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Abstract

This paper addresses the simultaneous determination of pricing and inventory replenishment
in the face of demand uncertainty with the objective of maximizing total expected discounted
profits. We give a short review on recent work in literature: the operations-oriented stream of
literature which uses rich cost models but rather neglect demand side dynamics and the market-
ing orientated stream which accounts for intertemporal demand correlations . In this paper we
aim at a joint optimization of production and pricing decisions in inventory management, where
demand is sensitive to the firm’s pricing history and consumers do not only react to the current
price. This socalled reference price - known from marketing literature - is formed on the basis
of past purchases, where consumers e.g. buy products just because they are on sale and are less
likely to buy a product after prices have gone up. Thus prices are perceived as discounts or
surcharges relative to the reference price.

The investigated model is a combined stochastic dynamic pricing and inventory control model
for a single item of a monopolistic firm based on periodic review. We study the optimal poli-
cies of pricing and ordering decisions and try to get some insight into the optimal solution’s
properties. We further investigate the impact of the newly introduced reference price on the op-
timal solution compared to optimal policies, using the commonly used but less realistic demand
model of operations research. Since there are yet no analytical results available for this ex-
tended model the only means of providing a decision-support system for dynamic retail pricing
and promotion planning is by numeric optimization via dynamic programming.
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1 Introduction tions a BSLP (base stock list price) policy is optimal.
_ ) ) That is, in each period the optimal policy is character-
The profitability of a manufacturer/retailer selling fre-j;qq by an order-up-to level, referred to as a base-stock
quently purchased consumer products or fashion-stylgyq 4 price which depends on the initial inventory level
goods is strongly affected by ordering/production andy the heginning of the period. If the initial inventory
pricing decisions. This paper adresses the problem @iy is pelow the base-stock level, an order is placed to
simultaneously determining a pricing and inventory régaise the inventory level to the base-stock level. Other-
plenishment strategy in the face of demand uncertaintyyise no order is placed and a discount price is offered.

The commodity’s price and ordering quantity are dy-thjs discounted price is a nonincreasing function of the
namically adjusted according to the prevailing inven;pitial inventory.

tory, the consumer’s willingness to buy and the remain-

ing length of the finite selling horizon. Not only are Marketing literature is grounded on a market with re-
such models important in retail, where price dependemteated interactions where demand is sensitive to the
demand plays a significant role, but also in manufadirm’s pricing history and thus accounts for intertempo-
turing environments in which production/ distributionral demand correlations. Here the aim is to assess opti-
decisions can be completed with pricing strategies imal prices with respect to maximizing total expected
order to improve the firm’s bottom line. profit, taking demand fulfillment for granted. Since

. - . . consumers have a memory, the carrier of price is not
Traditionally pricing and replenishment strategies havgy, . hased on its absolute ievel, but rather on its devia-
been determined by entirely separate units of & coM,n from some reference level resulting from the pric-
pany’s organization, without proper mechanism 10 oy history. As customers revisit the firm, they develop
ordinate these two planning areas. Currently reengjjce expectations, which become a benchmark against
neering efforts are being initiated to systematically, ioh current prices are compared. A formulation
eliminate the organisational barriers between destingt - captures this effect is the so-callederence price

functional areas within the same enterprise. Affecteqich is a standard price against which consumers eval-

managers are faced with thousands of daily decisionsye the actual prices of products they are considering.
and thus strongly depend on the support of correéspong-the nrice of a brand is below its reference price, the
d

ing decision support systems which cross traditiongy,qeryed price is lower than anticipated, resulting in a
functional boundaries. This trend causes the need gL eived gain. This would make the brand more at-
advanced planning systems. tractive and raise demand (people buy products just be-

