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Abstract 

It is a well known fact that the load bearing capacity of spotwelds in car bodies has a 
considerable impact on the deformation behaviour under crash loads, especially on the ability 
of energy dissipation. Therefore it is necessary to predict spotweld failure in the crash-
simulation, but there is one thing, which makes it difficult. Theoretically founded stress-
/strain based failure criteria are only reasonable for a sufficiently high resolution of the local 
stress-/strain field of the spotweld. But unfortunately the smallest dimension of finite 
elements in the simulation model, limited by the conventional critical time step (explicit time 
integration), is far from this demand. 
This paper shows a way, how the local requirements can be achieved without loss of 
computational performance, by the development of a finite spotweld element based on the 
hybrid Trefftz method. The treatment is elasto-plastic, whereas the linear elastic part as well 
as the rigid/perfectly-plastic part is based on a special hybrid Trefftz element representing the 
entire spotweld, the cylindrical nugget, heat affected zone and an annulus made of base 
material. These two distinct models, the linear elastic and the rigid/perfectly plastic one, are 
combined by a rheological approach. The linking to the residual finite element mesh, 
consisting of bilinear standard shells, is accomplished via a displacement frame, an arbitrary 
polygon. By definition the Trefftz-type solution satisfies a priori all governing differential 
equations within the element area and fulfils inner boundary conditions. The modeling of 
plastic deformation accounts for geometrically nonlinear behaviour (stress stiffening) within 
the metal sheet annulus and permits the forming of plastic hinges along the circumference of 
the comparatively rigid nugget. Isotropic hardening is considered by a piecewise perfectly-
plastic cascaded flow curve, leading to a high resolution of the stress/strain field in the 
vicinity of the spotweld nugget, and enables the introduction of accurate stress/strain-based 
failure criteria; especially instability due to the onset of local necking. 
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1 Hybrid Trefftz Formulation 
Finite elements based on polynomials have proved to 
be an effective tool for solving partial differential 
equations. However, there are problems, for which 
good approximated solutions can only be obtained 
with high effort by applying standard finite elements, 
or it is impossible at all. These are usually problems, 
whose solutions or their partial derivatives can’t be 
approximated well by polynomials used in the finite 
element method. That’s the case for the simulation of 
the mechanical behaviour of a spotweld. The linear or 
quadratic standard shell elements are not suited for the 
cylinder symmetry dominating in the surrounding area 
of the circular spotweld nugget. The fact, that the 
difficulties in finding good solutions arise from these 
small parts of the entire structure, suggests the 
introduction of special finite elements, which are 
adapted to the local conditions via special shape 
functions. Suitable for this purpose proves to be a 
coupled pair of special Trefftz elements with a circular 
boundary Γ1 within the element area Ω (Fig.1a). As 
per definition the shape functions satisfy the 
governing differential equations within Ω, and fulfil 
boundary conditions on inner boundary curves Γ1. The 
spotweld nugget is approximately rigid compared to 
the adjacent sheets because the martensitic nugget has 
a higher yield point than the ferritic sheet, and the 
elastic plate bending stiffness is proportional to the 3rd 
power of the thickness. Thus the comparatively rigid 
spotweld nugget is represented by a rigid cylinder, 
which connects both inner circles of the Trefftz 
elements (Fig.1b). This linkage is implemented by 
coupling a pair of auxiliary nodes (Fig.1c), which lie 
in the center of Γ1, and carry the spatial displacement 
and rotation of the spotweld nugget. In addition to the 
special spotweld elements, bilinear standard shells are 
arranged on uncritical sub-domains of the structure. 
The linking is accomplished via a displacement frame 
Γ5, an arbitrary polygon, formed by the set of shared 
edges of all adjacent standard shells. 

(a) (b)

(c) 

Fig. 1 (a) The Trefftz element area Ω with the 
circumference of the spotweld nugget Γ1, and the 

polygon Γ5 of shared edges with all adjacent standard 
shells. (b) Linkage of two Trefftz elements by a rigid 
cylinder (spotweld nugget) is accomplished via a pair 

of auxiliary nodes (c). 

1.1 Linear Elastic Deformation 

It is well known, that in the case of linear elasticity the 
system of thin-plate equations concerning membrane- 
and bending-type deformations decouple completely, 
so they can be dealt with separately. 

1.1.1 Membrane-type deformation 

Extension of the principle of minimal potential 
energy: The essential trick is to introduce an 
additional term in the potential energy leading to a 
weak form, which transmit the essential displacement 
boundary condition along the polygon into natural 
one. Now we have two distinct displacement fields 
along the polygon, which are not necessarily identical. 
The first comes from the solutions within the Trefftz 
element area, and the second one is the prescribed 
displacement field equal to the linked standard shells, 
for example, piece-wise linear between nodes. 
Minimization of the potential leads to a stiffness 
matrix which can be coupled with any other finite 
element with similar displacement assumptions. 

