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Abstract  

Should we pool capacities or not? This is a question that one can regularly be confronted with 
in operations and service management. It is a question that necessarily requires a combination 
of queueing (as OR discipline) and simulation (as evaluative tool) and further steps for 
‘optimization’. 

It will be illustrated that a combined approach (SimOR) of Simulation (techniques and tools) 
and classical Operations Research  (queueing, linear programming and scheduling) can be 
most beneficial. 

First, an instructive example of parallel queues will be provided which shows the necessary 
and fruitful combination of queueing and simulation. Next, the combined approach will also 
be illustrated for the optimization of:   

• call centers,   
• checking-in at airports,  
• blood platelet production.    

Whether we should pool or not is thus just one simple question for which this SimOR 
approach can be most fruitful if not necessary for ‘practical optimization’. 

Keywords: Optimization, call centers, check-in, blood platelet production, simulation. 

Presenting Author’s biography 
Professor Nico M. van Dijk is responsible for the Operations Research 
and Management Program at the University of Amsterdam and principal 
consultant of the simulation company: Incontrol Enterprise Dynamics. 

As a scientific researcher, he has a strong research interest in the area of 
stochastic operations research, most notably queuing and simulation. 
Beyond his scientific activities, he has also taken up the mission of 
popularizing the potential of OR for business environments and general 
public. Accordingly, he has written articles for Dutch magazines and 
national newspapers.  

He has supervised and been involved in a variety of practical projects, 
among which for the Dutch railways, the Dutch airport, the Dutch Triple 
A, the Dutch ministry of health, hospitals and industry. 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM



1 Introduction Tab. 1: Combined Advantages 

Simulation OR 

Advantages Disadvantages 

Real-life complexities 
Real-life stochastics 

Simple models 
Strict assumptions 

Disadvantages Advantages 

Evaluation 
By scenarios 
By numbers only 

Optimization 
By techniques 
Also by insights 

 
Advantages Advantages 

Optimization 

Simulation Operations Research 

Simulation or more precisely as meant in the setting 
of this paper: discrete event simulation is known as a 
most powerful tool for the evaluation of logistical 
systems such as arising in manufacturing, 
communications or the service industry (banks, call 
centers, hospitals). A general characterization is that 
these systems: 

• are complex 
• involve stochastics and 
• require some form of optimization (such as by 

infrastructure, lay-out or work procedures). 

Analytic and optimization methods, as standardly 
covered by the field of OR (Operations Research), in 
contrast, only apply if: 

• the systems are sufficiently simple and 
• special assumptions are made on the 

stochastics involved.   

The applications all rely upon recent research. The 
technical details for each of them can be found in the 
separate technical papers. 

On the other hand, simulation by itself does not 
provide: insights and techniques for optimization. 

If a limited finite number of scenarios is already 
available or if an optimization problem can be 
parameterized, different search approaches can be 
suggested to expedite and automate an optimization 
(also referred to as simulation based optimization). An 
elegant exposé of such methods can be found in [2]. 

The OR-techniques in these applications involve 

• Queueing 
• Linear programming 
• Stochastic Dynamic Programming 

The results, as based upon these practical 
applications, seem to indicate that this combined 
Simulation-OR approach can be most fruitful. Further 
application and research of this approach is therefore 
suggested. 

But otherwise, simulation does not imply an 
optimization. This is where the discipline of 
Operations Research (OR) might contribute in either 
of three directions: 

1. To suggest candidate scenarios as based upon 
OR-results and insights. 2 Call centers: To pool or not? 

2. To provide OR-optimization techniques in 
addition to simulation. Should we pool servers or not? This seems a simple 

question of practical interest, such as for counters in 
postal offices, check-in desks at airports, physicians 
within hospitals, up to agent groups within or between 
call centers. The general perception seems to exist that 
pooling capacities is always advantageous. 

3. To integrate OR-optimization with simulation. 

A combination of OR and simulation might then 
become most beneficial.  

• Simulation for evaluation, 
• OR for optimization. 

