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Abstract

This paper addresses the simultaneous determination of pricing and inventory replenishment
in the face of demand uncertainty with the objective of maximizing total expected discounted
profits. We give a short review on recent work in literature: the operations-oriented stream of
literature which uses rich cost models but rather neglect demand side dynamics and the market-
ing orientated stream which accounts for intertemporal demand correlations . In this paper we
aim at a joint optimization of production and pricing decisions in inventory management, where
demand is sensitive to the firm’s pricing history and consumers do not only react to the current
price. This socalled reference price - known from marketing literature - is formed on the basis
of past purchases, where consumers e.g. buy products just because they are on sale and are less
likely to buy a product after prices have gone up. Thus prices are perceived as discounts or
surcharges relative to the reference price.
The investigated model is a combined stochastic dynamic pricing and inventory control model
for a single item of a monopolistic firm based on periodic review. We study the optimal poli-
cies of pricing and ordering decisions and try to get some insight into the optimal solution’s
properties. We further investigate the impact of the newly introduced reference price on the op-
timal solution compared to optimal policies, using the commonly used but less realistic demand
model of operations research. Since there are yet no analytical results available for this ex-
tended model the only means of providing a decision-support system for dynamic retail pricing
and promotion planning is by numeric optimization via dynamic programming.
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1 Introduction

The profitability of a manufacturer/retailer selling fre-
quently purchased consumer products or fashion-style-
goods is strongly affected by ordering/production and
pricing decisions. This paper adresses the problem of
simultaneously determining a pricing and inventory re-
plenishment strategy in the face of demand uncertainty.
The commodity’s price and ordering quantity are dy-
namically adjusted according to the prevailing inven-
tory, the consumer’s willingness to buy and the remain-
ing length of the finite selling horizon. Not only are
such models important in retail, where price dependent
demand plays a significant role, but also in manufac-
turing environments in which production/ distribution
decisions can be completed with pricing strategies in
order to improve the firm’s bottom line.

Traditionally pricing and replenishment strategies have
been determined by entirely separate units of a com-
pany’s organization, without proper mechanism to co-
ordinate these two planning areas. Currently reengi-
neering efforts are being initiated to systematically
eliminate the organisational barriers between destinct
functional areas within the same enterprise. Affected
managers are faced with thousands of daily decisions
and thus strongly depend on the support of correspond-
ing decision support systems which cross traditional
functional boundaries. This trend causes the need of
advanced planning systems.

This paper addresses the important area in the interface
between marketing and production/inventory planning
and tries to fill the gap by developing an integrated in-
ventory control and pricing model where the dynamics
of both logistics and marketing are considered. There
is no doubt that both methodologies are well developed
and applied separately. Recent literature falls into two
rather disconnected streams: The operations orientated
stream and the marketing stream. Operations manage-
ment usually uses rich cost models but rather simplistic
demand models. Price optimization in marketing on the
other hand, deals with setting optimal prices using rich
and much more realistic and highly sophisticated de-
mand models, underlaying a very simplistic cost model.
In conclusion, both prevalent research streams consider
only a partial picture of the relevant systems. This pa-
per aims at filling the gap by developing an integrated
inventory control and pricing model where the dynam-
ics of both marketing and operations management are
considered.

Many theoretical papers address the coordination of re-
plenishment strategies and pricing policies in opera-
tions management. Just to name a few of them e.g.
[1], [2] and [3] consider the newsvendor setting and
e.g. [4], [5], [6], [7], [8], [9] a finite horizon multi-
period model similar to ours and use safety stock levels
as well as pricing decisions in order to hedge against de-
mand uncertainties and maximize total expected profit.
Each of them assumes a rather simplistic demand model
with no temporal demand assumptions but non station-
ary (may vary over time) ordering costs proportional to
the amount ordered. They find that under these assump-

tions a BSLP (base stock list price) policy is optimal.
That is, in each period the optimal policy is character-
ized by an order-up-to level, referred to as a base-stock,
and a price which depends on the initial inventory level
at the beginning of the period. If the initial inventory
level is below the base-stock level, an order is placed to
raise the inventory level to the base-stock level. Other-
wise, no order is placed and a discount price is offered.
This discounted price is a nonincreasing function of the
initial inventory.

