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Abstract

The increasing pressure on the development time of new materials and devices has changed the
modeling and design process over the years. In the past, they mainly consisted of experimenta-
tion and physical prototyping. Clearly, it is hard to incorporate changes in finished prototypes,
while producing a variety of different prototypes at once may be very expensive. At this aim,
computer simulation models such as circuit design models and continuous systems simulation
models are widely used in engineering modeling, design and analysis. In this context, the search
for a better understanding of complex systems calls for quantitative model development, and op-
timization tools and model fitting to observed data play an important role. In this framework,
this paper deals with the optimization issues arising in the model calibration for a particular
IPMC-based actuator in air. The considered formal model of the device is a nonlinear dynami-
cal one, with lumped parameters, able to estimate the IPMC actuator absorbed current, together
with the mechanical quantities of interest, which, in the case under study, are the free deflec-
tion and/or the blocked force. Two optimization problems have been formulated, focussing
on different stages of the model parameters identification. The strategies adopted to solve the
problems allow to achieve some promising — although preliminary — results.

Keywords: Model Identification, Simulation-Optimization, IPMC Devices, Multidisci-
plinary Design Optimization.
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1 Introduction
Recently, computer simulation techniques such as cir-
cuit design models and continuous simulation models
are widely used in engineering modeling, design and
analysis. In this context, the search for a better un-
derstanding of complex systems calls for quantitative
model development and within this process, simulation-
optimization methods play an important role. The cur-
rent quality of computer simulation tools has enabled
the virtual prototyping of complex products and de-
vices, a method adopted by many R&D groups. This
has led to improved model quality and performance,
and reduction of product development time and costs.
Another benefit of employing simulation models is that
operators can actually see cause and effect and track
characteristics that cannot be physically measured. This
approach has changed the traditional product develop-
ment cycle making the physical test process a validation
phase and reducing time to market and is much less la-
bor intensive.

Still designers are confronted with the problem of find-
ing settings for a number of model parameters that are
optimal with respect to several simulated product or de-
vice characteristics. These characteristics may origi-
nate from different engineering domains suggesting a
multidisciplinary approach. Since there are still many
possible design variable settings and computer simu-
lations are often time consuming, the crucial question
becomes how to find the best possible setting with a
minimum number of simulations. Usually in such a sit-
uation, experts use their intuition and experience. They
carry out a number of simulation runs and choose the
design that gives the best results. This intuitive ap-
proach can be considerably improved by using statisti-
cal methods and mathematical optimization techniques.
Anyway, in this context, the problems differ from the
standard optimization problems due to the not explicitly
known specific functions, which may be present both in
the objective and in the constraints.

In this paper the simulation-optimization issues arising
in the model calibration for a particular IPMC-based ac-
tuator are addressed. The paper is organized as follows.
Section 2 describes the models adopted for the consid-
ered device. In Section 3 the optimization problems and
the adopted methods are illustrated. Section 4 describes
the experimental setting and reports the computational
results.

2 The electromechanical model of an
IPMC actuator

The model adopted in this work is essentially based on
that developed by co-authors in [1], for an IPMC-based
actuator in air, in a mechanical configuration of a beam
pinned at one end, which is also used to apply an elec-
trical stimulus across its thickness. The model is a non-
linear dynamical one, with lumped parameters, able to
estimate the IPMC actuator absorbed current, together
with the mechanical quantities of interest, which, in the
case of the pinned beam, are the free deflection and/or

the blocked force.

Moreover, this is a cascaded two-stage model, in which
the first stage models the nonlinear relation between
the applied voltage and the absorbed current, and the
second stage models the linear relation between the
absorbed current and the free deflection and/or the
blocked force. The explicit knowledge of the estimate
of the absorbed current is of fundamental importance,
as it is a key design factor which determines the power
consumption in IPMC-based applications [2].

Finally, the model is developed through a grey-box ap-
proach, i.e. it is based on a set of equations able to
reproduce the observed phenomena. The model pa-
rameters are identified by processing experimental data
through suitable algorithms, which are generally based
on optimization procedures. If the model parameters
correspond to macroscopic properties of the system, the
grey-box approach can be very useful in the design and
simulation phase.

