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Abstract

This paper describes a geometrically nonlinear formulation for an interface and its applica-
tion to the analysis of adhesive joints configurations failing in the fully nonlinear regime. The
core of the adopted approach is that of using a cohesive-zone model to mimic the behaviour
of the adhesive layer within a corotational-like element formulation, i.e. large displacements
and rotations with small strains. In particular, the adherends are allowed to experience large
elastoplastic deformations while the progressive interface decohesion is modelled via the dam-
age mechanics approach developed by the authors, that is here suitably extended to include
geometric effects. This gives rise to two main differences with respect to the underlying lin-
ear formulation, namely, the need for the continuous tracking of the discontinuity surface due
to the explicit dependence of the cohesive tractions on the orientation of the surface itself and
the presence of geometric terms in the tangent stiffness. Numerical examples and comparisons
with experimental results are provided that show the ability to capture the highly nonlinear re-
sponse for a single-lap joint and an asymmetric T-peel test, where fracture of the adhesive layer
is accompanied by large rotations and extensive plastic deformation of the joint arms.
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1 Introduction
Adhesive bonding is a technique of interest in a variety
of industrial applications as it can offer improved per-
formances with respect to mechanical fastening meth-
ods, basically originating from the fact that adhesive
connections can transmit stresses with more uniform
distributions compared to bolts and rivets. Typically,
the bond region possesses a thickness that can be con-
sidered small compared to both that of the joined bod-
ies and to its in-plane dimensions and the adhesive is
likely to be the weakest link in a structural joint; hence,
the adhesive layer can be conveniently schematized as
a damaging interface where a cohesive process zone is
lumped. The many advantages of the cohesive-zone ap-
proach over the more classical methods of Fracture Me-
chanics are well-known, see e.g. [1]; in particular, one
of its most appealing features is that it can be easily
combined with arbitrary material non-linearities of the
surrounding volume.

In current implementations, cohesive interfaces are
used in conjunction with zero-thickness decohesion or
interface elements; these elements are located at sites
where the potential crack trajectories can develop and
are equipped with a nonlinear traction-relative displace-
ment relationship describing the process zone evolution
and the formation of traction-free surfaces.
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Fig. 1 Shear-lap joint. Numerical vs experimental re-
sults. Linear and nonlinear kinematics.

The present work is motivated by the authors’ attempt
to obtain quantitative predictions for adhesively bonded
assemblies for which de-cohesion and fracture are ac-
companied by significant geometric effects. This is
indeed a common occurrence for many joint configu-
rations, one of the most striking examples being the
single-lap shear joint for which, owing to load eccen-
tricity, the failure mechanism can in general be captured
only with the aid of a fully nonlinear analysis incorpo-
rating an appropriate fracture-based description of bond
rupture (Figure 1).

To this end, the damage-mechanics-based approach de-
veloped by the authors in [2] is here suitably enhanced
to account for changes in the geometry of the cohesive

surface. This is done in the same spirit of a corotational-
like formulation; in particular, stretching of the cohe-
sive elements is neglected and relative displacements
are taken as the only strain-producing motion for the
interface. In this way the underlying “linear formu-
lation” of the material model can be preserved under
mild assumptions that also ensure frame invariance and
the element implementation differ with respect to the
linear one in that it is required the continuous tracking
of the normal to the deformed surface, upon which the
cohesive tractions explicitly depend, that also leads to
geometric or initial stress terms in the tangent stiffness.

2 Nonlinear kinematics and cohesive law

The basic geometry considered is a body Ω consist-
ing of the assembly of two adherends denoted as Ω+

and Ω− that are initially in contact through a planar
adhesive layer S. At each instant t ∈ [0, T ] the cur-
rent configuration of the structure is defined by the sets
Ω±(t) ⊆ <3 described by the displacements u± from
the reference configuration:

u±(X , t) = χ±(X , t) −X (1)

relating the placements X in the reference configura-
tion to the deformed ones x± = χ±(X , t) occupied at
time t in the current configuration via the deformation
mappings χ±.

In this context, the virtual power identity in the spatial
description of motion reads:

∫

Ω

σ · ∇s(δv) dΩ +
∫

S

t · [[δv]] dS = Pext ∀δv (2)

where σ and t are the Cauchy stress and the surface
traction, respectively, Pext is the power of external
forces, ∇s is the symmetric gradient operator, δv the
virtual spatial velocity and the symbol [[·]] denotes the
jump (·)+ − (·)−.

