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Abstract

Switching systems are very common in various ergging fields (e.g. hydraulic systems with valveglectric
systems with diodes, relays,..., mechanical systeiitis @utches...). Such systems are a particulae aHs
hybrid systems. These systems are characterized Biite State Automaton (FSA) and a set of dynamic
systems, each one corresponding to a state of 8% Fhe change of states can be either controlied o
autonomous. The aim of this work is to investigdue structural controllability for controlled switing linear
systems modelled by bond graph.

Several concepts appeared in the last decade addyethe controllability problem of these systems:
controllable sublanguage concept [9], hybrid cdighility concept [10], between-block controllalyliconcept
[11]. Controlled switching linear systems (CSLS) wich we focus in this work belong to the hybrid
controllability concept as they address a reachglgitoblem of hybrid states.

In the other hand, the bond graph concept is amreite representation of physical systems. Sonentaeorks
permit to highlight structural propertiel [7], the structural controllability property is studieding simple
causal manipulations on the bond graph model. Hective of this work is to extend these propert®@€SLS
systems. The bond graph structure junction contaiftsmations on the type of the elements constiguthe
system, and how they are interconnected, whatéeenamerical values of parameters.

The structural controllability of CSLS is studieding simple causal manipulations on the bond graptel.
For that, formal representation of structural coltability subspace, is given for bond graph modelis
calculated using causal manipulations. The basthisfsubspace is used to propose a graphical puoedd
study the structural controllability.
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nxm
1 Introduction and B(g;) DR™™.
A broad class of hybrid systems is composed ofhe characteristics of CSLS are:
physical processes with switching devices. Such
processes are called switching systems and are ve
common in various engineering fields (e.g. hyd@auli
systems with valves,.., electric systems with dépde* The admissible region of operation within each
relays,..., mechanical systems with clutches...).s€he mode is the whole state and input space,
systems are characterized by a Finite State Autmmat .
(FSA) and a set of dynamic systems, each Oﬁ%ssumptmns
corresponding to a state of the FSA. The change & We suppose that(s;) and B(o;) matrices are
states can be either controlled or autonomous.ovari
researchers investigated this problem using thel poffonstant on [to,
graph tool [1,2,3,4,5,6]. The ideal and the noralde constantz g, is an arbitrarily small and independent

approaches are used : of modei . For instance, suppose that the dynamics in

- In the non-ideal approach, switches are modeied (1) are given byx=A(g)x+B(c;)u over the finite

resistive elements associated with modulatetime interval [t,,t,,,) . At time t,,, the dynamic in
transformer. The modulation is done using a boole e i -
Varebie Ahterval [ty t.,) is given byx= A(g;)x+B(c;)u.

- In the ideal approach, switches commutatd) We assume that the state vect@) does notjump

instantaneously. Each switch is modelled as a nuiiscontinuously at,.; .
source: effort source for a closed switch state] a
flow source for an open one. This approach is used
this work.

The dynamical subsystem within each mode has a
Rear time invariant form,

t,+7),where 727, >0, and

min

rUnder these assumptions, the CSLS controllability o
(1) was defined:

in the last deCa@gfinition 1 [8] Given any pair of hybrid states,

Several concepts appeared . . 4
P bp (09.%) and (g4.%,), if there exists a timed mode-

addressing the controllability problem: controliabl
sublanguage concept [9], hybrid controllabilityswitching set{(o;_,t,0)}%, and a corresponding
concept [10], between-block controllability concep iecewise continuous-finite input signait), such

[11]. Controlled switching linear systems (CSLS) o . I
which we focus in this work belong to the hybrid.hat system (1) evolving under these two distinct

controllability concept as they address a reactigbil MPUtS is reachable fronty, %) 10 (oq.%;) within a
problem of hybrid states. finite time interval, then the considered systemigl

) , i ) ) controllable, otherwise, system (1) is uncontrdéab
The aim of this work is to investigate the struatur

controllability for controlled switching linear sgsns 2.1 Necessary and sufficient algebraic condition
modelled by bond graph. This paper is organized
follows: The second section, formulates the CSL B .
controllability. Section three recalls some backgmd KNown as{g;} ., , wherei, #i,, for I =1-- k-1.
about bond graph modelling of hybrid systems with

ideal switches. In section four the structuralet —us  define  the rf,mn")  matrix
controllability of these systems is d!scussed usm.gEk (IPSAE [Alkk “'AJZZAil
bond graph approach and using algebraic

characterization. Graphical conditions and proceslur Based on the definition ofE we construct a new
are proposed. Finally, a simple example illustréites matrix £ as follows:

previous results is proposed.

rstly, we assume that one switching-mode set is

Bll] jk ,V..'jl[l(o’,__yn_l) .

