
BEYOND THE LIMITS OF KINEMATICS IN

PLANNING KEYFRAMED BIPED LOCOMOTION

Tamás Juhász
1,2

, Tamás Urbancsek
2

1
 Department Virtual Engineering, Fraunhofer Institute for Factory Operation and

Automation, Sandtorstrasse 22, 39106 Magdeburg, Germany
2
 Department of Control Engineering and Information Technology, Budapest University of

Technology and Economics, Magyar tudósok krt. 2, 1117 Budapest, Hungary

Tamas.Juhasz@iff.fraunhofer.de (Tamás Juhász)

Abstract

The methods of locomotion planning for biped robots have been studied for many years.

Presently, several companies have announced the commercial availability of various

humanoid robot prototypes with diverse controllability.

However a family of existing humanoids is being controlled using so called “keyframes”. The

keyframe technique lets us specify the target angular position of the joints only in discrete

time-steps, whereby the length of the individual intervals is also defined. These platforms

have built-in path planning algorithms and have their own control electronics: i.e. no external

feedback is given about actual joint torques. The widely spread locomotion planning methods

cannot be applied directly to this kind of robots, thus they need a different approach.

In this paper, we present an iterative technique of keyframed humanoid motion planning

based on numerical optimization methods for the application of stable biped stair climbing.

Using inverse kinematics and the existing techniques for creating keyframed character

animation, one can relatively easily generate a reference movement, which can be executed

real-time using a fast kinematics model of the given robot. In this case we get the reference

time curves of the robot segments’ poses. It is a fact, that due to gravitational-, inertial- and

frictional effects, the motion won’t exactly be the same in the real world. Assuming we have

built a detailed, sophisticated dynamics model (running offline) we can formulate a norm that

describes the distance between these outputs. In this article we present our idea, how the

motion could be automatically tailored by lowering this norm using numerical methods in a

way, that the output of the dynamic model better approximates the reference motion.

Finally, we show our experimental results obtained by implementations running within a

modern simulation environment as well as on our test humanoid platform.

This paper is an extended and revised version of [1].

Keywords: Humanoid, Keyframe, Motion planning, Dynamics, Stair climbing

Presenting Author’s biography

Tamás Juhász is an early stage researcher at the Virtual Engineering

Expert Group of Fraunhofer Institute in Magdeburg, Germany. Since

2003 – being a PhD student of informatics at BUTE, Hungary – he has

published many lectured articles in the field of mobile robot simulation

and advanced 3D visualization techniques.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Introduction

Humanoids should keep their dynamic balance in

order not to fall down while walking. Therefore

besides geometric motion planning and kinematics,

dynamical effects should also be taken into account.

In case of a biped locomotion, start and goal positions

are given in a virtual environment. Some existing

motion-planner methods (the lazy RPM procedure [2],

the randomized planning techniques [3][5] or the

footstep planning [4]) give continuous time functions

how to move the robot through the desired path. This

means, the reference signal for all the robot joints will

be set in every moment.

Albeit, these techniques cannot be used directly for

those kinds of systems, which can only be regulated in

a discrete time manner externally (using so called

“keyframe” inputs). Keyframed humanoids allow the

user to specify target servo angles only for discrete

moments; their onboard path planner interpolates the

reference path for the actual time using nth
 order

polynomial approximations.

In a special case, when n = 1, we talk about linear

interpolation: the reference path in servo space is a

broken line; the reference (angular) speed of the every

(rotational) servo remains constant within each of the

intervals.

The joint correction signals are mostly produced in a

decoupled way by on-board or in-servo controllers

and the user has no access to them.

Some systems do not even allow real-time tracking of

motion execution; actual joint values cannot be read

externally. For these robots the whole motion shall be

planned in advance.

This paper deals with these biped platforms and

proposes a different approach for locomotion

planning.

2 Keyframe based motion planning

2.1 Keyframed character animation

Among the various numerical techniques, the

keyframe methodology can also be used to define a

robot motion.

Each keyframe includes a snapshot of robot servo

parameters and a timestamp that defines the time of

sampling. Thereby a robot motion can be defined by a

series of keyframes – hereinafter we will refer to them

also as motion phases.