In past works, both black-box and white-box (also
known as first-principle) models have been adopted to
model IPMC transducers. In this work the grey-box ap-
proach is preferred, as black-box models must generally
be re-designed for each different transducers, whereas
white-box ones are generally either too complex for
practical applications, or too simple for guaranteeing
suitable predictions [3, 4, 5, 6, 7].

Let us examine in more detail the two stages of the
model. For a comprehensive description of the model,
refer to [1].

2.1 Electrical Stage

As stated above, the electrical stage of the model is able
to establish the relation between the applied voltage,
v(t), and the absorbed current, i(t). According to [1],
this part of the model is described by a nonlinear equiv-
alent circuit, illustrated in Fig. 1.

Fig. 1 Nonlinear equivalent circuit for the actuator’s
electrical stage

The equations describing the circuit behaviour can be
easily written in the form of a second-order nonlinear
ODE, as:

V̇C2 =
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As can be noted in Fig. 1, the nonlinearity is modelled
by a diode antiparallel pair. Its behaviour can be de-
scribed by exploiting and adapting the Shockley ideal
diode equation. So, referring to the circuit in Fig. 1, we
have:

ID1 = Isnl

(
exp

(
−VD

γ

)
− 1

)

ID2 = Isnl

(
exp

(
VD

γ

)
− 1

)

ID = ID1 + ID2 = 2Isnl
sinh

(
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)
(2)

where Isnl
and γ are the equivalent inverse saturation

current and the equivalent diode threshold, to be identi-
fied experimentally.

VD is the solution of the nonlinear equation:
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Finally, the current absorbed by the actuator is given by:

i =
v − VD −Rn2Isnl

sinh
(

VD

γ

)
2Re

(4)

The simulation of the electrical part of the model im-
plies therefore the solution of Eq. (3) together with the
ODEs (1). It appears clear that the simulation of the
model for optimization/identification purposes can be
time-consuming, therefore a metamodel assisted opti-
mization approach will be used to cope with this issue.

In [1], the equivalent bulk resistance of the Nafion R©,
R1, and the resistance associated with the observed
nonlinear phenomena, Rn, as well as the terms Isnl

and
γ were identified by analysis of experimental data. In
the following, we will apply a Kriging metamodel ap-
proach in order to identify Re, i.e. the resistance of
the two electrodes, and the value of R2,C2,R3,C3 com-
ponents, which are able to parallel the capacitive be-
haviour of the IPMC actuator.

2.2 Electromechanical Stage

As an electrical current flows into the actuator, a
charge/water redistribution occurs, producing a me-
chanical reaction [8, 9, 10]. In particular, the currents
flowing in the two capacitors C2 and C3 are responsible
for the mechanical deformation of the membrane.

According to [1], the transfer function between the free
deflection δ and the current flowing in the two capaci-

tors (IC = IC1 + IC2) is given by:

δ

IC
=

1
s

3dL2
s

η (Lt + Lc) wt

 1

1 + s2
12L4

t ρ

Γ4Y t2

 (5)

and the transfer function between the blocking force F
and the current IC is

F

IC
=

1
s

3Y dt2

η (Lt + Lc) 4Ls
(6)

where s is the complex Laplace variable, and:

• Lc is the length of the clamped part of the IPMC;

• Lt is the free length of the IPMC;

• Ls is the length from the pinning point to the point
to which the force is applied;

• w, t are the dimensions of the IPMC cross-section;

• Γ is a mechanical constant related to the first mode
of oscillation of the clamped beam, its value is
well known in the literature and is equal to 1.875;

• ρ is the IPMC density.

The role of the remaining terms in Eqs. (5-6) must now
be clarified. d is a term which represents the electro-
mechanical coupling, and can be computed by consid-
ering either the expression for the deflection or that for
the blocked force. By considering the blocked force,
we have:

F

v − 2ReI
=

3dtwY

4Ls
≈ F

v
(7)

where the term v−2ReI is the voltage actually applied
to the capacitive branches, which is responsible for the
mechanical conversions. Nevertheless, by neglecting
the electrode resistance, it can be approximated with the
applied voltage v. During the identification phase, the
term d has been hypothesized as a second order transfer
function with one zero and two poles, as shown in Eq.
(8):

d = Kd
s + Zd

s2 + P1ds + P2d
. (8)

The frequency of the zero and the two poles can be
fixed through an optimization process, which will be
described in Sec. 3.4.2.