An instructive example (Queueing) 
The advantages of this combination for optimization 
are schematically represented in Tab. 1. This perception seems supported by the standard 

delay formula for a single (exponential) server with 
arrival rate λ and service rate µ: D = 1 / (µ–λ). Pooling 
two servers thus seems to reduce the mean delay by 
roughly a factor 2 according to D = 1 / (2µ–2λ). 

In this paper, each of these three directions of this 
combination will be illustrated by a specific practical 
application. Direction  

1. by pooling in call centers (see [4], [5]) 
However, when different services are involved in 
contrast, a second basic result from queueing theory is 
to be realized: Pollaczek-Khintchine formula. This 
formula, which is exact for the single server case, 
expresses the effect of service variability, by: 

2. by check-in capacity minimization(see [3]) 
3. by blood platelet production and optimization 

(see [1]). 
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Fig. 1  Pooling Scenarios by Queueing (Q) and Simulation (S) 

WG = ½ (1+c2) WE with c2 = σ2 / τ2 and Call centers (large number of servers) 

 WG  the mean waiting time under a general (and 
E for exponential) service distribution with 
mean τ and standard deviation σ. 

Similar results can also obtained for larger number of 
servers, say with 10, 50 or 100 servers, such as arising 
in realistic call centers. The one-way overflow 
scenario turns out to be superior to both the pooled 
and the unpooled scenario for realistically large 
numbers of call centers agents. (Here the mix ratio of 
short and long services is similar as in the example 
above. For further details, see [4].) As there are no 
analytic solutions for queueing systems with 
overflow, these results necessarily had to be obtained 
by simulation. 

By mixing different services (call types) extra service 
variability is brought in which may lead to an increase 
of the mean waiting time. 

This is illustrated in Fig. 1 for the situation of two job 
(call) types 1 and 2 with mean service (call) durations 
τ1 = 1 and τ2 = 10 minutes but arrival rates λ1 = 10 λ2. 
The results show that the unpooled case is still 
superior, at least for the average waiting time WA. 
Based on these queueing insights, a two-way or one-
way overflow scenario can now be suggested, which 
leads to further improvement as also illustrated in Fig. 
1. 

In fact, as shown in [5] by OR (queueing) insights 
substantial improvements (see Fig. 2) can still be 
achieved by practical rules that appear to be nearly 
optimal. 

3 Check-in planning A Combined approach 

To achieve these improvements simulation is 
necessarily required. A combination of queueing for 
its insights to suggest scenarios and of simulation for 
evaluating these scenarios thus turns out to be fruitful. 

Problem formulation and combined approach 

Check-in desks and desk-labor hours can be a scarce 
resource at airports. To minimize the required number 
of desks two essentially different optimization 
problems are involved: 
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      1     5     2     3     4     6     7       

  Pooled

  Thr(Opt)

  Unpooled

  Two-way

  One-way

  Prio(1,NP)

  Prio(1,P)

 7 1 0.71 

 6 5 0.68 

 5 2 0.63 

 4 3 0.58 

 3 4 0.52 

 2 6 0.38 

 1 7 0.20 

 Rank No.  Scenario WA P1: A minimization of the required number of 
desks for a given flight. 

P2: A minimization and scheduling for all flights 
during a day. 

A two-step procedure is therefore proposed: 
Step 1: For P1 as based upon simulation 
Step 2: For P2 as based upon Linear 

Programming 

Step 1: Simulation 
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Fig. 2 Average waiting times for different 
scenarios 
As the check-in process is highly transient (fixed 
opening interval, non-homogeneous arrivals during 
opening hours and initial bias at opening time) 
transient (or terminating) simulation will necessarily 
be required. 
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In step 1 therefore the required number of desks will 
have to be determined by terminating simulation for 
each hour of the day and separate (group of) flights.  

min
. .  

or  , with 
f f

f g g
f g

g f f

D
s t n d D f

d n d f g I Id n d

≤ ≤ ∀
+ ≤  ∀ ∩ ≠ ∅+ ≤ 

 

Step 2: OR (Linear programming) 

where Next in step 2 the desks are to be scheduled for the 
different flights so as to minimize the total number of 
desks and desk-(labor)-hours. Here additional 
practical conditions may have to be taken into account 
such as most naturally that desks for one and the same 
flight should be adjacent. 