2.2 Role of inverse kinematics and inverse

geometry in motion planning

The keyframe-based method combined with inverse

kinematics makes character animation design faster.

The animator defines the new motion phase by

altering the previous one. He can move segments both

in servo and in Cartesian space: e.g. lifting up left foot

or translating body forward. Servo values are

computed then by the inverse geometric model. If the

animator takes a snapshot of the actual robot state a

new motion phase is created.

Using this technique an arbitrary locomotion can be

designed. The reference motion is played with help of

the kinematic model.

2.3 Kinematic model

Let us assume our biped robot has J joints, we will

refer them to 1 ≤ j ≤ J. The robot has then (J+1)

segments indexed by 0 ≤ j ≤ J. We can define K

keyframes, when we define the τk length of the kth

time interval (����τ vector) between the phases k and

(k-1), as well as the qkj joint angles

(����
][JK×

Θ matrix).

The robot has a hierarchical structure, where the torso

segment plays the role of the root node. If we know all

joint angles, we can calculate the local pose of each

segment (where “local” means relative to the torso).

Let us call the initial pose of the torso segment 0

0
Γ

which is a 6 component vector in global Cartesian

space as 3 position coordinates and 3 Euler-angles

describe the pose for each segment. The upper left

index denotes the base coordinate system of the

humanoid attached to the robot torso, the right index

refers to the initial state at t = 0.

In kinematical modeling it can be assumed that the

pose of a single robot segment does not change during

the motion phase. This so called “unyielding” object is

always one of the feet: it stays on the ground and

every segment moves relatively to it during the given

phase. The corresponding objects’ references are

stored in the u vector with length k.

If we know the interpolation method between the

keyframes, we can formulate a continuous vector-

functional, describing the pose of the jth
 segment in

global Cartesian-space:

 Jjt
Kinj ≤<0,),,,,(0

0
ΓτuΘΓ (1)

The
Kinj
Γ vector has a dimension of 6 (position x,y,z

+ Euler-angles φ,υ,ψ).
Kin
Γ denotes the aggregate

pose vector with length of 6*(J+1), representing the

time-dependent pose of all segments:

),,,,(0

0
t

Kin
ΓτuΘΓ (2)

From now on, the
Kin
Γ functional will be called the

kinematic model of the robot.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

3 Iterative motion correction using

dynamics model

Let us assume we have a well designed reference

motion using the keyframe-technique: apparently this

will run only in the (ideal) virtual world smoothly.

Nevertheless this motion represents exactly what we

would like to achieve with the real robot (e.g.:

stepping forward by a given step length). If the servos

could exactly follow the reference signal,)(tKin
Γ

would describe the robot state in Cartesian space.

Considering the dynamic effects of the real world,

there will be some difference between the real and the

reference motions (e.g.: the given forward-step will be

shorter or longer) – in extreme case the humanoid

might also fall down.

This paper presents an algorithm that finds a new

motion that approximates
Kin
Γ better in real world.

3.1 Output of dynamics simulation

As a first step, the dynamic model of our robot has to

be built (the general procedure is not included in this

article, but details can be found in [7]).

Our motion-optimization process uses an iterative

approach, where the Θ input matrix and τ will vary

step by step. Using dynamic simulation we have the

following output after i steps:

),,,,(0

0

)()()(tii

Dyn

i ΓτuΘΓ (3)

Dyn

i)(Γ denotes a vector-vector function of dimension

6*(J+1), and it represents the pose of all the robot

segments depending on time, but using the dynamic

model for the particular time.

3.2 Iterative conformance enhancement

Taking a given iteration into account, the difference of

the actual output of the dynamics simulation and the

reference motion is also a vector-scalar function:

KinDyn

ii ΓΓΓ −=)()((4)

In some cases the position error has higher priority

than the orientation error; furthermore it is usually

desired to have better compliance on the feet as for

example on the head. For these requirements we can

define a

 ><= Jwwwdiag ,...,, 10W (5)

diagonal constant weight matrix with dimensions

[(J+1)*6 × (J+1)*6]). We can define a weighted error

function with help of inner product:

 () >⋅⋅=<Ε)()(

2

)(, iii t ΓWΓW (6)

Using this error function we want to define a χ norm,

in order to have a non-negative scalar value that

represents the correspondence between the reference

motion and the simulated one (considering the whole

simulation length is T). At the i
th

 step it computes

 { } dtt

T

iiii ⋅Ε= ∫
0

2

)(0

0

)()()()(,,, ΓτuΘχ (7)

One can easily see, that χ defines a norm for

functions)(tΓ which forms a Hilbert space over this

norm.

