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Abstract

Price is a key element for retailing because it communicates information about the brand, prod-
uct, value proposition and overall strategy of the retailer. A permanent price reduction of an
item over time is known by definition as ’markdown’. Markdown is a pricing strategy, found in
nearly every retail store including apparel retail, consumer products, fashion style goods or just
any products with a limited life cycle. It is often used to make up for buying errors resulting
from demand unpredictability and to clear out stock over time. While discounts increase sales
on the one hand they erode profits on the other hand. Thus optimizing the timing and mag-
nitude of markdowns is crucial for liquidating a specified inventory quantity at the maximum
profit over a set amount of time. Presently retail buyers do this balancing mainly based on intu-
itive experience and ’rules of thumb’.
In this work we use a mathematical model for markdown industries with the aim of maximizing
total expected profits over the end of season sale. In order to provide a powerful DSS (de-
cision support system) for retailers we have to understand the customer-demand patterns and
price sensitivities and we have to forecast consumer demand. A major part of this procedure is
parameter estimation for gaining valuable demand data. Once the selling season begins, there
is an opportunity of revising prior demand estimates using actual sales data. In our model we
implement an adaptive learning mechanism such that we can expect the estimates of demand
to get better tuned as the season progresses. Based on these results we calculate an optimal
markdown-pricing policy via a dynamic programming approach. Furthermore we give results
of a case study which is conducted at a renowned Austrian fashion retailer.
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gramming
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1 Introduction
Today’s retail environment is getting more and more
complex and managers are faced with thousands of
daily decisions. Some of them are small and routine but
occur frequently, others are occasional but have greater
financial impact. Nowadays technology can help sup-
port managers’ decision-making process by ways of
DSS (decision support systems). A DSS is a comput-
erized system for helping make decisions which are a
choice between alternatives based on estimates of the
values of those alternatives. One way to obtain these
recommendations is provided by optimization of math-
ematical models. The strength of mathematical opti-
mization includes the ability to consistently evaluate far
more alternatives than a human can. Especially when
the same kind of decisions are repeated many times,
such applications provide effective means.

The goal of almost any industry should be to maximize
profits or revenues on the long-term. Here such op-
timization techniques come into play. Since revenues
depend on prices and sales, pricing policies that are re-
sponsive to sales can be an efficient tool to enhance rev-
enues. Customers will hardly be willing to buy a perish-
able product in retail stores whose price oscillates, from
their point of view, randomly over the season. This
explains the need for non increasing pricing strategies
which are commonly used for short life cycle products.
Here retailers start with a fairly high price in the hope
of reaping large revenues if the item turns out to be a
hot seller and knowing that they can lower it, if the item
does not sell well. Such strategies where prices are con-
tinuously reduced over time are called permanent mark-
downs. The pricing decisions are made dynamically,
taking into account the inventory on hand and time left
until the end of the season. Permanent markdowns are
rarely advertised, because each product is discounted at
different points in time and in different amounts. Thus
customers have little information about current prices
before going to the store. This and the fact that they
have only partial information about inventories, pre-
vents them to some extent, from acting strategically. If
however, customers would act strategically and adjust
their buying behavior in response to the firm’s pricing
strategy, this would require a different type of model in-
cluding a game theoretic formulation which is beyond
the scope of our analysis. As motivated above the as-
sumption of non-strategic customers is approximately
true in ’impulse purchase’ settings containing consumer
products, apparel retail, fashion-style-goods or just any
products with a limited life cycle like seasonal goods.
Other examples that fit this framework could also be
travel and leisure industry, which markets space such
as cabins on vacation cruises, hotel rooms or seats on
airline flights which become worthless if not sold by a
specific time.

Many industries dealing with such settings face the
problem of selling a given stock of items by a dead-
line with no resupply option during the sales season.
This results from high production lead times compared
to the shrinking products’ life cycles and is a fairly
common situation in practice, with seasonal products

such as fashion clothing (e.g. production lead time of
three to six months and a sales season of less than 12
weeks). Moreover in most industries capacity decisions
are fixed for the sales horizon and cannot be changed in
the short run. Buyers order inventories for the entire
season well before the item goes on sale. Thus once the
selling season is underway, there is no further opportu-
nity of reordering. Even though products usually don’t
perish at the end of the season, stores usually liquidate
the inventory and do not store merchandise for the next
season due to rapid changes in fashion (obsolescing in-
ventory) and high inventory carrying costs. The mer-
chandise manager’s job is to tactically adjust the price
throughout the selling season in response to the realized
demand, in order to maximize expected total revenues
over the entire selling season.