B i)=E()=W,...,
2 Controllability of controlled switching & G)=[E" (j,. i, )] 0.q
linear systems o
Consider a Controlled Switching Linear Systems [8 \,Nith b # b F e
given by equation (1): The joint controllability matrices can be definesd a

X(t) = A(a(t)x+B(a(t)u @ W= Q. £ Q). W =[E Q- A Q)] 2

Where XD_Rn is the state varl_ableuDRm 1S the Wk is the k" -orderjoint controllability matrix of the
input variable, 0:R - Q={0; il -, 4} IS @ gystem (1). There exists a joint controllability
piecewise constant switching function agg,x) the coefficient k. of the system, defined in [8]:

hybrid state. According to values of(t) , there exists

= H A7l \— ViE:}
q configurations,o; O{oy, -0, }. So, A(g;) DR™ r = arg rTun(rank W)= rank W)
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Theorem 1 [12] System (1) is controllable, if and only Procedure 1

. kY — .
if rank(W™) =n. 1) Choose a group of base vectegs... 77, in By,

This theorem can be interpreted using geometrif) £ d th hich f
approach. Let us firstly recall some concepts. xpand them tap,,.... 7y /1y~ /1, Which form

Definition 2 (Invariant subspace) [15] Given a matrix® basis of8, +B,,

A and a subspacB = Im(B) , the invariant subspace 3) Repeat this operation, and write a bagis.. 7,
(AB) is defined by:

of W,,
<A|B)dizn:Ai‘1B =B+AB++A"'B (3) Decause .
= W1:WO+Im{AJ./7k, i=1...,0,k=1...,n,}
= venllo s AN i =1,...,9,k=1,.. |
For system (1), [15] defined a subspace sequence asm{nl' Mo Ayfhio | g o}
follows: 4) Write a basisy,,...,n7, of W, by searching the set
2 \ . vl AN j=1,...,9,k=1,.. n,} from left to
UﬁZ(AIBi),UHﬁZ(MUi) j=12,- {_f71 g AT | q o }
= E right,
oo 5) Repeat the operation, and write a basis
and U :ZUk (4) ooy s M1 v A1 3 TOP W
k=1
Because

The following proposition shows the relationship
between the previously defined subspaces and t

joint controllability matrix. = |m{/71:---,’7n| A i=L..9,k=n_ +1,...,n}
Proposition 1 [13] The subspac# (equation 4) and
the k™-order joint controllability matrix W*are
linked by the following relationim(W*| =0 .

=W +Im{An, j=1...,q,k=n_+1...n}

6) By searching the set
{hy-nty A 1=1...,0,k=n_+1...n} and

write @ basiss,,..., 1y vy s1re- My Aystr M,
Based on this proposition, a geometric necessaty afpr W,.,,.
sufficient condition is introduced.

Proposition 2 System (1) is controllable, if and only if 7) Write U =1m{y, ..., Mgy ++ 1Ty 210 ”7%} ®)

v=R". Remark. From the above analysis; a basis bris of
Proof. Easy by using theorem 1 and proposition 1.  the form
2.2 Controllability subspace basis b, A bBLA, A DL ’Arl,l oAb

In this subsection, we give a procedure proveri8) [ & A B A, A b A AL Dy (6)

to calculateV .

Denote the nested subspaces \&§ =B, +:--+B,, B+ A g1 Ay Asgg Pror ,A,rbyno Al,nobno}

Where b OW,.r, 20,1<i, <q,l =11, ,
k=1,--,n,. Because the number of vectors in (6) is

not more thann; there are at mosn different
subsystems whose parameters appear in (6). That is
and U=W. Note that if W, =W,,, for some j, say; for controllability issues; we may assump& n

then W, =W, for k= j and furtherw, =w =u. Withoutloss of generality.
This fact together with dimW <n imply that

q
W, =W, +> AW, j=12,., and
k=1

w :ZFOW] . We haveW, OW, OW, 0---0W

3 Bond graph approach

W, =W =0, _ _ _
The bond graph structure junction contains
wheren, =dimW, . informations on the type of the elements constituti
the system, and how they are interconnected,
Denote p=min{fk: W, =} <n-n, and whatever the numerical values of parameters. The
n =dimwW, k=1...,0. structure junction of a switching bond graph can be

represented by figure 1. Five fields model the
A basis of U can be constructed according to theomponents behaviour, 4 that belong to the standard
following procedure: bond graph formalism; - source field which produces
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energy, - R field which dissipates it, - | and €ldi
which can store it, and the Sw field that is adéted
switching components.