Y is the Young’s modulus, which is constant for perfect
elastic mediums. Nafion R© can be rather assumed as a
viscoelastic medium, so its Young’s modulus has been
assumed as a function of frequency, according to the
GMH model [11, 12], as

Y = Yc

(
1 + k

s2 + 2ζωs

s2 + 2ζωs + ω2

)
(9)

where Yc is the static Young’s modulus, k is a real con-
stant value, ζ is a damping coefficient, and ω a natu-
ral frequency. These parameters have to be identified
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through the optimization procedures, by exploiting ex-
perimental measurements.

η is an equivalent permittivity of the capacitive
branches:

η =
ε2

1 + sε2ρ2
+

ε3
1 + sε3ρ3

(10)

where ε2 and ε3 are the dielectric constants of the ca-
pacitors C2 and C3; ρ2 and ρ3 are the correspondent
resistivities of the two branches.

3 Optimization issues in the model identi-
fication

The identification and the calibration of the model de-
scribed in the previous section can be tackled adopting a
simulation-optimization approach. The goal of the op-
timization problem is to minimize (maximize) a given
set of functions of the design variables and responses,
subject to a set of constraints. The functional relation
between the design variables and the responses is not
explicitly known and it is represented by a simulation
model. For this reason, such kind of problem differs
from a standard optimization problem, and classical so-
lution methods become impractical when the simula-
tion time is considerably high. They require too many
time consuming function evaluations in the process of
finding an optimum. Hence, depending on simulation
time either classical optimization methods or special
methods for simulation-optimization should be used.
Aiming at reducing the high computational costs payed
for running the simulation model, several approxima-
tion techniques (also called surrogates or metamodels)
have been proposed in the literature. In this work we
consider the use of Kriging surrogates, in the context
of engineering design activities. The Kriging method
provides exact interpolation (i.e., the predicted results
at input combinations already observed are equal to the
simulated results values at those inputs) and some re-
cent research results showed such interpolation to be
appealing in simulation-optimization engineering de-
sign approaches.

In numerical optimization schemes, metamodels are of-
ten used to obtain approximations of expensive objec-
tive functions. However, integrating metamodels in
a computational optimization process based on clas-
sical, evolutionary or meta-heuristic optimizers is not
straightforward and different model management issues
emerge in order to coordinate optimization strategies
and approximation efforts. In particular, the issue to
find the trade-off between metamodel accuracy, compu-
tational efficiency, and solutions quality in a framework
based on evolutionary optimization algorithms (EAs) is
currently a research topic. At this aim, a Data Envelop-
ment Analysis (DEA) approach is proposed in [13].

In the case under study, the simulation of the electrome-
chanical stage model is much less time-consuming than
that of the electrical stage, as the latter is purely lin-
ear. For this reason, a metamodel approach might not be
needed. Nevertheless, the parameter identification and

the related optimization procedure must be conducted
simultaneously both on the relation between current and
free deflection, and on that between current and blocked
force. Moreover, better results are obtained if the ob-
jectives of the identification are set both on the time
and on the frequency domain. This results in a multiob-
jective framework for the optimization procedure. Sat-
isfactory results have already been obtained in [1] by
linearly combining the objectives in a single objective
functions. Nevertheless, this requires a thorough, sensi-
ble choice of suitable weighting constants of the partial
objectives. This is the motivation for the implementa-
tion of an actual multiobjective optimization approach,
which will be illustrated in the following of this section.

