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Abstract  

Water quality indicators are used to capture physical, chemical and biological changes 
occurring in freshwater bodies. These dynamic changes result from activities of internal and 
external driving forces which may be natural or anthropogenic. Modeling of water quality 
dynamics is of importance in understanding the underlying network structure of water quality 
changes and to forecast their general tendency within reasonable limits. For modeling and 
simulation of water quality processes it is necessary that all data sets are based on regularly 
time grids. The dynamics captured reveals changing amplitudes and variances across time. 
This paper examines the applicability of three approaches (the autoregressive moving average 
method, the Fourier polynomial, and digital filter algorithm methods) for modeling water 
quality changes by time series methods. The different types of indicators namely physical 
(water temperature), chemical (dissolved oxygen) and biological (chlorophyll-a) are taken 
from rivers of different hydraulic structures in Germany, namely the River Havel, the Elbe 
River and the Oder River. The autoregressive moving average method gives acceptable 
results, but is not helpful for forecasting. The Fourier polynomial is useful for approximating 
physical indicators and gives unacceptable results for chemical and biological indicators while 
the filter algorithms give acceptable approximations for all indicators and possibilities for 
forecasting. 
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1 Introduction 
Freshwater quality data collected by monitoring 
programs is extremely important for assessing the 
ecological condition of a freshwater body and for 
developing an understanding of the interrelationship 
between the components of the freshwater body. The 
data collected usually reveals the existence of 
continuous change over time resulting from internal 
and external natural and anthropogenic driving forces 
[1]. It is necessary to model these time series so as to 
develop an understanding of the structure and the 
mechanism producing the signals. This is also helpful 
for predicting the simulating changes within a 
freshwater body. Unfortunately, data from monitoring 
programs contain a lot of inconsistencies that affect 
the results of any analysis [2]. They are as a result of 
missing values, impossible values, inconsistent values 
and unlikely values. Errors in water quality time series 
lead to some general problems in water quality 
research and simulation. They cause not only 
difficulties in process identification and parameter 
estimation but also misinterpretations of spatial and 
temporal variations of water quality indicators [3]. 
Mostly, time series represent samples of data at 
discrete time events based on various sampling 
intervals. For modeling and simulation of freshwater 
ecosystem processes time series must be mapped on a 
regular time grid. This procedure is known as re-
sampling of time series and consists on data 
interpolation or, in the case of disturbed signals, on 
data estimation. Some well-known linear and 
nonlinear interpolation methods exist while data 
estimation can be done by static and dynamic 
approximation procedures. In addition, most 
approaches for analyzing statistical data are linear 
methods which assume constant variance, a normal 
distribution and independence of the data set. Most 
often, water quality time series violate these 
assumptions. The signals are often not normally 
distributed and are either serially or spatially 
correlated or require non-linear models [4]. For a 
water quality signal to be analyzed, the most common 
data distortions have to be rectified with acceptable 
methods like outlier removal, rendering the data 
equidistant, smoothing or filtering the data and 
applying transformations to the data set. 

This paper investigates the use of three time series 
methods for approximating water quality time series 
so as to identify the most appropriate approach for 
modelling these signals from the investigated 
watershed. The Fourier polynomial, the autoregressive 
moving average and the digital filter algorithm 
methods for time series approximation will be used for 
the investigation. The data consist of water quality 
indicators like conductivity, chlorophyll-a and 
dissolved oxygen taken from rivers of different 
hydraulic structures in Germany, namely the River 
Havel, the Elbe River and the Oder River. Outliers 
were removed and missing data was replaced by 

means of linear interpolation method from the data 
sampled at daily interval. 

2 Autoregressive Moving Average 
Method 

Combining an autoregressive model (AR) with a 
moving average model (MA) an ARMA 
(autoregressive moving average) model is obtained 
which is given by: 
  

Xt = ∂ + Φ1Xt-1 + Φ2Xt-2 + . . . + ΦpXt-p + At  

        – ø1At-1 – ø2At-2 + … + – øqAt-q             (1) 
 

where Xt  is the time series, µ is the mean and At is the 
white noise, Φ1,….,Φp and ø1, …,øq are parameters of 
the model [5]. The p denotes the order of AR and q is 
the MA order which together give rise to ARMA (p, 
q). The first step consist in rendering the time series 
stationary, determining the order (p and q) of the most 
appropriate model by means of the lowest AIC, the 
autocorrelation and autocorrelation plots. Next, the 
parameters of the model are estimated and finally, a 
diagnostic test is carried out to investigate the 
goodness of the fit. The ARIMA technique proved 
effective in capturing water quality changes across 
time, provided the signal where rendered stationary 
[6]. However, no reasonable forecast could be 
obtained from ARIMA models as can be seen from 
figs. 1, 2 and 3.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 1: ARIMA(3,1,3) model of water temperature 
with a forecast of 50 periods 

 

For water temperature time series, an ARIMA(3,1,3) 
model was found to be the most appropriate as a result 
of its low AIC(1441.61) and is given by the following 
equation : 
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Xt = 0.36 + 1.29(0.16)Xt-1 – 0.99(0.26)Xt-2 + 0.21(0.13)Xt-3 +    

       0.75(0.16)At-1 – 0.55(0.21)At-2 – 0.14(0.05)At-3 

 

The standard errors of the estimated coefficients are 
given in the subscripted values in brackets. Given a 
lower and upper 95 % confidence interval as shown in 
figure 2, a forecast of 50 days ahead is extremely 
poor. Hence, the model is suitable for approximating 
but not forecasting the time series. 