Until recently, retailers typically based their initial pric-
ing and subsequent markdown decisions on arbitrary,
time-honored rules that they believed had worked well
in the past. A common rules-based approach would be
to apply a fixed percentage markup onto the cost (key-
stone markup) and then take a fixed percentage mark-
down on merchandise that has been in the store for
a certain number of weeks, followed by an additional
markdown a few weeks later. The magnitude of the
markdown typically ranges between 25% and 50% with
the exact rate depending on the sales rates and current
inventories. Furthermore many retailers tend to offer
the same list price and the same discounted price at dif-
ferent location which usually do not follow the same
demand patterns. Another difficulty is the following:
Since demand is price sensitive and stochastic, man-
agers have to rely on uncertain demand forecasts. In
practice retailers tend to buy stocks according to their
optimistic forecasts while planning to mark down po-
tential excess inventory to stimulate demand and sell
out the excess by the end of the season. However, in
order to hedge against the possibility of stronger than
expected demand, they set relatively high initial prices
which are then reduced over a set amount of time. If de-
mand falls short of projections, this results in too much
unsold and practically worthless inventory at the end of
the season. Thus he needs to apply necessary mark-
downs to clear out the stocks as profitably as possible.
If he marks down too less and/ or too late, this could
lead to unsold stock at the end of the season causing
heavy losses. On the other hand giving large discounts
too early could exhaust stock at unnecessarily low prof-
itability early in the season with massive opportunity
losses. Getting the initial pricing, and timing and depth
of discounts right, is a challenging job. Most retailers
will agree that markdowns are one of the most ineffi-
ciently run areas of their business. Given todays small
margins, the effectiveness of markdown policies can
make the difference between a profitable and unprof-
itable season. Decision support systems, like ours, can
help taking these crucial decisions.

1.1 Literature Review

Several recent papers address the problem of marking
down style goods. Theoretical models have been pro-
posed in marketing, operations research and economic
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literature. [1] provides a survey of pricing models in
marketing literature, and [2] provides a survey of pric-
ing models in the economic literature.
[3] formulate a basic model for the continuous and dis-
crete time case where demand is described by a Pois-
son process or is deterministic and provide structural
results for the optimal price path as a function of inven-
tory level and the remaining length of the selling period.
They furthermore give an exact solution for an expo-
nential price-dependent demand function.[4] use a sim-
ilar approach to determine the optimal timing and dura-
tion of a single price (markup or markdown) change and
show conditions where the optimal policy possesses a
threshold property. [5] also develop a continuous-time
model in which customers arrive according to a Pois-
son process, but they describe the price sensitivity by
a reservation price function. They also compare opti-
mal continuous pricing policies with more realistic pe-
riodic pricing policies. [6] determine an optimal clear-
ance pricing policy which takes into account the re-
duced stock of inventory which influences demand.
Several authors, e.g. [7], [8], [9], [10] and [11] study
retail pricing decisions working with data sets on sales
and prices of specific retailers empirically. [10] further-
more explain how hypothesized models are fit to the
actual data in order to obtain estimates of revenues un-
der various pricing policies.
Furthermore [12] propose shrinkage estimation pro-
cedures to estimate separate elasticities for differ-
ent chain-brand combinations by using a hierarchical
Bayes model. More fundamental is [13] which deal
with the linear model which is adapted to Bayesian
methods. You can find an enhancement of this paper by
reading [14]. It examines the Bayesian model in more
detail and deals with the resulting estimators. [15] pro-
poses a Bayesian Mixture Model for demand estimation
where retail demand was parametrized as semilog and
doublelog. [16] review the use of a Gibbs sampler as
a method for calculating Bayesian posterior densities
and illustrate it with a range of normal data models. A
decent overview of Bayesian methods is provided by
[17]. Recently several authors examine the nexus be-
tween retail practice and research. E.g. [18] discuss
recent advances in retail pricing optimization and lists
critical components which should be incorporated in or-
der to determine optimal prices.

1.2 Outline and Overview

This paper reports the results of an empirical study of
pricing policies at an Austrian fashion apparel retailer.
Till nowadays the pricing policy of this firm consists
of essentially two price changes for the analyzed cate-
gories. These happen at the end of each season whereas
during each season no markdowns are allowed. The
amount of reduction is determined by rules of thumb,
weather, remaining days of sale and so on. The same
decision rules are applied to the timing of all price
changes and their quantity.
Most garments are available at a limited supply and are
sold over a short selling season. The inventory stock
is reviewed periodically and at each review period the
manager has the opportunity to implement a markdown

from the current retail price. Using data provided by
this company we will analyse the company’s current
pricing policies and analyse the loss of expected profit
for different pricing policies. In order to provide a pow-
erful DSS, we first need to understand the customer-
demand patterns and the corresponding price sensitivi-
ties. Adaptive learning techniques, like bayesian updat-
ing, will be used to revise prior demand estimates us-
ing actual sales data and get better tuned demand fore-
casts as the season progresses. A large section will be
assigned to the formulation of the underlying dynamic
program which numerically solves the actual price op-
timization problem by taking the estimation parameters
as input variables.

