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Abstract 

 

The methods of locomotion planning for biped robots have been studied for many years. 

Presently, several companies have announced the commercial availability of various 

humanoid robot prototypes with diverse controllability. 

However a family of existing humanoids is being controlled using so called “keyframes”. The 

keyframe technique lets us specify the target angular position of the joints only in discrete 

time-steps, whereby the length of the individual intervals is also defined. These platforms 

have built-in path planning algorithms and have their own control electronics: i.e. no external 

feedback is given about actual joint torques. The widely spread locomotion planning methods 

cannot be applied directly to this kind of robots, thus they need a different approach. 

In this paper, we present an iterative technique of keyframed humanoid motion planning 

based on numerical optimization methods for the application of stable biped stair climbing. 

Using inverse kinematics and the existing techniques for creating keyframed character 

animation, one can relatively easily generate a reference movement, which can be executed 

real-time using a fast kinematics model of the given robot. In this case we get the reference 

time curves of the robot segments’ poses. It is a fact, that due to gravitational-, inertial- and 

frictional effects, the motion won’t exactly be the same in the real world. Assuming we have 

built a detailed, sophisticated dynamics model (running offline) we can formulate a norm that 

describes the distance between these outputs. In this article we present our idea, how the 

motion could be automatically tailored by lowering this norm using numerical methods in a 

way, that the output of the dynamic model better approximates the reference motion. 

Finally, we show our experimental results obtained by implementations running within a 

modern simulation environment as well as on our test humanoid platform. 

This paper is an extended and revised version of [1].  
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1 Introduction 

Humanoids should keep their dynamic balance in 

order not to fall down while walking. Therefore 

besides geometric motion planning and kinematics, 

dynamical effects should also be taken into account. 

In case of a biped locomotion, start and goal positions 

are given in a virtual environment. Some existing 

motion-planner methods (the lazy RPM procedure [2], 

the randomized planning techniques [3][5] or the 

footstep planning [4]) give continuous time functions 

how to move the robot through the desired path. This 

means, the reference signal for all the robot joints will 

be set in every moment. 

Albeit, these techniques cannot be used directly for 

those kinds of systems, which can only be regulated in 

a discrete time manner externally (using so called 

“keyframe” inputs). Keyframed humanoids allow the 

user to specify target servo angles only for discrete 

moments; their onboard path planner interpolates the 

reference path for the actual time using nth
 order 

polynomial approximations. 

In a special case, when n = 1, we talk about linear 

interpolation: the reference path in servo space is a 

broken line; the reference (angular) speed of the every 

(rotational) servo remains constant within each of the 

intervals. 

The joint correction signals are mostly produced in a 

decoupled way by on-board or in-servo controllers 

and the user has no access to them. 

Some systems do not even allow real-time tracking of 

motion execution; actual joint values cannot be read 

externally. For these robots the whole motion shall be 

planned in advance. 

This paper deals with these biped platforms and 

proposes a different approach for locomotion 

planning. 

2 Keyframe based motion planning 

2.1 Keyframed character animation 

Among the various numerical techniques, the 

keyframe methodology can also be used to define a 

robot motion. 

Each keyframe includes a snapshot of robot servo 

parameters and a timestamp that defines the time of 

sampling. Thereby a robot motion can be defined by a 

series of keyframes – hereinafter we will refer to them 

also as motion phases. 

2.2 Role of inverse kinematics and inverse 

geometry in motion planning 

The keyframe-based method combined with inverse 

kinematics makes character animation design faster. 

The animator defines the new motion phase by 

altering the previous one. He can move segments both 

in servo and in Cartesian space: e.g. lifting up left foot 

or translating body forward. Servo values are 

computed then by the inverse geometric model. If the 

animator takes a snapshot of the actual robot state a 

new motion phase is created. 

Using this technique an arbitrary locomotion can be 

designed. The reference motion is played with help of 

the kinematic model. 

2.3 Kinematic model 

Let us assume our biped robot has J joints, we will 

refer them to 1 ≤ j ≤ J. The robot has then (J+1) 

segments indexed by 0 ≤ j ≤ J. We can define K 

keyframes, when we define the τk length of the kth
 

time interval (����τ vector) between the phases k and 

(k-1), as well as the qkj joint angles 

(����
][ JK×

Θ matrix). 

The robot has a hierarchical structure, where the torso 

segment plays the role of the root node. If we know all 

joint angles, we can calculate the local pose of each 

segment (where “local” means relative to the torso). 