Junction
Structure

Intégral
Causalit;

I .......... T — .

Y LF
i Ml i
[ Controlled even ] ‘ ep[

H (Users, contro
Fig 1. Structure junction

Discrete part of
i the system (PD)

P
transition
§{(%)=0_Ji
Event not controlle )}
(Disturbance, ...)

Assumptions:
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T, andT, . A(o) is a square diagonal matrix whose

diagonal elements are the componentsoofin the
new mode.

To(0) = (I =AO)T,, +A\(O)T,

T,(0) = A@)T,, +(1 ~A@))T, ©
Using (9) and (7) we have:

x=A(g)x+ B (g)u+B,(0)T, (o)

T,(0) = C,(0)x+D_(o)u + D, (0)T, (o) (10)

D, =C(o)x+D' (g)u+D',(0)T (o)

A0) =[(S;; = SiH S1) +(S1+ S S )k k (S, ST 4 ST)F
By(0) =[(Ss +SH Sk H(S,+ S5 S Ik k (S'HS k1S 4k )

1) To take into account the absence of discontems)it B,(0) =[(Sis + SH Sad) + (Syu+ S1H S 2k k (STHS =S )]

we suppose that is no elements in derivative caysal

in the bond graph model in integral causality, befo

Cqy(o) = [ks(slT4 _SE4HSD] » D.(0)= ks(SathHSss_ S

and after switching. It can be obtained by assuming, (o) =[k,(SI,HS,k,~ S,k +k)I,

that switches commutated by pairs.
2) A switch is considered as a discrete control;

Using the ideal approach, a switch can be modelted

shown in figure 2:
e< o~ 0

. .. e=0
aw O: s:0 —HA
Fig 2. Representation of ideal switch

F: S:OW

The corresponding junction matrix
equation 7 [2]:

X Sy Sz Si Sis z
D, - _51T3 Sss Ss S D; (7)
To; - S1T4 - 8;4 S Sus Tin.
y Ssy Sss Ses Sss)( U

C,(0) =LH[-S[, + S,k k{S},- SLH ST)F],

D'y (0) = L H[Syky+ Spk K {SHS 3k =S k #k )]
D'.(0) = L' H[S;5 + Sk K{(S5HS 5= S )1,

k(o) =[1 +(I -2A(0)*A(o)],

ks(0) ==(1 =2A(@)) '\ (0) ,

ky(0) =[1 =(1 =2A(0) (I =A(0)]

k,(0) =(I =2A (@) (1 -A(0)), and

is given byks(a) =[(-SLHS,k{0) + S,k {o) -k (o).

Therefore, for N switches, we havegy modes, and

X=Ax+Byu+B, T, tOftt)

(11)

X = AX+ Bu+ By T, tO[t,-, ty)

dg "in,

D =LD,, L is a positive matrix. Let assume that

H=L(l-S,L)" is an invertible positive matrix.
Then the second row
D = _HQTsFX"' HS?.4Tiq +HS,u

leads

The third line of (7) gives:

Ty =(-Sla* S{HSYPX+(S 4~ SHHS I, +(S 55 HS W

The substitution in the first line of (7) gives:
X=(§,~ SHSHFx+(S,,~ SIS Al H(S#SHS W

By T

Then, we havex = Ax+B;u+B;T,

(8)

Where A =(S; - Si;H SL)F , By =S5+ S;;H Sy and
By =S4+ SizH Sy

to

4 Structural controllability

The bond graph concept is an alternate representati
of physical systems. Some recent works permit to
highlight structural properties of these systems][7

In [7], the structural controllability property is studied
using simple causal manipulations on the bond graph
model. It is shown that the structural rank condept
somewhat different for bond graph models because it
is more precise than for other representations. Our
objective is to extend these properties to CSLS
systems.