This paper addresses the important area in the interfag8USe they are on sale). Similarly, the opposite situation
between marketing and production/inventory planning/ould resultin a perceived loss, reducing the probabil-
and tries to fill the gap by developing an integrated inlty that the brand is purchased (people are less likely to
ventory control and pricing model where the dynamic®UY products after prices have gone up). An important
of both logistics and marketing are considered. Thergonseguence of this internal reference price formation
is no doubt that both methodologies are well developel§ that although frequent price discounts may be benefi-
and applied separately. Recent literature falls into tw§'@! in the short run, they may damage the brand in the
rather disconnected streams: The operations orientati¥!d run when households get used to these discounts
stream and the marketing stream. Operations managd reference prices drop. The reduced price becomes
ment usually uses rich cost models but rather simplistignticipated and loses its effectiveness, whereas the non-
demand models. Price optimization in marketing on theromoted price becomes unanticipated and would be
other hand, deals with setting optimal prices using ricRerceived as a loss. E.g. [10], [11], [12], [13], [14] and
and much more realistic and highly sophisticated de{¢15] show tha_t if this refgrence Ievell|sm|t|ally h[gh,the
mand models, underlaying a very simplistic cost modefirm will consistently price below this level, which has

In conclusion, both prevalent research streams considée effect of a skimming strategy. Similarly, a low ini-
only a partial picture of the relevant systems. This pat_lal reference level leads to a penetration type strategy.

per aims at filling the gap by developing an integrateg, i< \work we want to combine the two features of the

inventory control and pricing model where the dynamey, e discussed relevant literature streams: We want to
ics of both marketing and operations management a|

idered (f8e the rich and non-stationary cost models commonly
considered. used in operations research and include the richer and

Many theoretical papers address the coordination of rédore realistic demand models, which account for in-
plenishment strategies and pricing policies in operd€rtemporal demand correlation and have been mainly
tions management. Just to name a few of them e.gPplied by marketing people in the past. In this way
e.g. [4], [5], [6], [7], [8], [9] a finite horizon multi- models in literature and develop an integrated inventory
period model similar to ours and use safety stock levefgontrol and pricing model.

as well as pricing decisions in order to hedge against de-

mand uncertainties and maximize total expected profis  The Model

Each of them assumes a rather simplistic demand model

with no temporal demand assumptions but non statioa the following we analyze a single item, periodic re-
ary (may vary over time) ordering costs proportional tosiew model. Nonnegative demands in consecutive pe-
the amount ordered. They find that under these assumjsds are independent and their distributions depend
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on the item’s price and consumer’s reference pric
in accordance with general stochastic demand funi
tions. Demand uncertainty can result in over- or undei
production, with resultant excess inventories or inabil
ity to meet consumer needs, respectively. Excess inve
tory incurs unnecessary holding costs, while the inabil
ity to meet consumer needs results in both loss of prot
and potentially, the long term loss of customers, fo
which artificial penalty costs will be charged. Further-
more we assume that the company acts as a price sel
or monopolist. Markets with competition could be an-
alyzed only via a much more complex game-theoreti
approach. The price charged and the inventory ordere
in any given period can be specified dynamically as
function of the states of the system, depending on ho
much inventory is left from the last period and on the
consumer’s reference price, respectively. A replenist
ment order may and a pricing decision is to be place
at the beginning of each period. Stockouts are full
backlogged. Ordering costs are proportional to orde
sizes, while inventory carrying and stockout costs de
pend on the end-of-the period inventory level or short
fall. The objective is to maximize total expected (dis-
counted) profits.

According to [16] we show that the evolution of de-
mands over time can be represented by a tree-like stru
ture shown in Fig. 1, if the demand distribution func-
tions were discretized. Starting from each node sever
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possible demand realizations can occur, expressed
branches stemming from that node. Assumingos-
sible next-period demand realizations at each node, tl
total number of scenarios will amount e’ , whereT’

is the number of periods considered in the selling hori-
zon. At each period each node is associated with the
realisation of demand, the decision variables and the
state variables. Complete enumeration would ammount
to an exponential complexity aP(m™); therefore a captures how strongly the reference price depends on
stochastic dynamic programming approach with a conpast prices. Lower values of represent a shorter term
pexity of O(T'm) is described in the following to model memory; in particular, ifx = 0, the reference price is
the planning process as it reacts to demand realizatiofife one-period lagged price for a brang (= p;+1) as
unfolding over time. in [18]. « also serves as a proxy for loyalty.