3.1 Optimization methods and algorithms

The optimization system we consider in this contribute
can be classified as a simulation-based optimizer which
is equipped with algorithms able to tackle both multi-
objective and single-objective problems. Moreover, the
framework adopts different metamodel assisted opti-
mization schemes.
The framework has been developed in the MATLAB R©
environment, employing the Design and Analysis of
Computer Experiments (DACE) Toolbox [14] for the
construction of metamodels.
The system is composed of three main blocks, briefly
described in what follows: the Design of Experiments
(DOE) Tool allows studying the effects of multiple
factors on design results; the Metamodel Constructor
— based on the Kriging technique — provides use-
ful tools to create a mathematical model approximat-
ing costly computational functions; the optimization al-
gorithms are based on the MATLAB R© Optimization
Toolbox [15] and on the MATLAB R© Genetic Algo-
rithms and Direct Search Toolbox [16]; the Multiobjec-
tive Optimizer is mainly based on Deb’s multiobjective
algorithm NSGA-II (Non-Dominated Sorting Genetic
Algorithm-II) [17] and it is able to solve constrained
problems, by penalizing infeasible solutions. More-
over, an external solutions archive is available to save
the non-dominated solutions found during the optimiza-
tion.

3.2 Metamodel Management

The proposed implementation supports the use of suc-
cessive approximation models of a costly fitness func-
tion and enables different strategies — usually referred
to as metamodel management — to integrate and man-
age the metamodel in the iterative optimization process.
A starting set of data samples (i.e. input/output de-
scriptions of computer simulation experiments) is ob-
tained through the Latin Hypercube Sampling (LHS)
DOE technique, chosen because of its flexibility and
easy construction [18]. These elements are given as
inputs to computer simulation experiments; the com-
puted outputs are used to construct a metamodel, based
on the Kriging technique [19, 20] with the DACE Tool-
box. To integrate the approximated model into an opti-
mization process, many strategies can be adopted. The
model management in the proposed framework can be
performed by means of two main approaches: i) assum-
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ing the approximation model to be of high-fidelity and
therefore, not using the original fitness function at all
during the computation process; ii) adopting a dynamic
update mechanism. The latter, in the case of evolution-
ary optimizers, can consist of either an individual-based
or a generation-based evolution control [13].

3.3 Kriging Metamodels

In this subsection we briefly describe the characteristics
of the Kriging metamodel adopted in our optimization
framework to build and update the surrogates, referring
to [20] for a detailed exposition of both theory and im-
plementation of Kriging technique.
A Kriging model y(x) can be seen as a combination of a
global model and an additive localized approximation:

y(x) =
p∑

i=1

βi fi(x) + Z(x) , (11)

where x ∈ Rn is a design variable, fi : Rn → R,
i = 1, . . . , p, are polynomial terms (typically of or-
der 1 or 2, in many cases reduced to constants), the
coefficients βi, i = 1, . . . , p, are regression parame-
ters, and Z(x) is a Gaussian random function with zero
mean and non-zero variance representing a local devi-
ation from the global regression model. The covari-
ance of Z(x) is expressed in terms of the correlation
function between any two of the samples x(j) and x(k),
with unknown parameters that need to be estimated by
maximizing a likelihood function using numerical op-
timization techniques; the form of the correlation func-
tion R(θ,x(j),x(k)) can be chosen by the user among
several models proposed in the literature.
One of the advantages of using Kriging models is that
an estimation of the accuracy of the prediction can be
obtained without much additional computational cost.
However, the Kriging estimation of the fitness function
value at untried points requires to perform matrix in-
versions, which may require high computational costs
if the size of the problem is large. A performance eval-
uation of the adopted metamodel management schemes
requires to consider different aspects of the entire opti-
mization process. One measure, for example a specific
error measure, may not give a complete picture of the
overall performance. Thus, it is commonly necessary
to look at several experimental inputs simultaneously,
along with the multiple outputs they produce.

3.4 Optimization Problems Formulation

In this work two particular optimization problems are
tackled: both of them require the objective functions
to be evaluated by running simulations, even though in
one case it is not an expensive task, as mentioned be-
fore.

3.4.1 Electrical stage

The first problem we consider deals with the model
identification of the electrical circuit: in particular, it
is necessary to identify the resistances and capacitances
of the circuit, by solving a single-objective optimization
problem. The vector of the decision variables is defined

as x = (R2, C2, R3, C3, Re). The objective to be min-
imized is a cost function, defined in terms of the error
in the estimation of the absorbed current; the objective
function is given by:

fi =
√∑

k
(ik − îk)2 (12)

where i refers to the absorbed current — experimentally
obtained by measurements — while î is the value esti-
mated by numerically solving the differential equation
describing the circuit dynamics; the sum is computed
over the samples produced by the applied voltage.