As we want to lower this norm, we need to alter the

)(iΘ and)(iτ input parameters in each step, and

leave the other input variables constant. During the

steps some boundary conditions (initial and final servo

configurations, motion duration, etc.) have to be

fulfilled.

We would like to have a monotonous descending

series of iχ elements to reach the optimal input

keyframes:

{ }

),(

,,,minarg),(0

0

τΘ

ΓτuΘτΘ χ=optopt
 (8)

In the next section we present a numerical solution for

this problem.

3.3 Numerical solution

The goal of the numerical correction algorithm is that

the dynamical behavior approximates the reference

movement.

Let us define D as a subset of input parameter domain

),(:0 KinKin τΘx = with the following properties: D

shall be the largest connected subset that fulfills all the

boundary conditions and contains all the motion

parameter combinations where the robot does not fall

down and contains the reference movement.

Before applying any numerical optimization method

the following presumptions must be taken

)(xχ shall be continuous and differentiable over D,

close to the boundaries of D the negative gradient

χ∇− points inwards,

the optimum),(optoptopt τΘx = lies inside of D,

there are no other local extremities.

Without the exact mathematical proof, we show that

in practical cases these presumptions hold

As long as the robot does not fall down, any

infinitesimal change in input parameters effects a

proportional infinitesimal change in norm. It is clear

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

that there will be a discontinuity in the norm function

where the robot falls.

Nearby the boundaries of D the robot motion becomes

unstable. The robot body starts to oscillate, therefore

the robot segments will have more significant

difference from the reference motion, and thus the χ

norm grows. Consequently, the negative gradient

vector points inwards.

The animator can create a motion, which “seems quite

dynamic”; the robot remains standing, and does what

he want; thus the motion is in D and close to the

optimum we search.

It is clear that the final motion will not match the

reference motion. It might be impossible to follow it

exactly due to ignored dynamics. Therefore, its norm

will not reach zero. A local optimum will be where the

gradient is zero.

)(xχ is a strongly non-linear function of its input

parameters with narrow potential tunnels, therefore we

decided to implement the non-linear conjugated

gradient method described in [8].

For this method we needed the gradient of the

potential function. We computed it component by

component numerically using partial differentials. For

the i
th

 component:

ii

i

i
i

ex

x

xxx
x

*

,
)()(

)(

ε

χχ
χ

±=∆










∆

−∆+
=∇

 (9)

where ie is the i
th

 basis vector of the input space. As

the D is bounded, it can happen that a ixx ∆+ vector

points outside of D. Then one has to take the inverse

of ix∆ . In an extreme case if it still points outside of

D, then we have to renounce the derivative in this

direction at the particular step. In this step the

dynamical simulation has to be executed (J*K+K+1)

times.

At initial phase, the algorithm has to perform a line

search along the direction of steepest descent. It is an

iterative method that should find the minimum along

this line. It is a one-dimensional search method. The

result is x1.

After all, the algorithm consists of 5 steps:

1. Compute the gradient in the actual position: xn

2. Compute βn according the, Polak–Ribière formula










∇∇

∇−∇∇
=

−−

− 0,
)()(

))()((*)(
max

11

1

n

T

n

nn

T

n
n

xx

xxx

χχ

χχχ
β

 (10)

3. Compute the next conjugated direction

 1)(−Λ+∇=Λ nnnnx xx βχ (11)

4. Perform a line search along the last conjugated

direction:

)*(min nnn
n

xx Λ+αχ
α

 (12)

5. Next iteration will be then

 xn + 1 = xn + αn*Λxn (13)

The algorithm ends if the gradient sinks below a given

threshold. Note that the stability reserve of motion is

not guaranteed by the algorithm. It is mainly

depending on the reference motion.