Let us call the initial pose of the torso segment 0

0
Γ  

which is a 6 component vector in global Cartesian 

space as 3 position coordinates and 3 Euler-angles 

describe the pose for each segment. The upper left 

index denotes the base coordinate system of the 

humanoid attached to the robot torso, the right index 

refers to the initial state at t = 0. 

In kinematical modeling it can be assumed that the 

pose of a single robot segment does not change during 

the motion phase. This so called “unyielding” object is 

always one of the feet: it stays on the ground and 

every segment moves relatively to it during the given 

phase. The corresponding objects’ references are 

stored in the u  vector with length k. 

If we know the interpolation method between the 

keyframes, we can formulate a continuous vector-

functional, describing the pose of the jth
 segment in 

global Cartesian-space: 

 Jjt
Kinj ≤<0,),,,,( 0

0
ΓτuΘΓ  (1) 

The
Kinj
Γ vector has a dimension of 6 (position x,y,z 

+ Euler-angles φ,υ,ψ). 
Kin
Γ  denotes the aggregate 

pose vector with length of 6*(J+1), representing the 

time-dependent pose of all segments: 

 ),,,,( 0

0
t

Kin
ΓτuΘΓ   (2) 

From now on, the 
Kin
Γ  functional will be called the 

kinematic model of the robot. 
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3 Iterative motion correction using 

dynamics model 

Let us assume we have a well designed reference 

motion using the keyframe-technique: apparently this 

will run only in the (ideal) virtual world smoothly. 

Nevertheless this motion represents exactly what we 

would like to achieve with the real robot (e.g.: 

stepping forward by a given step length). If the servos 

could exactly follow the reference signal, )(tKin
Γ  

would describe the robot state in Cartesian space. 

Considering the dynamic effects of the real world, 

there will be some difference between the real and the 

reference motions (e.g.: the given forward-step will be 

shorter or longer) – in extreme case the humanoid 

might also fall down. 

This paper presents an algorithm that finds a new 

motion that approximates 
Kin
Γ  better in real world. 

3.1 Output of dynamics simulation 

As a first step, the dynamic model of our robot has to 

be built (the general procedure is not included in this 

article, but details can be found in [7]). 

Our motion-optimization process uses an iterative 

approach, where the Θ  input matrix and τ will vary 

step by step. Using dynamic simulation we have the 

following output after i steps: 

 ),,,,( 0

0

)()()( tii

Dyn

i ΓτuΘΓ  (3) 

Dyn

i)(Γ  denotes a vector-vector function of dimension 

6*(J+1), and it represents the pose of all the robot 

segments depending on time, but using the dynamic 

model for the particular time. 

3.2 Iterative conformance enhancement 

Taking a given iteration into account, the difference of 

the actual output of the dynamics simulation and the 

reference motion is also a vector-scalar function: 

 
KinDyn

ii ΓΓΓ −= )()(   (4) 

In some cases the position error has higher priority 

than the orientation error; furthermore it is usually 

desired to have better compliance on the feet as for 

example on the head. For these requirements we can 

define a  

 ><= Jwwwdiag ,...,, 10W   (5) 

diagonal constant weight matrix with dimensions 

[(J+1)*6 × (J+1)*6]). We can define a weighted error 

function with help of inner product: 

 ( ) >⋅⋅=<Ε )()(

2

)( , iii t ΓWΓW  (6) 

Using this error function we want to define a χ norm, 

in order to have a non-negative scalar value that 

represents the correspondence between the reference 

motion and the simulated one (considering the whole 

simulation length is T). At the i
th

 step it computes 

 { } dtt

T

iiii ⋅Ε= ∫
0

2

)(0

0

)()()( )(,,, ΓτuΘχ  (7) 

One can easily see, that χ  defines a norm for 

functions )(tΓ  which forms a Hilbert space over this 

norm.  

As we want to lower this norm, we need to alter the 

)(iΘ  and )(iτ  input parameters in each step, and 

leave the other input variables constant. During the 

steps some boundary conditions (initial and final servo 

configurations, motion duration, etc.) have to be 

fulfilled. 

We would like to have a monotonous descending 

series of iχ  elements to reach the optimal input 

keyframes: 

 
{ }

),(

,,,minarg),( 0

0

τΘ

ΓτuΘτΘ χ=optopt
 (8) 

In the next section we present a numerical solution for 

this problem. 

3.3 Numerical solution 

The goal of the numerical correction algorithm is that 

the dynamical behavior approximates the reference 

movement. 