An ARIMA(1,1,2) model was found to be the most 
appropriate for dissolved oxygen as a result of the 
lowest AIC(3060.75) and is given by the following 
equation: 
 

Xt = 0.58+ 01.9(0.02)Xt-1 + 0.61(0.03)At-1 + 0.37(0.02)At-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: ARIMA(1,1,2) model of dissolved oxygen with 
a forecast of 50 periods 

 

Similar to the water temperature model, a forecast of 
50 periods ahead for the dissolved oxygen ARIMA 
model given unacceptable values as if revealed in 
figure (5). 

Chlorophyll-a time series is best modelled by an 
ARIMA(3,1,3) which yields the lowest AIC(11460) 
and is given by the following equation: 

 

Xt = 6.32 - 0.11(0.12)Xt-1 – 0.86(0.07)Xt-2 + 0.19(0.11)Xt-3 –  

        0.29(0.12)At-1 + 0.90(0.02)At-2 + 0.39(0.11)At-3 

 

The ARIMA model also yields an unsatisfactory 
forecast for the chlorophyll-a time series. This simply 
implies that the method is inappropriate for predicting 
the time series of water quality indicators, though they 
provide excellent approximations. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: ARIMA(3,1,3) model of chlorophyll-a with a 
forecast of 50 periods 

 

3 Fourier Polynomial Method 
The Fourier polynomial provides a means of 
approximating periodic functions by sums of sine and 
cosine functions, shifted and scaled [7]. This 
polynomial is of the form 
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           (3) 

The integer k gives the frequency of the sine and 
cosine function; hence large values of k correspond to 
very wriggly graphs. The numbers ak and bk represent 
the amplitudes, a0, ai and bi, i =1, . . ., n are the Fourier 
coefficients of the Fn(t), and the Fourier polynomial is 
2π periodic.  

Fig. 4 shows a Fourier polynomial of 7th order for 
dissolved oxygen, one of the most important chemical 
water quality indicators with the following equation: 

f(t) =  10.23 – 0.13cos(0.006t) – 0.75sin(0.006t) 

          - 0.41cos(0.012t) – 0.52sin(0.012t)  

          - 0.26cos(0.018t) + 1.2sin(0.018t) 

          + 0.2cos(0.024t) –0.27sin(0.24t)  

          - 0.38cos(0.03t) – 0.07sin(0.03t) 

          - 0.58cos(0.036t) + 0.53sin(0.036t)   

          - 0.16cos(0.042t) + 0.39(0.042t) 
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Fig 4: Seventh order Fourier polynomial  
of dissolved oxygen 

 

The goodness of fit delivers R2 = 0.29 and adjusted R2 
= 0.28. This means, that approximately 30% of water 
quality changes are described by a Fourier polynomial 
with fixed periodicity. 

In the case of a biological indicator chlorophyll-a 
given in fig. 5, the best approximation was got by a 
Fourier polynomial of fourth order with R2 = 0.68 and 
adjusted R2 = 0.67 with the following equation: 

 

f(t) =  48.76 + 4.7cos(0.0087t)+0.47sin(0.0087t)  

         – 29.64cos(0.02t) – 1.4sin(0.02t) 

         - 2.48cos(0.03t) + 1.3sin(0.03t) 

         – 20.35cos(0.04t) + sin(0.04t) 

 

 

 

 

 

 

 

 

 

 

Fig 5: Fourth order Fourier polynomial of 
phytoplankton biomass 

 

As can be seen, the Fourier approximation describes 
the time dependent changes of phytoplankton biomass 
more or less correctly during the transient reaches 
spring and in fall. High amplitudes in spring due to an 
algal bloom of diatoms and in summer caused by an 
algal bloom of cyanobacteria as well as low 
amplitudes in winter are not correctly approximated.  

Fig. 6 reveals a decent result for the Fourier 
approximation for water temperature. Being a physical 
water quality indicator, its main driving force is solar 
radiation which also has a distinct cyclic behaviour. 
The Fourier polynomial of third order is given by  

 

f(t) = 13 + 0.39cos(0.009t) + 0.018sin(0.009t) 

         - 9.71cos(0.018t) – 2.47sin(0.018t)  

         - 0.4018cos (0.027t) + 0.23sin (0.027t) 

 

where R2 = 0.95 and adjusted R2 = 0.95. The 
investigation revealed that the Fourier approximation 
is not appropriate for approximating the dynamics of 
chemical and biological changes in a freshwater body. 
It however proved quite effective for approximating 
variations of a physical water quality indicator such as 
water temperature. This is because the physical 
changes do not significantly vary their amplitudes and 
phases across time compared to the biological and 
chemical changes.  