4 Implementation

At the Department of Control Engineering and

Information Technology of Budapest University of

Technology and Economics we have a modified

version of a KHR-1 humanoid robot (see Fig. 1), the

original of which is a commercial product of Kondo

Kagaku Co. Ltd., Japan. This experimental biped

platform is 34 centimeters tall, has 21 degrees of

freedom, and has an onboard control electronic that

can interpret only the aforementioned keyframe-based

motions.

Fig. 1: Our humanoid (Kondo KHR-1)

4.1 Kinematics modeler

We have developed a kinematics-based gait-authoring

application for keyframe-controlled robots. This

program can be used by an experienced 3D animator

to create the keyframes of a desired motion in the

virtual world. For this purpose many kinds of

interactive tools stay at the user’s disposal (a

screenshot of the user interface can be seen in section

5, on Fig. 5).

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

For each phase of the motion that is currently being

edited, one can use the constrained inverse kinematics

tools first with the mouse for draft setups, and later

fine tune a given group of joints either with the mouse

or with the keyboard manually. The length of the

individual phases can also be varied, of course.

Assuming our robot is “standing at attention” (we call

it as the initial pose), in our example application (see

section 5) our goal was to make the robot climb 1-1

steps with both legs over a stair having two steps with

length of 5 cm and riser of 3 cm, and then finish

movement with the initial pose. We have modeled this

locomotion using 9 keyframes (phases), where the

startup and the final phase contain exactly the same

servo angles. In the meanwhile the startup double

support phase (both feet on the floor) transfers to a

single support phases (standing on the right foot,

swinging the left one and vice versa), and finally we

finish in a double support phase again at the top of the

stair.

The output of this task is a smooth, harmonic

movement in the ideal virtual world (Note, that for the

time being we neglect the dynamical behavior of the

robot). If we play back this motion on a real robot, it

definitely behaves differently. It is predictable, that

due to inertial-, contact- and friction forces the real

dynamical behavior will issue a pose error at the end,

containing two components: our real robot will

probably step shorter or longer than 5 cm (position

error), and it might deflect from the ideal forward

direction (orientation error).

4.2 Using dynamic multibody simulation

In order to overcome the pose error between the

realized- and the designed reference motion, we use

our presented iterative procedure that reduces this

difference. For our method we need a fair dynamic

model of the robot.

The Dymola [9] is a multi-engineering modeling and

simulation tool, developed by Dynasim AB, Sweden.

The multi-engineering capabilities of Dymola presents

new and revolutionary solutions for modeling and

simulation as it is possible to simulate the dynamic

behavior and complex interactions between systems of

many engineering fields, such as mechanical,

electrical, thermodynamic, hydraulic, pneumatic,

thermal and control systems. This means that users of

Dymola can build more integrated models and have

simulations results that better depict reality. Dymola

interprets the declarative object-oriented modeling

language Modelica [10], and has interfaces to use

additional external user modules written in C or

FORTRAN languages.

In Dymola we have built a detailed electro-mechanics

model (Fig. 2) of the KHR-1 humanoid:

Fig. 2: Humanoid model in Dymola environment

We have developed special building components,

which extend the standard models from

Modelica.Mechanics.MultiBody library. We had to

model contact between objects (and collision response

in this manner) and the KRS-784 ICS Digital Servo,

which is used in the real KHR-1 robot.

4.2.1 Servo model

The basic actuated revolute joint is encapsulated in a

complex servo model (Fig. 3) that contains also the

electronic model of the KRS-784. The target angle

position control loop is implemented with a simple P

controller (the closed loop contains an integrator

element, because of the DC motor model). Some

parameters of the servo model (e.g.: permanent DC

motor’s Vnominal, Inominal, Ra, La electromagnetic

parameters, rotor inertia, gear ratio, nominal rpm

speed) can be found in the data-sheet of the KRS-784,

the others and are identified after doing some tests.

Fig. 3: Our model of a KRS-784 servo

4.2.2 Contact- and collision model

We had to extend the basic Modelica.Mechanics.