Let us define D as a subset of input parameter domain 

),(:0 KinKin τΘx =  with the following properties: D 

shall be the largest connected subset that fulfills all the 

boundary conditions and contains all the motion 

parameter combinations where the robot does not fall 

down and contains the reference movement. 

Before applying any numerical optimization method 

the following presumptions must be taken  

)(xχ shall be continuous and differentiable over D, 

close to the boundaries of D the negative gradient 

χ∇−  points inwards, 

the optimum ),( optoptopt τΘx =  lies inside of D, 

there are no other local extremities. 

Without the exact mathematical proof, we show that 

in practical cases these presumptions hold 

As long as the robot does not fall down, any 

infinitesimal change in input parameters effects a 

proportional infinitesimal change in norm. It is clear 
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that there will be a discontinuity in the norm function 

where the robot falls. 

Nearby the boundaries of D the robot motion becomes 

unstable. The robot body starts to oscillate, therefore 

the robot segments will have more significant 

difference from the reference motion, and thus the χ  

norm grows. Consequently, the negative gradient 

vector points inwards. 

The animator can create a motion, which “seems quite 

dynamic”; the robot remains standing, and does what 

he want; thus the motion is in D and close to the 

optimum we search. 

It is clear that the final motion will not match the 

reference motion. It might be impossible to follow it 

exactly due to ignored dynamics. Therefore, its norm 

will not reach zero. A local optimum will be where the 

gradient is zero. 

)(xχ  is a strongly non-linear function of its input 

parameters with narrow potential tunnels, therefore we 

decided to implement the non-linear conjugated 

gradient method described in [8]. 

For this method we needed the gradient of the 

potential function. We computed it component by 

component numerically using partial differentials. For 

the i
th

 component: 

 

ii

i

i
i

ex

x

xxx
x

*

,
)()(

)(

ε

χχ
χ

±=∆










∆

−∆+
=∇

 (9) 

where ie  is the i
th

 basis vector of the input space. As 

the D is bounded, it can happen that a ixx ∆+ vector 

points outside of D. Then one has to take the inverse 

of ix∆ . In an extreme case if it still points outside of 

D, then we have to renounce the derivative in this 

direction at the particular step. In this step the 

dynamical simulation has to be executed (J*K+K+1) 

times. 

At initial phase, the algorithm has to perform a line 

search along the direction of steepest descent. It is an 

iterative method that should find the minimum along 

this line. It is a one-dimensional search method. The 

result is x1. 

After all, the algorithm consists of 5 steps: 

1. Compute the gradient in the actual position: xn  

2. Compute βn according the, Polak–Ribière formula 










∇∇

∇−∇∇
=

−−

− 0,
)()(

))()((*)(
max

11

1

n

T

n

nn

T

n
n

xx

xxx

χχ

χχχ
β

 (10) 

3. Compute the next conjugated direction 

 

 1)( −Λ+∇=Λ nnnnx xx βχ  (11) 

4. Perform a line search along the last conjugated 

direction: 

 )*(min nnn
n

xx Λ+αχ
α

 (12) 

5. Next iteration will be then  

  xn + 1 = xn + αn*Λxn (13) 

The algorithm ends if the gradient sinks below a given 

threshold. Note that the stability reserve of motion is 

not guaranteed by the algorithm. It is mainly 

depending on the reference motion. 

4 Implementation 

At the Department of Control Engineering and 

Information Technology of Budapest University of 

Technology and Economics we have a modified 

version of a KHR-1 humanoid robot (see Fig. 1), the 

original of which is a commercial product of Kondo 

Kagaku Co. Ltd., Japan. This experimental biped 

platform is 34 centimeters tall, has 21 degrees of 

freedom, and has an onboard control electronic that 

can interpret only the aforementioned keyframe-based 

motions. 

 

Fig. 1: Our humanoid (Kondo KHR-1) 

4.1 Kinematics modeler 

We have developed a kinematics-based gait-authoring 

application for keyframe-controlled robots. This 

program can be used by an experienced 3D animator 

to create the keyframes of a desired motion in the 

virtual world. For this purpose many kinds of 

interactive tools stay at the user’s disposal (a 

screenshot of the user interface can be seen in section 

5, on Fig. 5). 
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For each phase of the motion that is currently being 

edited, one can use the constrained inverse kinematics 

tools first with the mouse for draft setups, and later 

fine tune a given group of joints either with the mouse 

or with the keyboard manually. The length of the 

individual phases can also be varied, of course. 