2 The Model

We assume our firm operates in a market with imper-
fect competition. Either the firm is a monopolist or it’s
product is new and innovative. In that case the firm
holds a temporary monopoly. Furthermore the firm ap-
plies periodic reviewing, and markdown pricing deci-
sions are to be taken over a finite selling horizon with
T periods. We assume that stochastic demands are
price-sensitive (their distributions depend on the prod-
uct price) and independent from each other in differ-
ent periods. The period’s pricing decisions (selecting a
specific price from a given permissible set) are made at
the beginning of each period, before the period’s ran-
dom demand is realized, depending on how much in-
ventory is left from the last period xt and the previous
period’s price pt−1. Randomness in demand does not
depend on the price. We define demand additively as
Dt(pt, εt) = E[Dt(pt, εt)] + εt, where εt has a prob-
ability mass function Pεt

[·] with mean E[εt] = 0 or
multiplicatively as Dt(pt, εt) = E[Dt(pt, εt)]εt, where
εt has a probability mass function Pεt [·] with mean
E[εt] = 1. Demand is indexed by t to denote time
dependence. Revenues are collected at the end of each
time period as the stock is sold. xt denotes the inven-
tory level at the beginning of time period t which is left
over from the last time-period, respectively x0 denotes
the starting inventory. At the end of each period t a cost
ht is incurred which represents the inventory holding
costs per unit of leftover salable inventory xt > 0. No
backlogging of demand is allowed and an excess of de-
mand is lost, but penalty costs of lt per unit of excess
of demand arise, accounting for the loss of goodwill of
the customers. Unsold items at the end of the selling
season have a given salvage value sT per unit, which
could be obtained by selling the remaining stock to a
deep-discount retailer. All costs related to the purchase
or production of those items are considered sunk costs.
The objective is to find a pricing sequence subject to the
constraint that pt ≤ pt−1 (markdown pricing policy)
which maximizes expected (discounted) profit over the
finite horizon:

max
pt≤pt−1

E[
T−1∑
t=0

γtptDt(pt, εt)],
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Tab. 1 Variables, Relationships, Objective

Quantity Formulation Description
State
Variables

xt inventory on hand at the
beginning of period t

pt−1 previous period’s price
Decision
Variable

pt(pt−1, xt) optimal price decision
in the current period t

Transition
Function

xt+1 = xt−
−min(xt,Da,t)

subsequent period’s
inventory with current
period’s actual demand
Da,t

Objective
Function

maxpt≤pt−1 Π maximize total ex-
pected profit Π over the
selling horizon

where γ is a possible discounting factor (1 + ρ/100)−1

with ρ being the discounting rate. According to Bell-
man this maximization problem can be written as a dy-
namic program which we are going to describe during
the next paragraphs.

A dynamic program essentially consists of a system of
relationships among variables and time. The system is
composed of a vector of state variables (which define
the state of the system at any point in time), a vector
of decision variables (which affect the system’s evo-
lution), a system of transition functions (which relate
the state and decision variables over time), the objec-
tive (which reflects the goals of the management) and
an external disturbance on the system. The decision
problem is one of choosing optimal time paths for the
set of decision variables from a permissible set of pos-
sible decision paths.
In case of the here considered markdown optimization
problem Tab.1 specifies the variables of interest and the
relationship between them. Fig. 1 gives an idea of how
the dynamic program works.

Suppose, we are at the beginning of some period t,
t = 0 . . . T − 1, and suppose pt−1 was the price ap-
plied in the previous period, resulting in an actual (ob-
served) demand Da,t−1. Note that from now on we
use the subscript a to denote realized values of ran-
dom variables. Then the gross quantity of stock on
hand at the beginning of period t is given by xa,t =
xa,t−1 − min(xa,t−1, Da,t−1) (see Tab.1) which is the
inventory on hand, xa,t−1 at the start of the previous
period less the total quantity sold during that period.
Next we consider the single period profit πt(xt, pt) is

given by the revenues from all units sold less the inven-
tory holding and inventory stockout (penalty) costs in
this period. Thus the single period profit is given by the
following equation:

πt(xt, pt) = pt ·min(xt, Da,t)−
− ht ·max((xt −Da,t), 0)−
− lt ·max((Da,t − xt), 0)

(1)

In the terminal period t = T − 1 there is a possibility
that the leftover stock has some salvage value sT at the
end of the season, as it could perhaps be returned at

Fig. 1 Dynamic program

some buyback price to the vendor or sold at a very low
price (at or even below cost) in a liquidation sale.