In the following we note that:
-BG: acausal (without causality) bond graph model

-BGIl: bond graph model when the preferential
integral causality is affected

After the commutation, the new inputs and outpitits o _ .
the junction structure associated with switchesBGD: bond graph model when the preferential
becomeT, (o) and T,(o), which can be related with derivative causality is affected

ISBN 978-3-901608-32-2 Copyright © 2007 EUROSIM / SLOSIM
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-t': the number of elements in integral causality inet us consider thet. row vectors z (k =1, t\)
BGD.. i indicate the mode whose components are the coefficients of the

-t.: the number of elements in integral causality itvariablesg, and g, in equation (12).

BGD;, when a dualization of the maximum number of i i i

continuous input sources is applied (in order t6'OPErty 2 [6] Thet; row vectorsz (k=1 t) are

eliminate elements in integral causalities). orthogonal to the structural controllability subspa
) o vectors of thei™ mode. We writeZ, =(z), . , and

-tS‘NS: the number of elements remaining in integral K=lits

causality in BGR when a dualization of the R’ =Im(Z).

maximum number of continuous input sources is_ )

applied (in order to eliminate elements in integraf : uncontrollable subspace in mode used to

causalities) and a dualization of the maximum numbeheck orthogonality.

of discrete input sources is applied (in order to

. : i
eliminate these integral causalities). Procedure 2: Calculation ofR,
Let us recall the structural controllability of LTI 1) On the BGR dualize the maximum number of
systems (casg=1). input sources in order to eliminate the elements

remaining in integral causality,
Theorem 2 [7] The system., (A B) is structurally g g y

state controllable if and only if: 2) For each element in integral causality, write th

algebraic relation with elements in derivative
- On the BGIi, all dynamical elements in integralcausality (equation 12),

causality are causally connected with a continuous

control. 3) Write a row vectorz, for each algebraic relation

- BGrank[A B]=n. with the causal path gains. (equation 12),

Property 1 [7] In order to calculate &, basis it is enough to find
(n-t)) independent column vectors

BG-rank[A B]=rank( S,)=n-t.. _ .
%155 w'(r =1,--,n—t;). These vectors are gathered in the

In the next step structural controllability of CSLS atrix W' :(\er)r:l..- "

modelled by bond graph is studied. For that, formal'
representation of structural controllability subspa o
denoted asR, , is given for BG model. It is calculated In Fhe same manner, from the BQ@nd Fiual|zat|on

. . . . of inputs sourcesYn—t.) algebraic relations can be
using causal manipulations. The base of this sudgspa s
is used to propose a procedure to study the stalctuc@lculated (13).

controllability. i T
Y 9 -> Wa =0 (13)
4.1 Graphical necessary and sufficient condition k

On the BGD (and dualization of inputs sources) there gl is either an flow variablef, for I -element in
exists t; elements remaining in integral causality anQyerivative causality or a effort variable for C-
(n—t.) elements in derivative causality. element in derivative causality,

t. algebraic equations can be written (equation 12): - g, is either an flow variablef, for | -element in

gL_zarikg: =0 (12) integral causality or a effort variable, for C-
T element in integral causality,

-g, is either an effort variable for | -element in -y is the gain of the causal path between tfe

integral causality or a flow variablé for C-element gjement in derivative causality and tk& element in
in integral causality, integral causality.

-g, is either an effort variable, for | -element in  Suppose now thén—t!) column vectorsw" whose

derivative causality or a flow variable, for C-  components are the coefficients of the variabigs
element in derivative causality, and g in equation (13)
-a* is the gain of the causal path between kfie | . .
o ) Procedure 3 : Calculation ofR,
or C-elements in integral causality and th& | or

C -elements in derivative causality. 1) On the BGIR dualize the maximum number of

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM
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continuous control in order to eliminate the eletaen each algebraic relation with the causal path gains,

in integral causality. ] S )
S o . 5) Check if zw{""=0, and write
2) For each element remaining in derivative catysali Is
write the algebraic relation with elements in img R = Imw" w'?..w**"9) , With
causality, (equation 13),

‘ WL :[V\/'k‘» W(i—l)ai] _ '
3) Write a column vectorw' for each algebraic Sis =L -G i=Le g

relation with the causal path gains, (equation 13), w*: The basis of controllability subspace of initial

with R) = Im(W"). mode.