Assuming our robot is “standing at attention” (we call 

it as the initial pose), in our example application (see 

section 5) our goal was to make the robot climb 1-1 

steps with both legs over a stair having two steps with 

length of 5 cm and riser of 3 cm, and then finish 

movement with the initial pose. We have modeled this 

locomotion using 9 keyframes (phases), where the 

startup and the final phase contain exactly the same 

servo angles. In the meanwhile the startup double 

support phase (both feet on the floor) transfers to a 

single support phases (standing on the right foot, 

swinging the left one and vice versa), and finally we 

finish in a double support phase again at the top of the 

stair. 

The output of this task is a smooth, harmonic 

movement in the ideal virtual world (Note, that for the 

time being we neglect the dynamical behavior of the 

robot). If we play back this motion on a real robot, it 

definitely behaves differently. It is predictable, that 

due to inertial-, contact- and friction forces the real 

dynamical behavior will issue a pose error at the end, 

containing two components: our real robot will 

probably step shorter or longer than 5 cm (position 

error), and it might deflect from the ideal forward 

direction (orientation error).  

4.2 Using dynamic multibody simulation 

In order to overcome the pose error between the 

realized- and the designed reference motion, we use 

our presented iterative procedure that reduces this 

difference. For our method we need a fair dynamic 

model of the robot. 

The Dymola [9] is a multi-engineering modeling and 

simulation tool, developed by Dynasim AB, Sweden. 

The multi-engineering capabilities of Dymola presents 

new and revolutionary solutions for modeling and 

simulation as it is possible to simulate the dynamic 

behavior and complex interactions between systems of 

many engineering fields, such as mechanical, 

electrical, thermodynamic, hydraulic, pneumatic, 

thermal and control systems. This means that users of 

Dymola can build more integrated models and have 

simulations results that better depict reality. Dymola 

interprets the declarative object-oriented modeling 

language Modelica [10], and has interfaces to use 

additional external user modules written in C or 

FORTRAN languages. 

In Dymola we have built a detailed electro-mechanics 

model (Fig. 2) of the KHR-1 humanoid:  

 

Fig. 2: Humanoid model in Dymola environment 

We have developed special building components, 

which extend the standard models from 

Modelica.Mechanics.MultiBody library. We had to 

model contact between objects (and collision response 

in this manner) and the KRS-784 ICS Digital Servo, 

which is used in the real KHR-1 robot. 

4.2.1 Servo model 

The basic actuated revolute joint is encapsulated in a 

complex servo model (Fig. 3) that contains also the 

electronic model of the KRS-784. The target angle 

position control loop is implemented with a simple P 

controller (the closed loop contains an integrator 

element, because of the DC motor model). Some 

parameters of the servo model (e.g.: permanent DC 

motor’s Vnominal, Inominal, Ra, La electromagnetic 

parameters, rotor inertia, gear ratio, nominal rpm 

speed) can be found in the data-sheet of the KRS-784, 

the others and are identified after doing some tests. 

 

Fig. 3: Our model of a KRS-784 servo 

4.2.2 Contact- and collision model 

We had to extend the basic Modelica.Mechanics. 

MultiBody.Parts.Body rigid body model (containing 

shape, mass, inertia tensor and the Newton/Euler 

equations of dynamics) with the support of collision 

handling (which is not included in standard Modelica 

2.2.1 libraries at this time – this is the built in 

Modelica library that comes with Dymola 6.0d). 

There are always dynamic constraints between the 

rigid bodies connected by various joints. Dymola 

solves the arisen differential algebraic equations 

(DAEs) and ordinary differential equation sets (ODEs) 

internally (partially symbolically), where all state 
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variables – including positions and velocities – has to 

be differentiable. Thus there is no way to use the other 

popular impulse-based collision response method, 

which would require sometimes overriding the 

objects’ velocities instantaneously. This is not allowed 

in Dymola – because this would make the 

differentiation of velocity vectors not accomplishable. 

Because of this, we must use a force based method in 

collision response. 

Besides Modelica language, we used partially external 

C++ implementation with the popular SOLID 

interference detection library [11], which can be used 

to retrieve contact points between pairs of objects (it 

uses the GJK algorithm [12]), but it does not calculate 

the response, by default. We made a spring and 

damper material model, and calculate the contact force 

in normal direction (along the vector defined by two 

contact points) the following way: 

 









≥⋅⋅







⋅

⋅

−
+

<

=
⊥ 0,

1
1

0,0

ppSp

p

F

COLL

NORMAL
&

υε

ε

  

 (14) 

The scalar ‘p’ means the penetration depth [m]. If we 

project the relative velocity of the contact points to 

normal direction vector, we get the signed ⊥p&  [m/s] 

component of penetration velocity, the value of which 

is stored in ‘vCOLL’ at the moment of first contact. The 

spring coefficient is ‘S’ [N/m] and the restitution 

factor is ε  in the previous formula. 