In order to formulate the problem, two main issues have
to be addressed, namely, the transformation rule of the
spatial velocity jump under rigid-body motions and the
transformation of the area elements of the cohesive sur-
face S. Actually, spatial fields are generally affected
by a change in observer, and so is for [[δv]]; moreover,
when contact is lost and a fracture propagates through
the adhesive layer, uniqueness of the cohesive surface
and its orientation are lost as well. However, both frame
invariance for [[δv]] and elimination of possible ambigu-
ities in the definition of the unit normal n are guaran-
teed if one admits that before complete separation the
discontinuity in displacements across the cohesive sur-
face is small, i.e. [[χ(X, t)]] ' 0, as basic continuum
mechanics arguments show [3].

In this paper we shall limit ourselves to the treatment
of two-dimensional problems; the cohesive constitutive
relationship used stems from the following stored en-
ergy function [2]:



ψ([[u]],n, D) =
1
2
k−n 〈[[un]]〉2−

+
1
2
(1 −D)

[
k+

n 〈[[un]]〉2+ + ks[[us]]
2
] (3)

where k−n is a penalty stiffness that is used to pre-
vent inter-penetration and 〈·〉± = 1/2(· ± | · |). In
the above equation D ∈ [0, 1] is the scalar damage
variable, k+

n , ks are undamaged interface stiffnesses,
[[un]] = [[u]] · n and [[us]] = [[u]] · s = [[u]] − [[un]]n
denote the normal and tangential components of the dis-
placement jump vector across the interface, whose ori-
entation is defined by the unit tangent vector s = Rn,
where R denotes a proper rotation tensor such that
Rn · n = 0

The constitutive relationships follow from the classical
thermodynamics argument; in particular, the traction
vector reads:

t([[u]],n) = ǨP̌([[u]]) + (1 −D)K̂P̂([[u]]) (4)

where P̌ and P̂ are the complementary projectors:

P̌([[u]]) = 〈[[un]]〉−n

P̂([[u]]) = 〈[[un]]〉+n + [[us]]Rn
(5)

while Ǩ and K̂ are undamaged stiffness operators:

Ǩ = k−n (n⊗n); K̂ = ksI+(k+
n −ks)(n⊗n) (6)

I being the identity tensor.

The expression of the damage-driving force:

Ym = − ∂ψ

∂D
=

1
2

[
k+

n 〈[[un]]〉2+ + ks[[us]]
2
]

(7)

suggest the following definition of the equivalent open-
ing displacement δ:

δ =
(
〈[[un]]〉2+ +

ks

k+
n

[[us]]
2

)1/2

(8)

whereby one obtains the damage energy release rate as:

Ym =
1
2
k+

n δ
2 (9)

and the cohesive law in the local frame attached to each
point of the interface in the form:

tδ = (1 −D)k+
n δ (10)

tδ being the equivalent scalar traction:

tδ =
(
〈tn〉2+ +

k+
n

ks
t2s

)1/2

(11)

It is worth emphasizing that the above expressions di-
rectly emanate from the potential (3); no a priori as-
sumption is required neither on the shape of the cohe-
sive law nor on that of the fracture locus and that mode

Fig. 2 Traction-relative displacement relationship and
loading direction.

partition is made only based on the mode-mixity ratio
defined as:

β =

√
ks

k+
n

tanϕ (12)

ϕ being the angle that defines the loading direction:

ϕ = arctan
[

[[us]]
〈[[un]]〉+

]
∈ [0,+π/2] (13)

that is also used to select the appropriate traction-
displacement jump relationship (Figure 2) and to com-
pute the characteristic model parameters.

Basically, the model requires as input data the undam-
aged interface stiffnesses k+

n and ks, that can be esti-
mated via acoustic measurements, the pure-mode criti-
cal fracture energies GcI , GcII , a damage function and
two interaction criteria for damage onset and decohe-
sion propagation.

3 Element technology

A quadratic (six-noded) one-dimensional interface ele-
ment is shown in figure (3). Here ξ is the local natural
coordinate while x, y are the global coordinates.

Since the element undergoes large transformations, an
immediate difficulty arises in the identification of the
current geometry of the cohesive surface. One way to
resolve this non-uniqueness is that of making reference
to the mean deformed surface, that is obtained mapping
the adhesive layer in the reference configuration via the
mean deformation (Figure 3):

χ̄(X , t) =
1
2

[
χ+(X , t) + χ−(X , t)

]
(14)

that also permits the elimination of any ambiguity in the
definition of the unit normal n, upon which the cohesive
tractions explicitly depend.