From the BGD (and dualization of inputs sources),Remark. If the sequenceof commutationis not
the following relation can be calculated for eactprderedthen

switch: P10 gk -1 (i-r)-i
i i W _[W WSN}S “.WSWJ's ]ki :1,---,n—tis,i,r:1;--q and i#r
To =9 r-Zk:Vk 9% =0 (14) Proposition 4 System (1) is structurally controllable,
if and only if rank(w* w'2..wi %) =n.
-T, is the variable on the switch, outgoing of the

junction structure, 5 Example
_ g-ir and Q'L can be effort or flow, Lc_at us consider the following acausal BG model
(figure 3):

-y is defined in equation 13. o

- ...2,.' 1: Eit
From (14) we propose the invariants for the BGD: Mse—tia T_.{,fﬂ"”‘e‘;j“'l’ml

c Y
Proposition 3 For the hybrid system (1), the invariant 1 [ _10 _____ ’
associated to each switch for BGIB given by the |1n%g_ﬁ;_-%“—,oé—m3
inequality constraints relating to th& mode: 1S,
Invi(gy): T, =97 +z;/l'jg'ik >0 (15) Fig 3: The acausal BG

k

We have two complementary switches, then we have
At instant of commutation, from equation 14 ancaft two possible configurations: mode 1S4 :closed,

the annulation off, , N conditions can be given: Sw, open) and mode 23y, :open, Sw, :closed) .
g'ir+Z:y"k'g'ik =0 (16) The bond graph models in integral causality of mode
X 1 and 2 are shown in figure 4:

g", g’ and )/ are defined in equation 13. , 31”1 , 3?5”1 £

o Mse-L 'A"U‘ﬁ‘;u»Dfl MSe—Loj— | 'A—ru—ﬁ—»j‘l-zbofl
Suppose now the t{ "' column vectors " %‘ﬁ_"lz 1 giﬁ_'”z

N 1 1
vv‘siN‘jls)”i (j=1..N) whose components are the '1'#0\—'8;1 li:'j:?ul#O'—Bglz 1'1—41'§%Nl—e"l3
coefficients of the variableg" and g', in equation 2 ’
(16). Fig 4: The BGI1 and BGI2

Procedure 4: Calculation ofR, There are four state variableR, on I; (i=1,--,3),

1) After dualization of the maximum number of input® .on. c. Flgurg S presents the_ bo.nd graphs n
sources in BGD write the relation between eachderlvatlve Causallty after the dualization of Input

switch element and the dynamical elements, sources :
(i-1)-i : . . aw o

2) Deduce theg, * "' invariants for the corresponding s £ oL £
BGD. ML, 1 IA—;olj—;_'lFI-LbDfl M —A ] IA—mlj—gllJ—bDfl

v u 721, “ g2,
3) Write the conditions of commutation using ” 1{14 . - 1{14

. | &0 ~——— 11— 0| |, &H0 x~—————1—0 —]
equation 16, BGDL 158%16 31 BGD2 1%1::6 3

4) Write a column vectond. "' (j =1,--,N ) for ’
s Fig 5: a) BGD1+dualization of sources (mode 1), b)

BGD2+dualization of sources (mode 2)

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

m Calculation of W' (application of procedure 3) [2—-1]:
1 0 0 -1
= Calculation of W* (mode 1) R =im(witwi2wwz y=ml |21 [0 °
0 s ol'l1l'lol] 1
wee ol o] 1] | o

The elementl, is in integral causality, we can write
g, —€, +g, =0,thusz =(1-110).

m Calculation of W (Application of procedure 4, step
The algebraic equations corresponding tand I, 5)
are given by: f +f =0, f_+f =0. Then R =ImWw" w*w*")=R* so the system is
Wh=(1100§, w2=(0110j. The dynamical structurally controllable.
elementC is not causally connected with, we can

. _ _ 6 Conclusion
write e =0. The corresponding vector is .
. AR The structurally controllability of CSLS systemsswva
w#=(0001). and Ry = Im{w"; w w'} . presented using simple causal manipulations on the
. s BG. Thus, formal calculation enables us to know the
» Calculation of W* (mode 2) reachable variables; its checking is immediatehen t

BGI. On the other hand the BGD enables us to
characterize graphically the structural controligbi
causally connected wit,, we can writeg =0, supspaces relating to each mode. A necessary and
sufficient condition was given by exploiting these
various bases.

The elementl, is in integral causality and not

thus z2=(0010). The elementl, is in integral
causality, we have, —e_=0,thusz =(1-100).
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