We are now going to formulate the buyer’s dynamic
pricing problem. We define the function V ∗t (x, pt−1) as
the maximum expected discounted profit from period t
onwards (profit-to-go function), if the initial inventory
is x and the price in the previous period was pt−1. The
mathematic formulation is given by

V ∗t (x, pt−1) = max
p≤pt−1

{Jt(x, pt−1, p)} (2)

Jt(x, pt−1, p) = pE [Dt(p, εt)]−
−htE [xt−Dt(pt, εt)|xt≥Dt(pt, εt)]−
−ltE [Dt(pt, εt)−xt|xt <Dt(pt, εt)]+

+γE
[
V ∗t+1(x−Dt(p, εt), p)

]
,

(3)

with the boundary conditions

Vt(0, p) = 0, ∀t, p and (4)
V ∗T (x, p) = xsT , ∀x, p. (5)

Since only integer values of demand can be realised we
can reformulate Eq.(3) substituting expected values in
the following way:

Jt(x, pt−1, p) =
∞∑

Da,t=0

p ·min(x, Da,t)+

−
∞∑

Da,t=0

ht ·max((xt −Da,t), 0)−

−
∞∑

Da,t=0

lt ·max((Da,t − xt), 0)+

+γ
∞∑

Da,t=0

V ∗t+1(x−min(x, Da,t), p)PDt
[Dt(p, εt)=Da,t],

(6)

where PDt
[·] is the probability mass function of the

number of actual sales in period t.
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3 Case study
This case study was initiated when the CEO of a big
Austrian fashion retailer decided that their markdown
strategy needed a fundamental redesign. After a short
presentation it was clear that we would start a pilot
project with the purpose to price a few categories each
with 50-60 items during the following end of season
sale and to evaluate the results. When we talked about
the precise implementation of our software it turned out
that our model of demand was a bit too sophisticated for
this firm. So we did not use parameters like inventory
holding and penalty costs as well as salvage values for
our demand estimation. Our literature review suggested
that the additive and multiplicative are two popular de-
mand specifications for retail demand. After a lot of
reading (especially [19] and [20]) and finding a lot of
evidence that the linear specification is a bad choice for
a decision model we decided that we will use the latter.
One of the big advantages of multiplicative demand is
the possibility of non-linear relations between the dif-
ferent variables.

Di,t(Pi,t, εi,t) = β0P
β1
i,t εi,t (7)

In Eq.(7) t is the time index and i specifies the cate-
gory, whereas β0 and β1 are the respective coefficients.
The random disturbance terms εi,t are log-normally
distributed due to earlier work conducted in [11].The
resulting probability distribution for a certain category
is depicted below.

Fig. 2 Probability demand

For estimation of the coefficients we used a Bayesian
approach to include current sales figures. In doing so
methods like MCMC (Markov Chain Monte Carlo) and
the Gibbs sampler were applied. In the process a system
of m regression equations are related through correlated
error terms:

yi = Xiβi + εi,

εi ∼ N(0,Σ)
(8)

MCMC is based on the idea that rather than compute a
probability density p(θ|y) we would be satisfied to have
a large random sample from p(θ|y) instead of knowing
the precise form of the density. This gives rise to the
question of how to simulate a large number of random
samples from p(θ|y). One of the most used approaches

for this task is the mentioned Gibbs sampling.
After the estimation of our demand function was fin-
ished Dynamic Programming methodology was used
for optimization of the different price paths. So the first
thing we did was testing if our optimization behaves
like it should and one of the first results is depicted be-
low.

Fig. 3 Comparison between different periods

In Fig.3 these items are priced accordingly to their stock
of inventory. So as stock decreases, prices for these
items increase. Each line describes different behaviour
at different time periods. So as time progresses our al-
gorithm tends to drop prices more sharply as you can
see by comparing t = 1 and t = 8. These character-
istics are completely sound because as time progresses
there’s less time to clear the inventory which is the ulti-
mate goal (while maximizing profit).
But as this paper is about markdown there has to be
a third dimension in the following graphs namely the
price at the previous period because pt ≤ pt−1. So let’s
have a short look what happens if we don’t act accord-
ingly to this rule (graph below).