time-to-go
=T

time-to-go
E=i

time-to-go
t=20

Fig. 1 Evolution of sample paths

2.1 The reference dependent demand model An in economic literature commonly used stochastic

The period’s demand is defined additively as demand model is the piecewise linear demand function

Di(pt, e, €t) = E[Di(pr, e, €0)] + €t 1) Diprsres€0) = Bo+ By - p + By - max{py =7, 0}

+ B3 - min{p; — 14,0} + ¢,
where e, follows a probability density functiory (-) (3)
with meanFEle;] = 0. F(-) denotes the corresponding
probability distribution function. Demand is indexedwith 5, > 0 and 1, 82,83 < 0 being estimated pa-
by ¢ to denote time dependence. In the following werameters such that the demand function is decreasing
will use the notation that denotes the periods-to-go, in price and increasing in reference price. The mem-
thust = T denotes the beginning amd= 0 the end of ory parametery used in equation (2) is estimated in a
the planning horizon, respectively. Reference price way that we obtain the highest possil#té of equation
is updated similarly as in [10], [11], [12], [14], [15] by (3) in OLS regression. Empirical studies in e.g. [11]
simple exponential smoothing and [12] find that estimated parametersaxafinge from

a € [0,0.925].

2

@) [10] proposed that according to prospect theory, the ef-
with r, andp; being reference price and observed pricéect of (p; — r;) on demand is asymmetric, depending
respectively for a brand in periad This formulation on whether it is positive or negative. Prospect theory
was first introduced in the adaptive expectations framepredicts that whe(p, — r;) is negative, consumers per-
work by [17]. « is called thememory parameteand ceive a gain; on the other hand, when it is positive, they

e =o(reg1) + (1 — ) (pey1), 0<a <,
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‘ : ‘ : : : for each end-of-the period inventory level > 0 and
e o (o0, ] per unit backlc_)gging costs;(u) arise for a possible
~e=reference price 1, (4=0.5) ] end-of-the period shortfal. < 0. Furthermore we
assume in the following that the price charged and all
costs arising are nonnegativg, (c;, hy, b, > 0), that
the price is never below the ordering costs & ¢;),
that the demand is nonnegativ@,(p:, :,€) > 0) and
that E[D;(p:, 7+, €)] is decreasing ip; and increasing

N 7r¢.

price/ reference price

3 s
time-to-go

The single period profit is now given for periodby the
Fig. 2 Formation of reference price following equation:

Te(Zt, Y, Pes Tt €¢) = Po - De(pe, e, €6) — co(Ye — T¢)—
perceive a loss. If equation (3) is symmetric with re- _ -max((y: — Dy(pe, 74, €1)),0)—
spect to the effect of gains and loss8s &€ (33), buyers _ D B 0
are loss-neutral and the demand function is smooth. For — 0t " 1ax((De(pe. 7e; €1) = 1), 0).
loss-averse consumers the value function is steeper for ®)
losses than for gaingi{ < (3). In other words, a loss
decreases value more than an equivalently sized gai the end of the selling season= 0) there is the pos-
would increase value. This is how we expect a rationajibility that the leftover stock has some salvage value
consumer to behave. so, as it could perhaps be returned at some buyback
price to the vendor or sold at a very low price (at or
even below cost) in a liquidation sale. Possible short-
Let the state variables bg, the inventory on hand be- falls are reordered at the end of the last time period. Let
fore ordering and-; the consumers’ reference price atV;*(z,, ;) be the maximum expected profit from period
the beginning of time period The decision variables t onwards (profit-to-go function), with initial inventory
¢, the inventory level after ordering and, the price z; and reference price,. For a specified discount fac-
charged at the beginning of perio@ffect the system’s tor ~ the recursive bellman equation has the following
evolution. State and decision variables are related vierm:
the following transistion functions over time:

2.2 The dynamic programming formulation

Tt = Y11 — Dey1(Peg1, 741, €641) 4) Vi (e, me) = ynax {e(ze, Yo pesme)} - (6)

T = a(re1) + (1 — ) (pes1)

Equation (4) gives the gross quantity of stock on hand
at the beginning of period, which equals the inven- ¢t ¥e:Pese) = Elme(we, ye pes e, €)1+

tory on hand after ordering at the beginning of the pre-  +~E [V;*. 1 (ys — Di(ps, 11, &), are+(1—a)py)]
vious time period less the total quantity actually sold %)
during that period (compare figure 3). The objective is

to maximize total expected profit over the entire selling . .

horizon. Figure 4 gives a sketch of the system and tr?@'th the boundary condition
relationships among the variables and time.