In order to obtain the director cosines of the unit tangent
and normal vectors start by considering the differential



length of the line element of the mean deformed surface
in the current configuration:

ds =
√

dx̄2 + dȳ2 (15)

that depend upon the isoparametric map and the up-
dated mid-coordinates:

x̄j = Xj + 1
2 [uj

1 + u
(7−j)
1 ]

ȳj = Y j + 1
2
[uj

2 + u
(7−j)
2 ]

j = 1, . . . , nel (16)

uj being the nodal displacements and nel half the num-
ber of element nodes.

Fig. 3 Element transformations

The jacobian operator, that in the present case is a
scalar, reads:

J =
ds
dξ

=

√√√√
( nel∑

j=1

N j
,ξx̄

j

)2

+
( nel∑

j=1

N j
,ξ ȳ

j

)2

(17)

wereby one can compute the first derivative along the
line element of any quantity A as:

∂A

∂s
= J−1 ∂A

∂ξ
(18)

Accordingly, the director cosines are obtained as:

sx = +ny = cosα =
dx̄
ds

= J−1 ∂x̄

∂ξ

sy = −nx = sinα =
dȳ
ds

= J−1 ∂ȳ

∂ξ

(19)

Note that relationship (18) expresses the gradient with
respect to the spatial (curvilinear) coordinate of an up-
dated Lagrangian formulation in the form:

∇x (·) = F−T∇ξ(·) (20)

being:
F = ∇ξ(x ) = ∇ξ(X )∇X (x ) (21)

the jacobian of the transformation mapping the parent
element in the isoparametric space to the current (de-
formed) configuration.

3.1 Consistent linearization

An essential ingredient for the solution of the dis-
cretized BVP via Newton’s method is the computation
of the tangent stiffness tensor, that stems from the lin-
earization:

dx t ([[u]],n) = d[[u ]]t([[u]],n) · dx [[u]]

+ dnt([[u]],n) · dxn
(22)

The derivative of the traction vector with respect to
the displacement jump defines the material tangent Dt

whose explicit expression reads:

Dt = (1 −D)K̂ d[[u ]]P̂([[u]]) + Ǩ d[[u ]]P̌([[u]])

−HDK̂P̂([[u]]) ⊗ d[[u ]]D
(23)

where HD is a Heaviside step function, that is used to
distinguish between damage loading and elastic unload-
ing, and d[[u ]]D is the damage derivative:

d[[u ]]D =
∂D

∂Ym
I +

∂D

∂Ymo
A(β) +

∂D

∂GT
B(β) (24)

that depends upon the adopted damage law, the inter-
action criterion for damage onset, controlled by the ac-
tivation energy Ymo, and the decohesion propagation
condition, that takes place for a variable released en-
ergyGT depending upon the loading direction, see also
[2] for a full account.

The geometric part of the tangent consists of two con-
tributions, namely, the derivative of the traction with
respect to the normal n and the derivative of the unit
normal n with respect to the spatial coordinates x [4].

The first term reads:

dnt([[u]],n) = k−n [f−n⊗ [[u]] + 〈[[un]]〉−]

+(1 −D)k+
n [f+n⊗ [[u]] + 〈[[un]]〉+]

−(1 −D)ks [n⊗ [[u]] + n · [[u]]]

(25)

with

f± =
1
2

[1 ± sgn([[un]])] (26)

The explicit expression of the derivative of n, though
conceptually simple, is in general quite involved since
it depends on the geometry of the mean deformed sur-
face. In the adopted implementation this has been ob-
tained by differentiating the expressions (19) with re-
spect to the spatial coordinates. This requires in turn
the computation of second derivatives as:

∂2A

∂s2
=

∂

∂s

(
J−1 ∂A

∂ξ

)
= J−1 ∂

∂ξ

(
J−1 ∂A

∂ξ

)

= J−2 ∂
2A

∂ξ2
− J−3 ∂J

∂ξ

∂A

∂ξ
(27)

where the natural derivative of the jacobian:

∂J

∂ξ
=

d2s

dξ2
(28)

can be obtained from (17) by direct differentiation.