D: Total number of desks required (indexed 1 to D); 
If : Check-in time interval of flight f (with f=1,…,F); 
df : Largest desk number assigned to flight f; 
nf : Number of desks required for flight f. 

Example Also shown in [3] a similar LP-formulation can also 
be given for the optimization problem of variable 
allocation in which the number of desks, as 
determined by step 1, may vary by the hour which 
may lead to further savings. This is illustrated in Fig. 
2 for an example data set of 10 flights which leads to 
a further reduction in desks (from 17 to 15) and desk 
hours (from 117 to 92). The combination of 
(terminating) simulation and LP-optimization so 
turned out to be most beneficial. 

As a simple (fictitious) example consider the desk 
requirements for 5 flights during 9 hours (periods), as 
determined by step 1. The total number of desks 
required then never exceeds 4.  

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9

flight 1 2 3 4 5
starting period 1 3 4 5 7
ending periode 3 5 6 7 9
# desks required 3 1 2 1 3

 

17 2 2 2 6 6 6 10 10 10
16 2 2 2 6 6 6 10 10 10
15 2 2 2 6 6 6 10 10 10
14 2 2 2 10 10 10
13 1 1 1 5 5 5 10 10 10
12 1 1 1 5 5 5 9 9 9
11 1 1 1 5 5 5 9 9 9
10 5 5 5 9 9 9
9 5 5 5 8 8 8
8 3 3 3 8 8 8
7 3 3 3 8 8 8
6 3 3 3 8 8 8
5 3 3 3 8 8 8
4 4 4 4 7 7 7
3 4 4 4 7 7 7
2 4 4 4 7 7 7
1 7 7 7

d \ t 1 2 3 4 5 6 7 8 9 10

15 2 5 5 5 7 10 10 10
14 2 5 5 5 7 10 10 10
13 2 2 5 5 7 7 10 10
12 2 2 5 5 7 7 10 10
11 2 2 2 5 7 7 7 10
10 1 1 1 4 9
9 1 1 4 4 9 9
8 1 1 4 4 9 9
7 4 4 4 9 9 9
6 8
5 3 6 6 6 8
4 3 6 6 8 8
3 3 3 6 6 8 8
2 3 3 3 8 8 8
1 3 3 3 8 8 8

d \ t 1 2 3 4 5 6 7 8 9 10

Fig. 3 Desks Requirements of 5 Flights 

However, a straightforward Earliest Release Date 
(ERD) desk allocation as shown in Fig. 3 would lead 
to an unfeasible solution, as the desks for flight 5 are 
not adjacent. (This could be resolved by using two 
more desks 5, 6 and assigning desks 4, 5 and 6 to 
flight 5). However, in this example a feasible solution 
with 4 desks is easily found. 

Infeasible schedule
4 2 2 2 5 5 5
3 1 1 1 4 4 4
2 1 1 1 3 3 3 5 5 5
1 1 1 1 3 3 3 5 5 5

d \ t 1 2 3 4 5 6 7 8 9
Feasible schedule

4 2 2 2 5 5 5
3 1 1 1 3 3 3 5 5 5
2 1 1 1 3 3 3 5 5 5
1 1 1 1 4 4 4

d \ t 1 2 3 4 5 6 7 8 9

As shown in [3] also for more realistic orders with 
hundreds of flights an optimal solution can be found 
by solving an LP-formulation as given below.  

Fig. 4 An (in)feasible schedule 

Fig. 5 Feasible and infeasible schedule 
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4 Blood management 4.3 OR step 1 

As for step 1 the state of the system is described by 
(d, x) with  

4.1 Motivation 

Blood management is a problem of general human 
interest with a number of concerns and complications. 
This supply has to rely upon voluntary donors. As a 
complicating factor, blood platelets (thrombocytes) 
have a limited life-time of at most 6 days.  

d: the day of the week (d = 1,2,….,7) and  

x = (x1, x2,…., xm) the inventory state with xr = 
the number of pools with a residual life time 
of r days (maximal m = 6 days) (A pool is 
one patient-transfusion unit containing the 
platelets of 5 different donations). Clearly, as lives may be at risk, shortages are to be 

minimized. On the other hand, as the supply is 
voluntary, blood is to be considered as highly 
precious. Also spill by outdating, of blood platelets is 
thus to be minimized.   