The additional requirement of geometrical boundary 

conditions uu
rr

=  can be avoided, if the first variation 
of the potential is extended by an artificial term, 
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δ
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where t is the plate thickness and T
r

 the traction 
acting along the boundary Γ. Both, the displacement 
and stress boundary conditions are now natural 
conditions. The weak form (1) serves as a starting 
point for a technique to link Trefftz elements with 
adjacent bi-linear standard shells [7]. The prescribed 
displacement vector u

r
 is identified with the linear 

boundary displacement field u
r~  on the closed 

boundary curve Γ5, 
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with nodal displacements u
r
ˆ , v

r
ˆ . The vectors U

r~
 and 

V
r~

 are defined piecewise along distinct edges of the 
polygon Γ5, with a total of n nodes, 
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The first vector refers to the edge between node 1 and 
2, the second between 2 and 3, etc. Lengths of edges 
from node i to node j are denoted by si,j, and s means 
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the distance of an arbitrary point on an edge to its 
”first” corner. 

1.1.2 Bending-type deformation 

Bending is considered within the framework of 
Kirchhoff’s theory of thin plates. There is an 
analogous extension of the first variation of the 
potential by an additional term 

 
[ ] [ ]∫ ∫Γ Γ

∇−∇+− dswwMdswwQ T
r

δδ
, (4) 

with Q and M
r

 as force acting normal to the plate, 
and moment twisting the boundary Γ, respectively [2]. 
The prescribed bending-type displacement vector, 
analogous u

r
, consists of the out-of-plane 

displacement, w , and additional rotational degrees of 
freedom, w∇ , with respect to axes lying within the 
plate-plane. 

Analytic solutions: Both, membrane- and bending-
type deformation can be reduced to bi-harmonic 
functions, Airy’s stress function, 04 =∇ U , and out-
of-plane displacement, 04 =∇ w , respectively. The 
general solutions are presentable by the real part 
[ ])()( zzz Ψ+Φℜ  with complex potentials Φ and Ψ 

introduced by Kolosov-Muskhelishvili [4,5,1], and 
iyxz += , iyxz −= . An analytically deduced 

stress field within the Trefftz element area for an 
exemplary load case can be seen in Fig.2. 

(a) (b)

(c) 

Fig. 2 Example of contour diagrams of the stress 
components σxx (a), σyy (b) and τxy (c) within the 

Trefftz element area. 

1.2 Plastic Deformation – Hencky-Plasticity 

We consider an rigid/perfectly-plastic isotropic 
material subjected to von Mises yield surface 

2
3
2 Yijij =′′σσ , with the deviatoric stress ijσ ′  and 

tensile yield stress Y. It is additionally assumed, that 

during loading the principal stress and strain ratios are 
held approximately constant (Hencky conditions) in 
the surrounding of the spotweld nugget, so the 
normality principle simplifies to a non-incremental 
form [3], ( )σσεε ′=′ 2/3 , with deviatoric strain 
ε ′ , and equivalent strain ε  and stress σ . Within the 
framework of Hencky plasticity the displacement field 
fulfils a variational principle [6]. Anzellotti and 
Giaquinta showed that the perfectly plastic model can 
be obtained as the limit of elasto-perfectly plastic 
problems with yield points converging to zero. 
Starting from the well known variational principle 
(related to the displacement field ur ) for elasto-
perfectly plasticity, governed by Hencky’s constitutive 
law, they deduce a corresponding one for rigid-
perfectly plastic materials. It is given in the following 
form: Minimize the energy functional, 

 ∫Ω ′= dVuuWp )()( rr ε
, (5) 

whereas ur  fulfils incompressibility, 0=⋅∇ ur , and 
satisfies all boundary conditions along Γ. The 
corresponding Euler equation turns out to be the 
Laplace equation, 

 02 =∇ w , (6) 

so w(x, y) is a harmonic function within Ω. 

1.2.1 Thin plate kinematics in consideration of 
large deflection (stress stiffening) 

Kinematical assumptions within the framework of thin 
plate approximation are reflected in the displacement 
field, 
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with 
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w φ=
∂
∂
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∂

. 

),( yxu , ),( yxv  and ),( yxw  are the 
displacements of the mid-plane of the plate. The 
Green-Lagrange strain tensor for thin plates is [10] 
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whereas the strain component causing sheet thinning 
is determined from volume constancy. The second 
term of (8), representing the curvature of the plate 
mid-surface, causes no thinning and no volume 
change. This can be verified by the fact, that the trace 
vanishes if ),( yxw  is a harmonic function. 

For further proceeding the area Ω can be divided into 
two parts with qualitatively different predominating 
deformation types. 