Fig. 4 Optimal prices without restriction

The new dimension is named ’price upper limits’ and
consists of the same numbers as our permissible prices.
As is clearly visible despite the fact that eg. price 30
was applied at the previous period our program suggests
that the new price should be approx. 45. That’s because
this new price is mathematically optimal but you don’t
consider prices which were set in the previous period.
This was done for the creation of Fig. 5. As you can see
all prices which are ’optimal’ but violate the assump-
tion pt ≤ pt−1 are ’cut’.
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Fig. 5 Optimal prices for the first period

The figure above depicts all different price suggestions
for a certain category for one period of time. So you get
such a graph for each time period which behaves like
Fig. 3 over time with incorporation of the rule pt ≤
pt−1.

Fig. 6 Excel output

As you can’t expect a category manager to look at tons
of graphs like Fig. 5 the output for this retailer consists
of simple Excel-files like Fig. 6.

As an additional task we had a look at the ex-
pected loss of profit for different price politics. Fig. 7
illustrates the various effects which could happen when
you allow only one price reduction (eg. -60%) during
this sales period.

Fig. 7 Expected loss of profit for 1 price change

As one can easily see you’ll have no expected loss of
profit if you act accordingly to Case 4. What is meant
by the different cases is demonstrated in Fig. 8 - 11.

Fig. 8 Case 1 (for 1 permissible price change)

If you’re acting accordingly to Case 1 you should mark-
down at the first time period. Looking at Fig. 7 this
policy brings you an expected loss of profit of approx.
15%! This is because you start too early and don’t get
the full potential profit.

Fig. 9 Case 2 (for 1 permissible price change)

Fig. 10 Case 3 (for 1 permissible price change)

Case 9 (Fig.11) demonstrates the effect you get if you
don’t lower your price at all. Looking at Fig.7 you
can see that your expected loss of profit would rise to
approx. 42%.
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Fig. 11 Case 9 (for 1 permissible price change)

Continuing our analysis it seemed reasonable to
have a look at the possible effects of a policy with two
permissible price reductions. Results are depicted in
Fig.12 but aren’t that easy to interpret as in Fig.7.

Fig. 12 Expected loss for 2 price changes

In this graph every line represents up to 9 additional
cases. That’s why we changed our notation in Fig.13 -
16 to Case X,X.

Fig. 13 Case 1,1

This policy (Fig.13) applies to the left-most point on
the blue line in Fig.12. So by applying the biggest price
drop in the beginning of your sales period you get an
expected loss of profit of approx. 20%.

This policy (Fig.14) applies to the left-most point on
the green line in Fig.12. So by applying the biggest

Fig. 14 Case 2,2

price drop during your second time period you get an
expected loss of profit of approx. 15%. This is again
because you don’t get your full potential profit.

Fig. 15 Case 5,5

Fig. 16 Case 5,7

Fig.15 and Fig.16 correspond to the same line now (the
violet one) but Fig.16 is the more interesting one. In
this case you begin with full price till time period 5,
then you lower your price to the first permissible price
and in the beginning of time period 7 you lower again.
For this policy your expected loss of profit amounts to
approx. 25%.
Fig.12 still keeps two important findings ready. First
the bottom line (x-axis) doesn’t represent the expected
optimal profit for two permissible price changes but for
100! So by looking at the graph you can easily see
that the optimal policy for two price changes (the low-
est point of the blue line ) only accounts to additional
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3% compared to a pricing policy with 100 permissible
price changes! Applying this finding to the mentioned
one price change policy (Fig.7) means that we only lose
approx. 8% by acting this way. So by taking two price
changes instead of one you gain 5% of your expected
profit.

4 Issues for Future research
Several issues for future research fall in the areas of pa-
rameter estimation and model enhancements.
First we want to extend our demand model by means
of Hierarchical Bayes methods. These are designed
to measure differences between units using a particu-
lar prior structure because as consumer sensitivities be-
come more and more diverse, it becomes less and less
efficient to consider the market in the aggregate. Hier-
archical Bayes approaches are ideal for these problems
as it is possible to produce posterior distributions for a
large number of unit-level parameters.
Second we want to include prices of competitors in our
demand model. The reason is the dominance of this as-
pect in the minds of many business managers and the
big influence this has on their decisions. An example
provides [12].
Third is the enhancement of our optimization in terms
of adding actions. Again the reason is the wish of
several managers to include such actions as promotion
and not only price. There exist Dynamic Programming
models which combine inventory and pricing decisions
so an extension in this form seems straightforward.
Fourth is the modification of our objective function in
terms of risk aversion. This issue is best described by
the newsvendor problem where a decision maker or-
ders inventory before a selling season with stochastic
demand. If too much is ordered, stock is left over at the
end of the period, whereas too little is ordered, sales are
lost. A good introduction gives [21].
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