MultiBody.Parts.Body rigid body model (containing

shape, mass, inertia tensor and the Newton/Euler

equations of dynamics) with the support of collision

handling (which is not included in standard Modelica

2.2.1 libraries at this time – this is the built in

Modelica library that comes with Dymola 6.0d).

There are always dynamic constraints between the

rigid bodies connected by various joints. Dymola

solves the arisen differential algebraic equations

(DAEs) and ordinary differential equation sets (ODEs)

internally (partially symbolically), where all state

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

variables – including positions and velocities – has to

be differentiable. Thus there is no way to use the other

popular impulse-based collision response method,

which would require sometimes overriding the

objects’ velocities instantaneously. This is not allowed

in Dymola – because this would make the

differentiation of velocity vectors not accomplishable.

Because of this, we must use a force based method in

collision response.

Besides Modelica language, we used partially external

C++ implementation with the popular SOLID

interference detection library [11], which can be used

to retrieve contact points between pairs of objects (it

uses the GJK algorithm [12]), but it does not calculate

the response, by default. We made a spring and

damper material model, and calculate the contact force

in normal direction (along the vector defined by two

contact points) the following way:









≥⋅⋅







⋅

⋅

−
+

<

=
⊥ 0,

1
1

0,0

ppSp

p

F

COLL

NORMAL
&

υε

ε

 (14)

The scalar ‘p’ means the penetration depth [m]. If we

project the relative velocity of the contact points to

normal direction vector, we get the signed ⊥p& [m/s]

component of penetration velocity, the value of which

is stored in ‘vCOLL’ at the moment of first contact. The

spring coefficient is ‘S’ [N/m] and the restitution

factor is ε in the previous formula.

When the relative velocity of two interpenetrating

bodies have nonzero tangential component (tv), it is

very important that we calculate friction forces using a

friction model. Without this effort our virtual robot

won’t be able to make any translational movement at

all. These forces are parallel to the plane, the normal

of which is the vector between the two contact points.

The friction model is the following:









<⋅⋅

>⋅

=
stt

st

st

v ,
v

v

vF
v

vF

F
NORMAL

t

stat

tNORMALkin

FRICTION
µ

µ ,
 (15)

We have two friction coefficients for the static and for

the kinetic cases. The constant speed value stv

represents the limit, which influences whether objects

are considered as sliding or remain resting. The result

of these two forces will act in opposite directions on

both objects in each colliding pair.

4.2.3 Implementing our iterative enhancement

method for the realized motion

We implemented the iterative algorithm also in

Dymola environment. Fig. 4 explains the block

scheme of the implementation, with the three main

software components:

Fig. 4: The three main modules of the implemented

algorithm

The “Kinematic Model” module serves the reference

pose-time functions of all robot segments using linear

keyframe interpolation. The “Enhancer” module can

query the pose of a given segment at any time instant

between 0 and T (the simulation length).

In all iterations the “Dynamic Model” module

calculates actual pose functions for the segments,

using the internally constructed dynamic model. The

Enhancer analyses the difference of these outputs and

calculates the new input keyframes (joint angles and

interval-lengths) according to the method presented in

sections 3.2 and 3.3. The output of the Enhancer is fed

back to the Dynamic Model, thus forming a closed

loop of iterative motion enhancement procedure.

5 Application and results

We tested our locomotion enhancement algorithm on

the KHR-1 humanoid doing a short stair climbing

sequence (see Fig. 5 for a keyframe in our modeler

application).

Fig. 5: A screenshot of the modeler application

Assuming we start with parallel feet at the base level

of the stair, our goal was to make the robot climb 1-1

steps with both legs. Finally we wanted the feet to

finish side-by-side, again. We built a quite steep stair

[]
Kin

6,22Γ

[]9,21Θ0 []90 τ

0

0
Γ

[]9u
Kinematic

Model

Dynamic

Model

Enhancer

[]9,21iΘ []9τi

[]
Dyn

6,22iΓ

Reference Optimization

[]9,211i Θ+

[]91i τ+

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

with step of 5 cm and riser of 3 cm, thus the

demanded locomotion takes 10 cm forward while the

robot is ascending 6 cm.