1.2.2 Plastic bending, plastic hinge 

The rigid circumference of the spotweld nugget acts 
like a plastic hinge, so the second term in (8), the 
curvature, is dominant, and the corresponding plastic 
work becomes (for the case of no work-hardening) 

 
∫Γ ∂

∂
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132

2
1 ds

n
wYtWp

, (9) 

where n∂∂ /  means outward normal derivation along 
the inner circle. 

1.2.3 Plastic stretching 

In the course of out-of-plane deformation the first 
term in (8), representing the plastic membrane-type 
deformation, becomes more and more crucial. 
Additional neglect of in-plane displacements yield the 
following expression for plastic work (for the case of 
no work-hardening) 

 
∫Γ ∂
∂

= wds
n
wYtWp 3

2

. (10) 

The linearity of the governing differential equation (6) 
offers the development of a finite spotweld element by 
Trefftz formulation. It covers Hencky plasticity for the 
case of monotonic loading. Isotropic hardening can be 
accounted for by a piecewise perfectly-plastic 
cascaded flow curve. 

1.3 Combination of the Linear Elastic and 
Rigid/Perfectly Plastic Model – Rheological 
approach 

Both material models, the linear elastic and the 
rigid/perfectly plastic one, yield a stiffness matrix of 
the Trefftz element, eK  and pK , respectively. Now, 
an elasto-plastic model can be deduced by the 
combination of these two sub-models by means of a 
rheological approach in the following way: The sub-
models are connected in series, motivated by the 
assumptions that the addition of the elastic and plastic 
parts of the displacement gives the total displacement, 
whereas the level of reaction forces for both models 
are equal. The total stiffness matrix K  by virtue of 
the serial connection is give by 

 
( ) 111 −−− += pe KKK

. (11) 

Of course, the rigid body modes of the stiffness 
matrices have to be omitted in order to achieve 
invertibility. 

2 Failure (Instability) Criteria 
Real tests show, that spotwelds under monotonic (non-
oscillating) loads fail predominantly at the 
circumference of the nugget (within the base material) 
(see Fig.3). Instability due to the onset of local 
necking in this area proves to be the most important 
process limiting the ultimate force, which the 
spotweld can resist before failure occurs. This effect 
of instability can be implemented in the Trefftz 
spotweld model in a very natural way. 

(a) (b) 

Fig. 3 Micrographs of failed spotwelds: (a) normal 
tension (90°-direction); (b) loaded under 30°-

direction. The reason for failure is the onset of local 
necking of the base material in the vicinity of the 

nugget. 

2.1 Spotweld-Weakening Due to Diffuse Necking 
along the Nugget-Circumference 

The high resolution of the Trefftz strain field along the 
circumference of the spotweld nugget provides the 
opportunity to calculate the local thinning of the 
adjacent metal sheet every time step. The ratio of 
initial to the current thickness t/t0 within the Trefftz-
Element area Ω, and especially along its inner 
boundary, is given by the zz-component of the Green-
Lagrange strain tensor (8) 
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and averaging of the ratio t/t0 over the nugget 
circumference 

 ∫Γ Γ=
1 02

1 d
t
t

Rπ
η , (13) 

with spotweld radius R, yield a quantity η, which is a 
measure of the current spotweld-weakening. Now, this 
factor η is used to scale the block-matrices of the 
spotweld stiffness matrix (11) representing the 
coupling of degrees of freedom of the spotweld nugget 
only, K22, and the mixed sub-matrix, which couples 
the nugget- with the polygon-nodes, K12, 
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In this way the effect of softening due to diffuse 
necking is included, and it shows a good predictability 
for instability due to the onset of local necking (see 
Figs.4d,7). 

3 User Element in ANSYS 
The elasto-perfectly plastic spotweld element based on 
Trefftz formulation is implemented in ANSYS as User 
Element (UPF, User Programmable Feature). It has 
the capability of membrane-type and bending-type 
deformation by forming a plastic hinge at the 
circumference of the approximately rigid spotweld 
nugget. Additionally, the geometrical non-linearity 
due to the occurrence of in-plane stretching as a result 
of out-of plane displacement (stress stiffening) is 
taken into account. In most test-cases it converges 
satisfactory. There are altogether 5 user elements with 
4 up to 8 polygon nodes, each with one mid-node 
(Fig.1c). Two mid-nodes can be coupled via 
constraints or by a beam element. 

3.1 Example of Use 

To prove the applicability of the Trefftz spotweld 
element in industrial applications a practical example 
of use is considered. It consists of a spot welded 
device with three clamps. Each clamp is pulled out 
monotonically (see Fig.4). The obtained force vs. 
displacement curves (Fig.4d) exhibit the realistic 
behaviour, a cascaded shape due to the successive 
failure of spotwelds. 

