web platform mainly before the
release of the .NET, but we still support it for its
advantages such as rapid prototyping and easy visual
interconnection of model and visual controls.

Fig. 5 Virtual device generation for Control Web.

We have a redistributable of CW runtime at our
disposition and we have developed a simple tool
(SimPlayer) that allows us easy distribution of the CW
simulators over the web. Unfortunately there is only
Win32 runtime for Control Web.

Scenarios
and

Scripting

Storyboard
design

C/C++

Automatic build
of Control Web

virtual driver

Creating of
interactive Flash

graphics and
animations

Develop-
ment of

simulator
application

Testing in education

CW SIMULATOR

Flash
interactive
animation

.NET SIMULATOR

Deployment

Automatic build of
.NET assembly

Flash
interactive
animation DLL virtual

driver
(model)

.NET
assembly
(model)

Model
development
and testing
in Matlab
Simulink

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

3.4 Flash

Although it is possible to create the presentation layer
of the application using standard or custom made
.NET (or CW) visual components, for more sophis-
ticated visualizations (such as an animation of a
beating heart) we use movie clips created in Adobe
Flash. Fundamental feature of these animations is the
possibility to control them programmatically (using
Action Script) and thus affect the presentation. It is
also possible to get the user input from a Flash clip
and that way create animated user controls.

Fig. 6 Right heart failure demonstrated using simple

model of circulation (Flash explanation model)

Fig. 7 Properties of muscle (Flash exercise model)

As the execution speed of the Flash and Action Script
is increasing over the time, it is a good platform for
implementation of simulators based on less complex
models. Pure Flash based simulators are very portable
and in-browser what is the most desirable deployment
scenario for our simulation games. Some of our Flash
based simulators can be seen in our Atlas of Physio-
logy and Pathophysiology, cited in other article of the
Eurosim 2007 conference [6].

In our complex simulators based on the .NET or
Control Web the Flash animations are embedded as

ActiveX objects. Their behavior is than controlled by
the underlying model layer.

3.5 Deployment

Pure Flash simulators give the best portability and the
easiest web deployment. Unfortunately, we have no
technology for exporting Simulink to Action Script
and therefore only simulators based on simpler model
can be implemented as pure Flash applications.

Control Web based simulators need the Control Web
runtime on the client machine. Deployment of CW
simulators consists of writing a simple SimPlayer
XML description file which defines the location of the
simulator (zipped) and location of the runtime
(installer). The SimPlayer utility transparently ensures
the presence of the runtime, downloads, installs and
runs the simulation.

Most of our simulators are based on the .NET
framework, which offers simple way of the web
deployment using the ClickOnce technology. This
technology creates a description manifest file
recognized by the framework that allows the appli-
cation to be transparently downloaded from the inter-
net and run in a security sandbox.

4 Future development
The longer way we have passed, the more we see what
can be created.

Our vision is becoming much wider than producing
high quality simulation games for education. We see a
great potential in exchanging scientific information
using open simulation games as a medium instead of a
linear text with static pictures. Nonlinear information
exchange will be the future way of sharing scientific
knowledge. Knowledge expressed in a visual system
language, which is linked to multimedia and directly
showing its behavior will provide the platform for
rapid education of the next generation. With this
vision we are developing our tools and frameworks.

In the modeling area we are extending our approach to
object-oriented component based modeling. It gives
the advantage of direct implicit formulation of mathe-
matical equations instead of the need of defined
causality in signal based block diagrams. Component
based modeling seems more convenient and it is more
relevant in physical modeling. An OOP modeling
language is probably the way how we will design a
high-level visual system language for the creational
part of our future simulation games.

In the software technology, the compatibility and port-
ability is a big problem to solve. The .NET world is
promising a solution. Seamless interlanguage commu-
nication and binary portability will be the properties of
the .NET to make it suitable for implementation of our
tools and frameworks. Recently Microsoft announced
its new Silverlight technology which is similar to
Flash technology but it is based on the .NET platform.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

This would give us the possibility to create, for
example, an in-browser educational simulator based
on a very complex model with a rich graphical
interface. This simulator will run both on Windows
and on Mac OS platforms without a change.

Our next work in the field of hierarchical state
automata is to develop a plug-in for Visual Studio to
more integrate statecharts into our simulator deve-
lopment process.

5 Conclusion
We have shown our motivations for using simulators
as simulation games in medical education. Our main
improvement is usage of rich graphical user interface
as a gaming element in simulators based on complex
models.

We use Matlab Simulink for physiological modeling,
Adobe Flash for controllable animations and the .NET
or Control Web as the base environment. We have
developed a unique way of exporting the Simulink
model into the .NET framework and into the Control
Web platform. We have created an original integrated
environment for a design of statecharts and their use
in the process of controlling the simulator.

6 References
[1] Kofránek J, Andrlík M, Kripner T, Stodulka P.:

From Art to Industry: Development of Biomedical
Simulators. The IPSI BgD Transactions on
Advanced Research 1 #2[Special Issue on the
Research with Elements of Multidisciplinary,
Interdisciplinary, and Transdisciplinary: The Best
Paper Selection for 2005], 63-68. 2005. New
York, Frankfurt, Tokyo, Belgrad. 2005. Journal
(Full)

[2] Kofránek J, Andrlík M, Kripner T.: Multimedia
educational simulators in pathophysiology - how
to design and why to use them. In: Gamal Attiya
and Yskandar Hamam editors. Proceedings of the
5th EUROSIM Congress on Modeling and
Simulation. Full Papers CD Volume.; Marne la
Vallee, Paris, France: Eurosim - Francosim -
Argesim; 2004. p. Simulation in Education 22-27.

[3] Comenius Johann Amos (1592-1670): The Great
Didactic. ed. by M. W. Keatinge (PDF files at
Roehampton), available on:
http://onlinebooks.library.upenn.edu/webbin/book
/lookupid?key=olbp34684

[4] Clark Aldrich's web page:
http://clarkaldrich.blogspot.com/2007/03/immersi
ve-learning-simulation_14.html

[5] Harel, D.: Statecharts (1987): A visual formalism
for complex systems. Science of Computer
Programming, vol. 8, 1987, 231-274.

[6] http://physiome.cz/atlas

7 Acknowledgement
This research was supported by aid grant MŠMT
2C06031 and BAJT servis s.r.o company.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