In our kinematic modeler we approximated this

motion with 9 keyframes, resulting in a total length of

1.5 seconds. After playing the original motion on the

robot, it went 1.3 cm askew and turned about 7

degrees right.

For the enhancement procedure the W diagonal

weight matrix was set to identity in position and 0.1 in

orientation elements, so that angular errors were

punished equally to the arc length of a 10 cm long

section (average height of center of gravity). The

simulation length (T) was set 50% longer than the

total motion time, in order to incorporate the final

robot body oscillation at the end, which should also

have been decayed.

The iterative motion correction algorithm runs very

long. Although a single run of the dynamic simulation

for the humanoid takes 0.5 s in Dymola on our PC,

computation of the gradient requires 199 simulation

runs (1 + K*J+K times, where K=9, J=21) – which

means about 1.5 minutes. In addition the line search

method requires 40 additional iterations, thus a single

enhancement cycle requires ca. 2 minutes (one step

along the conjugate gradient). The dimensionality of

this highly non-linear system needed 22 x 9 = 198

cycles, so finally the total simulation time was

approximately 6.5 hours (because it has O(N
2
) time

complexity).

Fig. 6 shows a snapshot (taken at the same time

instance as Fig. 5) in Dymola environment,

visualizing the contact forces at the feet, too:

Fig. 6: A screenshot taken in Dymola during

simulation of the final motion

In return, the final pose error of the dynamical motion

became minimal, thus we proved that this algorithm

can enhance the realized motion well.

6 Acknowledgement

We would like to acknowledge the European

Commission and the Fraunhofer Institute IFF for

hosting the Marie Curie Early Stage Researcher

Fellowship Program, furthermore the Hungarian

Scientific Research Fund grant No.: T-042634OTKA

and the EuroPR Computers Ltd for their kind support

in practical exploitation of the research results.

7 References

[1] T. Juhász, T. Urbancsek. Beyond the Limits of

Kinematics in Planning Keyframed Biped

Locomotion, Periodica Polytechnica Electrical

Engineering, Budapest, 2007, (accepted)

[2] R. Bohlin and L. Kavraki. Path planning using

Lazy PRM. In Proc. IEEE Int. Conf.Robot. &

Autom. (ICRA), April 2000. version 5. The

Mathworks Inc., Natick, 1998.

[3] S.M. LaValle and J.J Kuffner. Randomized

kinodynamic planning. In Proc. IEEE Int Conf.

Robot. & Autom. (ICRA), May 1999.

[4] J.J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba,

and H. Inoue. Footstep planning among obstacles

for biped robots. In Proc. IEEE/RSJ Int. Conf.

Intell. Robot. & Sys. (IROS), October 2001.

[5] J.J. Kuffner, S.Kagami, K. Nishiwaki, M. Inaba,

and H. Inoue. Dynamically-stable motion

planning for humanoid robots. Autonomous

Robots (special issue on Humanoid Robotics),

12(1):105–118, 2002.

[6] M. Girard. Interactive design of computer-

animated legged animal motion. IEEE Computer

Graphics & Applications, 7(6):39–51, June 1987.

[7] M. Vukobratovic, B. Borovac, D. Surla, and D.

Stokic. Biped Locomotion: Dynamics, Stability,

Control, and Applications. Springer-Verlag,

Berlin, 1990.

[8] Wikipedia Nonlinear conjugate gradient method

http://en.wikipedia.org/wiki/Nonlinear_

conjugate_gradient

[9] Dynasim AB: Dymola – Dynamics Modeling

Laboratory: http://www.dynasim.com

[10] Modelica: http://www.modelica.org

[11] SOLID - Software Library for Interference

Detection: http://www.dtecta.com

[12] E. G. Gilbert, D.W. Johnson, and S. S. Keerthi. A

fast procedure for computing the distance

between complex objects in three-dimensional

space. IEEE Journal of Robotics and Automation,

4(2):193–203, 1988.

[13] N. Amato, O. Bayazit, L. Dale, C. Jones, and D.

Vallejo. Choosing good distance metrics and

local planners for probabilistic roadmap methods.

IEEE Trans. Robot. & Autom., 16(4):442–447,

August 2000.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