4 Numerical examples

In this section we consider the application of the model
briefly discussed in the previous sections to predict the
response of two adhesively-bonded assemblies. The
cohesive model has been implemented within a user-
defined interface element as a part of general-purpose
FE code FEAP rel. 7.4 [5]. The material data sets for the
adherends, made from the 5754 aluminum alloy, and
the bonded interface, made from XD 4600 Ciba-Geigy
epoxy adhesive, are derived from [6].

In the numerical simulation the aluminum alloy is mod-
eled using the finite deformation logarithmic stretch-
based Mises model with saturation-type isotropic hard-
ening [7]; the elastic constants for the adherends are
taken as E=70 (GPa) and ν = 0.33, while the yield
stresses and strain-hardening characteristics are ex-
tracted from the experimentally measured stress-strain
curve as σ0

y=100, σ∞
y =240, Hiso=100 (MPa), β = 20.

The material parameters for the interface are taken as
k+

n = 8500, ks = 750 (N/mm3) GcI = 1.00, GcII =
5.40 (N/mm). The characteristic energies GoI , GoII

have been respectively taken as a fraction of GcI , GcII

in absence of any further information; however, for the
numerical examples considered hereafter, these values
have been found to have little influence on the com-
puted response.

4.1 Shear-lap joint test

In this eample we consider a single-lap joint problem,
basically consisting of two plates joined by a thin adhe-
sive layer. The geometry of the test is shown in Figure 4
(all dimensions are in mm). The joint is loaded by pre-
scribing diplacements at the left and right ends.

Fig. 4 Shear-lap joint. Model problem

Figures 5-6 compare, for the specimens with different
adherend ticknesses, the numerically predicted load-
deflection curves and the experimentally observed ones
reported in [6]. As expected, plane stress elements per-
form better than plane strain elements for this test since
the deformation in the free arms is dominated by axial
tension.

The numerical simulations are recognized to capture all
the major features of the macroscopic response of the
structure, that include a geometric hardening effect due
to the joint rotation, that produces the re-alignment of
the joint arms, and a stress state in the adhesive layer
that becomes progressively shear-dominated as the co-
hesive zone develops.
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Fig. 5 Shear-lap joint. Numerical vs experimental re-
sults. Adherend thickness 2.0/3.0 mm

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

3.50E+02

4.00E+02

4.50E+02

0.00E+00 2.50E-01 5.00E-01 7.50E-01 1.00E+00 1.25E+00 1.50E+00 1.75E+00 2.00E+00

Displacem ent (m m )

F
or
ce
 p
er
 u
ni
t 
w
id
th
 (
N
/m
m
)

experiment - h = 3.0 mm

simulation (plane strain)

simulation (plane stress)

Fig. 6 Shear-lap joint. Numerical vs experimental re-
sults. Adherend thickness 3.0/3.0 mm

4.2 T-peel test

This example refers to the T-peel test, often used to
evaluate the peel strength of adhesives. The geometry
of the sample is shown in Figure 7 (all dimensions are
in mm). Load is simulated via displacement control at
the ends of vertical arms.

Fig. 7 T-peel joint. Model problem
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Fig. 8 T-peel joint. Numerical vs experimental results.
Adherend thickness 1.0/2.0 mm
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Fig. 9 T-peel joint. Numerical vs experimental results.
Adherend thickness 1.3/2.0 mm
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Fig. 10 T-peel joint. Numerical vs experimental results.
Adherend thickness 1.6/2.0 mm

Plane strain elements are used for this test since the
deformation of the adherends is dominated by bend-
ing. Three different adherend thickness combinations
are considered (1.0/2.0, 1.3/2.0 and 1.6/2.0 mm) and the
relevant numerically predicted load-deflection curves

are compared in Figures 8-10 with those experimentally
observed and documented in [6].

Unlike the previous example, in this geometry the re-
sponse of the interface is essentially mode-I dominated;
however, the numerical simulations show that adhesive
fracture is accompanied by extensive plastic deforma-
tion both in the vicinity of the active process zone and
in the region of the right-angle bend, which does not al-
low the measured force to be taken as a measure of the
interfacial strength under peeling.

All the salient features of the macroscopic response of
the structure, that exhibits a marked sensitivity of the
peel force to the adherend thickness, large rotations and
bending asymmetry are well captured by the simula-
tion, as it can also be appreciated from the deformed
shape of the samples that are also reported in the same
Figures 8-10.
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