In order to reduce the high computational costs required
by running the simulations of the numerical solver of
the differential equation, a Kriging metamodel has been
used to assist the optimization process.

3.4.2 Electromechanical stage

The second problem concerns the identification of the
parameters describing the piezoelectric coefficient d
and the Young’s modulus Y , i.e. gain, and zeros’ and
poles’ frequency, as given by Eqs. (13-14):

d = x1

(
1

s + x2
+

1
s + x3

)
, (13)

Y = x7

(
1 + x4

s2 + 2x5x6s

s2 + 2x5x6s + x2
6

)
, (14)

where xi, i = 1, . . . , 7, represents the components of
the vector of decision variables; refer to Eqs. (8-9) for
the corresponding parameters.

A multi-objective optimization has been performed, by
minimizing both the deformation error and the force er-
ror, evaluated as squared differences from some experi-
mental values:

fδ =
√∑

k
(δk − δ̂k)2 , (15)

fF =
√∑

k
(Fk − F̂k)2 , (16)

where δ and F are the free deflection and the blocking
force experimentally obtained by some measurements,
while δ̂ and F̂ are the corresponding values estimated
by the model. Notice that in this case running a simu-
lation model is still required, but it is not necessary to
approximate it by metamodels, since the computational
effort is not too high.

4 Experimental Results
In the problem described in Sec. 3.4.1, the Kriging
model has been built over an experimental design com-
posed of 100 points, that have been sampled — by
means of the Latin Hypercube Sampling technique —
in the interval [−10%,+10%] w.r.t. a nominal de-
sign element, x̄ = (127.91, 5.67 · 10−5, 183.02, 7.28 ·
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Tab. 1 Parameters setting for the Kriging model

Kriging Setting
Correlation model Anisotropic Gaussian
Regression function Linear

MLEParameters optimization
θ0 = 10, [θlb, θub] = [0.01, 20]

10−4, 11.03). The setting used to build the metamodel
is specified in Tab. 1.

As for the optimization, the fmincon function from the
MATLAB R© Optimization Toolbox has been used, per-
forming a sequential quadratic programming (SQP) al-
gorithm. This function allows to solve a constrained
problem, by imposing box constraints over the vector
of decision variables, asking it to stay in the aforemen-
tioned range. Note that the non-negativity constraint
— that has been imposed too — is implicitely satisfied
when the box constraints are. The maximum number
of iterations has been fixed as a stopping criterion. The
objective function to be optimized is the approximation
value of the function described in Eq. (12), estimated
on the Kriging metamodel, which is assumed to be suf-
ficiently accurate and thus it is never updated during the
entire process. The optimal solution is given by

x∗ = (117.75, 5.97·10−5, 183.88, 8.004·10−4, 12.135) ;

the value of the objective function at x∗, evaluated on
the metamodel, is f̂i(x∗) = 0.31773, with an esti-
mated prediction error equal to 1.64 · 10−7, in terms
of the Mean Squared Error (MSE). Running the expen-
sive simulation at the end of the optimization process,
the value of the real objective function at the optimal
solution is fi(x∗) = 0.3179.

To solve the problem described in Sec. 3.4.2, the al-
gorithm adopted is NSGA-II and the setting used is
sketched in Tab. 2.

Tab. 2 The setting for the Optimization Algorithm

Genetic Algorithm Setting
Population size = 50
Archive size = 500
Selection operator Stochastic Uniform
Crossover operator Scattered probability = 0.7
Mutation operator Gaussian probability = 0.3
Stopping criterion Max Computation time 3600 s

At the end of the optimization process — imposing the
non-negativity constraint on the decision variables —
36 non-dominated points have been obtained after 67
generations. In Fig. 2 it is shown how the Pareto front
evolves during the optimization.

By forcing the decision variables to stay in a range of
[−10%,+10%] w.r.t. a nominal design element, x̄ =
(1.32 ·10−7, 0.253, 115.67, 74.67, 0.999, 93.75, 1.119 ·
107), 67 generations are produced, with a set of 52 non-
dominated elements. The evolution of the Pareto front
is depicted in Fig. 3.