Vi (xo,70) = so-max{xg, 0} +co-min{x, 0}, Vg, ro.

Inventory

Level
r N
Decisions: Y41, pr+1 = Decisions: y;,p; =
argmax Ji+1 (441, Yet1, Per1s Te41) rg max Jy (¢, ye, pe,re)
Pes1ZTesn pes VLS P
Dr(pr.rr,€r) Di(p1,r1.€1) i l
Stage t + 1 Stage t
z States . States . States
- g Transition > Transition p—
Tit1s 2, Ti-1,
t=T Periods to go t=1 Tidl [ee=ye1—Dir1(Peg1, rer1, €041) Ty Te—1=ye—Di(pt, e, €1) Ti—1
ri=arie + (1 — a)pea re—1=ary + (1 — a)pe
B } }
Fig. 3 Inventory sample path Return: Return:
max Ji 41 (o1, Yests Petr1, er1) max Jy (¢, ye, pe.re)
VeH1ZT 41 Pegl Ee e
For each period we definec; as the variable per unit Fig. 4 Dynamic Program

purchase or production cost. Therefore the cost func-
tion is calculated as;(y; — x¢). At the end of the pe-
riod ¢ per unit inventory holding costs (u) are charged Since only integer values of demand can be realized, we

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM



Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

9-13 Sept. 2007, Ljubljana, Slovenia

can discretize Eq. (7) by substituting expected valuesof optimal policies and their sensitivity with respect to

oo
Jt(xhytuptyrt) = Z D Da,t - Ct(yt - xt)_
Dg,:=0

- Z hy - max((zy — Dq,t),0)—
Da,i=0

— Z bt . max((Da,t - xt),O)—l—
Dg,+=0

+’YZ{V;§_1(% — Dy(pt, e, €), arg+1—a)py)-
Dg.t=0
.PDt [Dt(pt? Tt, et):Da7t]}7
(8)

several parameters. Due to the lack of data from a re-
tailer in practice, a case study with real world data is
left for future research. In order to obtain results with
the highest possible managerial impact we basically use
the linear demand model and the parameters [8] already
obtained in an empirical study on a high-end women’s
apparel retailer, which we enrich by the dependence on
reference price effects. In the interpretation of results
we focus in particular on:

1. The sensitivity of the optimal base-stock/list-price
combination with respect to different demand dis-
tributions.

2. The structure of the optimal inventory and pricing
policy as a function of initial inventory before or-

where D, ; denotes the actual realised demand in pe-  dering and reference price.

riod ¢ and Pp, [-] denotes the probability mass function

of the number of actual sales in periad
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inventory before ordering x e refprice rp

Fig. 5 The optimal ordering decision (lossneutral)

price p

refprice rp
Fig. 6 The optimal pricing decision (lossneutral)

inventory before ordering X

3 Numerical Study

3. The sensitivity of the optimal base-stock/list-price
combination as a function of initial inventory be-
fore ordering and reference price.

inventory after ordering (periods to go = 1)

inventory after ordering

invertory before ordering refprice

Fig. 7 The optimal ordering decision (lossaverse)

price (periods to go = 1)

price

inventory before ordering

refprice

Fig. 8 The optimal pricing decision (lossaverse)

4. The sensitivity of the optimal base-stock/list-price

In this section we report on a numerical study con-  combination with respect to the variability in de-
ducted to attain qualitative insights into the structure  mand.
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Fig. 10 Pdf dependending on mean demand Fig. 12 List-price, period-to-go = 1