And let  

Vn(d,x): represent the minimal expected costs 
over n days when starting in state (d,x). 

The optimal inventory strategy and production actions 
are then determined by iteratively computing 
(solving) the SDP-equations for n = 1,2,….. 

4.2 OR - Simulation approach 

In [1] a combined ‘new’ approach for the blood 
platelet inventory problem has therefore been 
followed, which integrates an OR-technique with 
simulation by the following steps: 

[ ]1( , ) min ( , ) ( ) ( 1, ( , , ))n k d nd c k p b d t k−= + + b∑V x x V x
with  

Step 1: First, a stochastic dynamic programming 
(SDP) formulation is provided. k  the production action,  

c(x,k) the one day costs in state x under 
production k, Step 2: The dimension of the (SDP) formulation 

is then reduced (downsized) by 
aggregating the state space and demands 
so that the downsized (SDP) problem can 
be solved numerically (using successive 
approximation).  

pd(b) the probability for a (composite) demand 
b, 

t(x,k,b) the new inventory state depending on k, b, 
x, and some issuing policy, and  

V0(d, x) ≡ 0. 
Step 3: Then, as essential tying step, the optimal 

policy for the downsized SDP is 
(re)evaluated and run by simulation in 
order to investigate the structure of the 
optimal strategy. 

4.4 Simulation step 3 

However, in practice one needs a simple rule and this 
optimal strategy has no simple structure. In order to 
derive a simple order-up-to strategy which only 
depends on the total predicted inventory, the actual 
platelet production-inventory process is therefore 
simulated for 100,000 replications so as to register 
how often which total predicted final inventory level 
(I) and corresponding action occurs under the optimal 
strategy (as determined by SDP). As an illustration, 
for a particular day of the week (in this case Tuesday) 
and the dataset of the regional blood bank, this led to 
the ‘simulation table’ in Tab. 2. 

Step 4: By the structure at the ‘simulation table’ a 
simple practical near to optimal order-up-
to strategy is then derived. 

Step 5: The quality (near-to-optimality) of this 
practical simple order-up-to strategy is 
then also evaluated by simulation. 

As the technical (mathematical) details of steps 1 and 
2 are somewhat ‘standard’ but also ‘complicated’ and 
worked out in detail in [1], let us just restrict to an 
illustration of the essential OR and Simulation steps 1 
and 3. 

For example, it shows by row 15 and column 7 that 
during the 100,000 replications 2593 times a state was 
visited with a total expected final inventory (I) of 7 
followed by a production decision of 8 (order-up-to 
15). This order up-to-level of 15 occurs in 74.5% of 
the states visited and can be seen as a target-inventory 
level for Wednesday mornings. 
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Tab. 2: Simulation Frequency table of (State, Action)-pairs on  
Tuesdays from Simulation of Optimal SDP Solution for 100,000 weeks 

22 28 28
21 96 96
20 267 267
19 2 748 3 753
18 18 1928 31 1 1978
17 6331 4490 353 26 1 11201
16 8260 2078 783 7 11128
15 3131 14123 20926 23646 10087 2593 39 74545
: 
0

cum. 3131 14123 20926 23646 18347 11002 5330 2290 805 272 96 28 4 100000

I 2 3 4 5 6 7 8 9 10 11 12 13 14 cum.
Order-up-to

23 4 4
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In this paper in contrast, it is illustrated that 
simulation can also be used in a more sophisticated 
way in combination with OR-techniques.  

 

To this end, three illustrations are provided in each of 
which simulation is used in combination with a 
different OR-technique. The OR techniques involve: 

• Queueing 
• Linear Programming 
• Stochastic Dynamic Programming (SDP) 

The results, as based upon different practical 
applications, seem to indicate that this combined 
Simulation-OR approach can be most fruitful. Further 
application and research of this approach is therefore 
suggested. 
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