When the relative velocity of two interpenetrating 

bodies have nonzero tangential component ( tv ), it is 

very important that we calculate friction forces using a 

friction model. Without this effort our virtual robot 

won’t be able to make any translational movement at 

all. These forces are parallel to the plane, the normal 

of which is the vector between the two contact points. 

The friction model is the following: 

 









<⋅⋅

>⋅

=
stt

st

st

v  ,
v 

 

v  

vF
v

vF

F
NORMAL

t

stat

tNORMALkin

FRICTION
µ

µ ,
 (15) 

We have two friction coefficients for the static and for 

the kinetic cases. The constant speed value stv  

represents the limit, which influences whether objects 

are considered as sliding or remain resting. The result 

of these two forces will act in opposite directions on 

both objects in each colliding pair. 

4.2.3 Implementing our iterative enhancement 

method for the realized motion 

We implemented the iterative algorithm also in 

Dymola environment. Fig. 4 explains the block 

scheme of the implementation, with the three main 

software components: 

 

Fig. 4: The three main modules of the implemented 

algorithm 

The “Kinematic Model” module serves the reference 

pose-time functions of all robot segments using linear 

keyframe interpolation. The “Enhancer” module can 

query the pose of a given segment at any time instant 

between 0 and T (the simulation length). 

In all iterations the “Dynamic Model” module 

calculates actual pose functions for the segments, 

using the internally constructed dynamic model. The 

Enhancer analyses the difference of these outputs and 

calculates the new input keyframes (joint angles and 

interval-lengths) according to the method presented in 

sections 3.2 and 3.3. The output of the Enhancer is fed 

back to the Dynamic Model, thus forming a closed 

loop of iterative motion enhancement procedure. 

5 Application and results 

We tested our locomotion enhancement algorithm on 

the KHR-1 humanoid doing a short stair climbing 

sequence (see Fig. 5 for a keyframe in our modeler 

application). 

 

Fig. 5: A screenshot of the modeler application 

Assuming we start with parallel feet at the base level 

of the stair, our goal was to make the robot climb 1-1 

steps with both legs. Finally we wanted the feet to 

finish side-by-side, again. We built a quite steep stair 

[ ]
Kin

6,22Γ  

[ ]9,21Θ0  [ ]90 τ  

0

0
Γ  

[ ]9u  
Kinematic 

Model 

Dynamic 

Model 

Enhancer 

[ ]9,21iΘ  [ ]9τi  

[ ]
Dyn

6,22iΓ  

Reference Optimization 

[ ]9,211i Θ+  

[ ]91i τ+  
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with step of 5 cm and riser of 3 cm, thus the 

demanded locomotion takes 10 cm forward while the 

robot is ascending 6 cm. 

In our kinematic modeler we approximated this 

motion with 9 keyframes, resulting in a total length of 

1.5 seconds. After playing the original motion on the 

robot, it went 1.3 cm askew and turned about 7 

degrees right. 

For the enhancement procedure the W diagonal 

weight matrix was set to identity in position and 0.1 in 

orientation elements, so that angular errors were 

punished equally to the arc length of a 10 cm long 

section (average height of center of gravity). The 

simulation length (T) was set 50% longer than the 

total motion time, in order to incorporate the final 

robot body oscillation at the end, which should also 

have been decayed. 

The iterative motion correction algorithm runs very 

long. Although a single run of the dynamic simulation 

for the humanoid takes 0.5 s in Dymola on our PC, 

computation of the gradient requires 199 simulation 

runs (1 + K*J+K times, where K=9, J=21) – which 

means about 1.5 minutes. In addition the line search 

method requires 40 additional iterations, thus a single 

enhancement cycle requires ca. 2 minutes (one step 

along the conjugate gradient). The dimensionality of 

this highly non-linear system needed 22 x 9 = 198 

cycles, so finally the total simulation time was 

approximately 6.5 hours (because it has O(N
2
) time 

complexity). 

Fig. 6 shows a snapshot (taken at the same time 

instance as Fig. 5) in Dymola environment, 

visualizing the contact forces at the feet, too: 

 

Fig. 6: A screenshot taken in Dymola during 

simulation of the final motion 

In return, the final pose error of the dynamical motion 

became minimal, thus we proved that this algorithm 

can enhance the realized motion well. 
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