In our base scenario we use the demand model givenlist-price is increasing in reference price (see fig. 6 and
eg. (3) and set the parameters for lossneutral custon®@), which is intuitive, since given a higher reference
behaviour tog, = 100,68, = —20,6; = B3 = —40 price the retailer wants to skim as many margins
andgs = —60, 83 = —20 for lossaverse customers, re-as possible. He can charge a high price just below
spectively. Because of the cost of capital, maintenancegference price without losing possible sales in order
insurance, loss, and damage, the per period holding cdstraise his current profit and to keep the customers’
rates amount to approximately 1% of the ordering costeference price high for future periods. However,
(c = 0.5,h = 0.005). High service levels are ensuredthe situation is not so clear for the optimal inventory
by setting the backlogging cost rates about the sanievel. Simulations give that for lossneutral customers,
magnitude as the ordering costs=£ 0.4). For an eas- the optimal inventory level is also increasing. This is
ier interpretation of the results, the salvage value is sékecause since for high reference price levels, a high
equal to zero (s=0). For the same reason we assume tha@éan demand is expected although a relatively high
demand perturbation as all costs are stationary and goice is charged. Therefore the retailer wants to hedge
not vary over time, why we can omit the subscripts against the higher variance &[D(p, r, €)] by a higher
For the figures given in this paper no discounting facinventory level (see fig. 5). In the case of lossaversion
tor is used{ = 1). The stochastic term in the demandthe situation behaves a litte differently. In fig. (8) one
function follows an arbitrary distribution function with can observe a high slope of the optimal prices for the
mean zero and variance e¥[D(p, r, €)], with cv de- interval where price equals reference pripe<{ ). In
noting the coefficient of variation. this region an optimal inventory level is decreasing in

. : . reference price.
It is interesting that by adding refference effects to the P

demand model, a base-stock/list-price policy still turns

out to be optimal (see fig. 5 and 6). Of course thd-ig. 9 illustrates the different shapes of the demand’s
optimal policies is now depending on the two stateprobability density functions for several demand
'inventory before ordering’ and 'reference price’. Thusdistributions (uniform, truncated normal,lognormal,
we investigate if these policies have any new structuradegative binomial, and beta) with the same mean and
properties with respect to the reference price as a nevariance. Note that the lognormal, negative binomial,
system state. There is strong evidence that the optimaihd beta distribution has a considerably heavier tail
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Fig. 14 List-price, period-to-go = 10 Fig. 16 List-price depending on c.v.

T , e risk of high demands is higher than for symmetric
distribution, respectively. All three of them are skewedjistribution fl?nction. Thus thegoptimal policy>i/s to in-

to the left (their mode is smaller than the expected oaqe the inventory stock level for a higher degree of
value) and allow only for positive demands, thereforpS stem uncertainty (see fig. 13), which on the other

there is no need for trun_cat_ing_negative demands as Hgnd results in lower optimal prices (see fig. 14).
the case of the normal distribution.

than the corresponding truncated normal and unifor%h

Fig. 17 shows that the optimal price is a decreasing
Since it is verv costly to have unsold inventor Onfunction in inventory before ordering. Furthermore we
y y Y ONcan observe that the higher the reference price level

hand after the last time period, _the main aim here '% the later a discount on the listprice is given and the
to reduce as much risk as possible of not selling thgmaller the maximal discount is

inventory on stock in the last time period. The higher
degree of system uncertainty is - that is either a high

coefficient of variation or a heavy tail distribution, Fig. 18 and 19 show the difference in the optimal deci-
the more the retailer aims for decreasing the standagiions, when we use a model with and without reference
deviation of demand. This can be obtained by reducingrice effects. Where the corresponding intercepts in the
the mean demand, since then the standard deviationtjgse-stock and list-price is to be found, depends on the

reduced by the same proportion. Since demand is garameters and the range of the considered pricing in-
decreasing function in price it is benificial to respond taerval.

an increase in system uncertainty by increasing prices
(see fig. 12 and 16). This on the other hand results in
decreasing optimal base stock level (see fig. 11 and 15). References
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