In order to compare the obtained results with other
strategies, we performed an optimization process by

considering the two objectives independently from each
other. Moreover, we considered an aggregation func-
tion — obtained as the sum of the two objectives —
and tried to solve a single-objective optimization prob-
lem. In both the two cases, fmincon has been used to
solve the optimization problems; as stopping criterion,
the maximum number of iterations has been fixed to
150 for the first case and to 200 for the second case.
By optimizing the deformation error only, the optimal
solution is given by

x∗ = (1.375 · 10−7, 38.64, 155.53, 82.8,

5.032, 189.23, 1.12 · 107)

and the corresponding objective values are fδ(x∗) =
56.534 and fF (x∗) = 333.9638. By optimizing the
force error only, the optimal solution is

x∗ = (1.317 · 10−7, 0.253, 155.67, 74.651,

0.999, 93.754, 1.12 · 107)

and the corresponding objective values are fδ(x∗) =
87.9252 and fF (x∗) = 5.9897. By optimizing the sum
of the two objectives, the optimal solution is

x∗ = (1.32 · 10−7, 0.253, 155.67, 74.683,

0.999, 93.75, 1.119 · 107)

and the values of the two components of the objective
function are fδ(x∗) = 87.891 and fF (x∗) = 6.0004;
the corresponding point is shown in Fig. 2.

The results are slightly different if we add the box con-
straints on the decision variables, as shown in what fol-
lows. By optimizing the deformation error only, the op-
timal solution is given by

x∗ = (1.38 · 10−7, 0.278, 155.7, 77.193,

1.099, 92.95, 1.119 · 107)

and the corresponding objective values are fδ(x∗) =
87.012 and fF (x∗) = 15.78. By optimizing the force
error only, the optimal solution is

x∗ = (1.32 · 10−7, 0.253, 155.65, 74.612,

0.999, 93.78, 1.119 · 107)

and the corresponding objective values are fδ(x∗) =
87.943 and fF (x∗) = 5.988. By optimizing the sum of
the two objectives, the optimal solution is

x∗ = (1.32 · 10−7, 0.254, 155.71, 74.783,

1.003, 93.73, 1.119 · 107)

and the values of the two components of the objective
function are fδ(x∗) = 87.802 and fF (x∗) = 6.0686;
the corresponding point is shown in Fig. 3.

Some tests conducted on the optimization problem in
the electrical stage confirm that integrating a meta-
model into the optimization process allows saving com-
putation time: in fact, fixing the number of iterations
computed by fmincon, we noticed that the optimization
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Fig. 2 Non-dominated Pareto Front during the evolutionary optimization process and solution of the scalarized
problem (without box constraints on the decision variables)

using the expensive simulation requires more than one
hour for each iteration; the evaluations on the meta-
model, instead, require about 0.1 seconds. Moreover,
the assessment of the quality of the approximations
given by the metamodel confirms the validity of the
overall optimization process. On the other hand, the
analysis of the computation efforts confirms that it is
less profitable to use metamodels in the optimization
process for the electromechanical stage. This appears
evident comparing the time required by a single run in
the two cases: in the first problem it is almost 4 minutes,
while in the second problem it is 2.5 seconds.

As for the optimization problem in the electrome-
chanical stage, the best point found by fmincon is
(56.534, 5.9897), when the box constraints are not in-
cluded, and (87.012, 5.988), when the box constraints
are also taken into account. Clearly, in both cases, when
optimizing the two objectives indipendently from each
other, the value of the other function may be even very
far from the optimal solution. Instead, the solution ob-
tained through the optimization of an aggregate func-
tion may be non-dominated w.r.t. the solutions found by
NSGA-II, belonging to the same Pareto front. However,
the multi-objective optimization model is able to iden-
tify a set of non-dominated points — instead of a single
point — and it is possible to conduct further analyses
on these solutions in order to select the most promis-
ing ones. This requires the application of some addi-
tional design criteria and constitutes a topic for further
researches. The three approaches proposed in this work
to solve the electromechanical identification problem
do not have to be considered as alternative to one an-
other; indeed, it could be useful to combine them such
that the solutions found by the single objective models

and the scalarized one could be used to initialize the
multi-objective algorithm.
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