 
Fig. 4 Example of use for the Trefftz spotweld 

elements (a, upper left). The clamp, fixed at a spot 
welded device, is pulled out monotonically till the 
spotwelds start to fail successively; Contour plot of 

the transverse displacement (b, upper right); Contour 
plot of the equivalent plastic strain (c, lower left). The 

critical spotwelds are clearly observable; (d, lower 
right) shows the force vs. displacement curves for an 

arrangement of three clamps obtained from the 
simulation. The cascaded shape of the curves is due to 

the successive failure (instability) of spotwelds. 

4 Implementation in Explicit FE-Codes 
To make the benefit from Trefftz formulation 
applicable for explicit FE-codes an analogous model, 
made of beam elements, is constructed. The elasto-
plastic beam parameters are calculated automatically 
in such a way, that the entire structure behaves similar 
to the corresponding elastic-plastic Trefftz element 
(Fig.5). This approach has essential advantages 
compared to standard methods. It provides realistic 
kinematical behaviour of the spotweld under crash 
loads, for example realistic twisting of the nugget due 
to shear loading, because it takes its circular shape and 
size into account. Numerical stability within the 
framework of explicit time integration is guaranteed 
by adapting the beam stiffness slightly if necessary. 

(a)

 

(b)

Elasto-plastic beam-
analogous model

Beam with failure

Elasto-plastic beam-
analogous model

Beam with failure

(c) 

Fig. 5 The elasto-plastic spotweld element (hybrid 
Trefftz) (a) is replaced by a system of beam elements, 

that exhibits similar resultant behaviour. The 
analogous models made of beam elements are 

connected by a beam element including failure (b,c). 

5 Validation 
The validation of the Trefftz spotweld model is tested 
by means of the FAT KS tensile test configuration. It 
consists of a single-spot welded pair of metal bowls 
(see Fig.6a). They are clamped via flanges and pulled 
apart under distinct direction until full separation is 
reached. The force vs. displacement curves are 
measured and compared with the curves obtained from 
the finite element model (Fig.6b) including the Trefftz 
spotweld (see Fig.7). 
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(a)

(b) (c) 

Fig. 6 The FAT KS tensile test configuration (a) is 
used to test the validity of the Trefftz spotweld model 

(b). The two single-spot welded metal bowls are 
pulled apart under distinct directions measuring the 

force vs. displacement curves; (c) Contour plot of the 
transverse displacement for the 30°-direction. 

 
Fig. 7 Force vs. displacement curves for the 0°-,.30°-, 

60°- and 90°-directions of the FAT KS tensile test 
(from right to the left). The darker curves are obtained 
from real tests, and the lighter ones are received from 
the finite element simulation with the Trefftz spotweld 

element. 

The deviation of real shear test and simulation is 
probably due to the too stiff modeling of the clamping 
device. Comparison of the standard spotweld model of 
Ansys (multi point constraints, swgen) and the Trefftz 
spotweld model with equal mesh coarseness shows 
nearly equal expenditure of CPU calculation times 
(see Fig.8). The outstanding benefit of the Trefftz 

formulation is that the failure predictability is 
independent of mesh coarseness, whereas the standard 
formulation requires expensive local mesh refinement. 

 
Fig. 8 CPU time vs. number of sub-steps for the FAT 

KS tensile test simulations. Darker curves: Trefftz 
spotweld; Lighter curves: Ansys standard spotweld 

(swgen). 

6 Conclusion 
A finite spotweld element based on hybrid Trefftz 
formulation is developed, with a rigid cylinder, 
representing the comparatively rigid nugget, and the 
surrounding area of the metal sheet, which is linked to 
the adjacent shell element structure via an arbitrary 
polygon. It covers elasto-plastic membrane- and 
bending- type deformations within the framework of 
Kirchhoff’s thin-plate approximation. Hencky’s 
deformation theory for a rigid-perfectly plastic 
material yield linear governing differential equations 
for the displacement field, by taking geometrical non-
linearity (stress stiffening) into account. Plastic 
bending, which is concentrated at the rigid 
circumference of the spotweld nugget, is incorporated 
into the model by means of a circular plastic hinge. By 
definition the Trefftz-type solution satisfies a priori all 
governing differential equations within the element 
area and fulfils inner boundary conditions, leading to a 
high resolution of the stress/strain field in the vicinity 
of the spotweld nugget, and enables the introduction 
of more accurate stress/strain-based failure criteria. 
This elasto-plastic spotweld element is implemented 
both in implicit (ANSYS) and explicit (LS-Dyna, 
PAM-CRASH) finite-element codes. It provides good 
predictability of spotweld failure due to the onset of 
local necking (instability) at the circumference of the 
nugget without drawback concerning calculation time 
and convergence performance. 
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