 

 

 

 

 

 

 

 

 

 

 

Fig 6: Third order Fourier polynomial of water 
temperature 

 

4 Digital Signal Filter Algorithm 
Methods 

In opposite of the first two methods, digital signal 
filter models deliver consistent equidistant data 
estimates based on major signal frequencies. An ideal 
low pass with the gain characteristic |H(ω)|² = 
1/(1+F(ω²)) work as distortionless system. In table 1 
some well-known low pass filters are given. Mainly 
filters of order 1 to 3 are useful for modelling water 
quality changes (table 2) where the 95% significance 
level was used as decision criteria for acceptance.  
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Tab 1: Digital filter functions 

Filter method Filter equation 

Butterworth |H(ω)|2 = 1/(1 + ω2n) 

Chebychev 1 |H(ω)|2 = 1/(1 + ε2 cn
2(ω)) 

ε - ripple factor, cn(ω) - Chebychev-polynomial of order n 

Chebychev 2 |H(ω)|2 = 1/(1 + ε*2 cn
2n(ω)), ε* = 2ε/(1-ε) 

Cauer |H(ω)|2 = 1/(1 + ε2 Fn*(ω2)), Fn*(ω2) - characteristic 
function 

  

Tab 2: Applications of digital low pass filters on water quality changes 

Indicator 1. order filter 2. order filter 3. order filter 

DOC Cauer no filter acceptable no filter acceptable 

conductivity Butterworth, Cauer 
Chebychev1 

Butterworth Butterworth, Cauer, 
Chebychev1 

NH4-N, NO2-N, 
NO2-N 

Cauer no filter acceptable no filter acceptable 

DO Butterworth, Cauer 
Chebychev1 

Butterworth Butterworth, Chebychev1, 
Cauer 

o-PO4-P Cauer no filter acceptable no filter acceptable 

pH Butterworth, Cauer 
Chebychev1 

Butterworth, 
Chebychev2 

Butterworth, Chebychev1, 
Chebychev2,Cauer 

water flow Butterworth, 

Chebychev1, Cauer 

Butterworth, 
Chebychev1 

Butterworth, Chebychev1, 
Cauer 

water 
temperature 

Butterworth,  
Chebychev1, Cauer 

Butterworth, Chebychev1, 
Chebychev2, Cauer 

Butterworth, Chebychev1, 
Chebychev2, Cauer 

 

 

Digital signal filter models will be distinguished by 
differences in the pass band and by the ripple effect. 
Higher order filters cause strong ripple effects in the 
pass band as well as in stop band. Examples of water 
quality modelling by means of digital signal filter 
algorithms for running waters are presented in figs. 7, 
8, and 9. Mainly filters of order 1 to 3 are useful for 
modelling water quality changes (tab. 2) where the 
95% significance level was used as decision criteria 
for acceptance. Limit frequencies are selected by 
means of power spectra. 

As can be seen in fig. 7, the filter algorithm gives an 
acceptable result for a chemical indicator concerning 
periodicity and phase. The amplitudes of the model 
output are lower than in reality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 7: Digital signal filter model of DO 
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Fig 8: Digital signal filter model of conductivity 
indicating industrial pollution 

 

In opposite of that, dynamic changes of water flow 
can be modelled quite well by different filter 
algorithms (fig 9, see tab. 2). In the case of 
biologically induced water quality changes high pass 
filters have to be used.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9: Elliptic filter model for water flow,  

f < 0.067 1/d 

 

5 Conclusions 
The investigations reveal that the Fourier polynomial 
is inappropriate for approximating biological and 
chemical water quality time series. Physical water 
quality signals such as water temperature yield decent 
results.  This is because the Fourier approach requires 
stationary time series because it uses sinusoidal sine 
and cosine basis functions. The changing amplitudes 

and periods present especially in chemical and 
biological water quality time series render this method 
ineffective in capturing such changes in the signals. In 
addition, the autoregressive moving average method is 
quite able to provide decent approximations for water 
quality indicator only when they have been rendered 
stationary either by differencing or removing any 
trend present. Unfortunately, any attempt to forecast 
or predict future values by means of this method gives 
unacceptable results. Finally, the digital filter 
algorithm methods give acceptable results and prove 
quite useful for approximating and capturing changes 
in the water quality time series with great possibilities 
for forecasting the approximated signals. It becomes 
necessary to also investigate the use of non-linear time 
series modelling methods by genetic algorithms for 
freshwater quality data. 
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