Marketing literature is grounded on a market with re-
peated interactions where demand is sensitive to the
firm’s pricing history and thus accounts for intertempo-
ral demand correlations. Here the aim is to assess opti-
mal prices with respect to maximizing total expected
profit, taking demand fulfillment for granted. Since
consumers have a memory, the carrier of price is not
only based on its absolute level, but rather on its devia-
tion from some reference level resulting from the pric-
ing history. As customers revisit the firm, they develop
price expectations, which become a benchmark against
which current prices are compared. A formulation
that captures this effect is the so-calledreference price
which is a standard price against which consumers eval-
uate the actual prices of products they are considering.
If the price of a brand is below its reference price, the
observed price is lower than anticipated, resulting in a
perceived gain. This would make the brand more at-
tractive and raise demand (people buy products just be-
cause they are on sale). Similarly, the opposite situation
would result in a perceived loss, reducing the probabil-
ity that the brand is purchased (people are less likely to
buy products after prices have gone up). An important
consequence of this internal reference price formation
is that although frequent price discounts may be benefi-
cial in the short run, they may damage the brand in the
long run when households get used to these discounts
and reference prices drop. The reduced price becomes
anticipated and loses its effectiveness, whereas the non-
promoted price becomes unanticipated and would be
perceived as a loss. E.g. [10], [11], [12], [13], [14] and
[15] show that if this reference level is initially high, the
firm will consistently price below this level, which has
the effect of a skimming strategy. Similarly, a low ini-
tial reference level leads to a penetration type strategy.

In this work we want to combine the two features of the
above discussed relevant literature streams: We want to
use the rich and non-stationary cost models commonly
used in operations research and include the richer and
more realistic demand models, which account for in-
tertemporal demand correlation and have been mainly
applied by marketing people in the past. In this way
we try to benefit from the dynamics of both prevalent
models in literature and develop an integrated inventory
control and pricing model.

2 The Model

In the following we analyze a single item, periodic re-
view model. Nonnegative demands in consecutive pe-
riods are independent and their distributions depend
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on the item’s price and consumer’s reference price
in accordance with general stochastic demand func-
tions. Demand uncertainty can result in over- or under-
production, with resultant excess inventories or inabil-
ity to meet consumer needs, respectively. Excess inven-
tory incurs unnecessary holding costs, while the inabil-
ity to meet consumer needs results in both loss of profit
and potentially, the long term loss of customers, for
which artificial penalty costs will be charged. Further-
more we assume that the company acts as a price setter
or monopolist. Markets with competition could be an-
alyzed only via a much more complex game-theoretic
approach. The price charged and the inventory ordered
in any given period can be specified dynamically as a
function of the states of the system, depending on how
much inventory is left from the last period and on the
consumer’s reference price, respectively. A replenish-
ment order may and a pricing decision is to be placed
at the beginning of each period. Stockouts are fully
backlogged. Ordering costs are proportional to order
sizes, while inventory carrying and stockout costs de-
pend on the end-of-the period inventory level or short-
fall. The objective is to maximize total expected (dis-
counted) profits.

According to [16] we show that the evolution of de-
mands over time can be represented by a tree-like struc-
ture shown in Fig. 1, if the demand distribution func-
tions were discretized. Starting from each node several
possible demand realizations can occur, expressed as
branches stemming from that node. Assumingm pos-
sible next-period demand realizations at each node, the
total number of scenarios will amount tomT , whereT
is the number of periods considered in the selling hori-
zon. At each periodt each node is associated with the
realisation of demand, the decision variables and the
state variables. Complete enumeration would ammount
to an exponential complexity ofO(mT ); therefore a
stochastic dynamic programming approach with a com-
pexity ofO(Tm) is described in the following to model
the planning process as it reacts to demand realizations
unfolding over time.

2.1 The reference dependent demand model

The period’s demand is defined additively as

Dt(pt, rt, εt) = E[Dt(pt, rt, εt)] + εt, (1)

where εt follows a probability density functionf(·)
with meanE[εt] = 0. F (·) denotes the corresponding
probability distribution function. Demand is indexed
by t to denote time dependence. In the following we
will use the notation thatt denotes the periods-to-go,
thust = T denotes the beginning andt = 0 the end of
the planning horizon, respectively. Reference pricert

is updated similarly as in [10], [11], [12], [14], [15] by
simple exponential smoothing

rt = α(rt+1) + (1− α)(pt+1), 0 ≤ α < 1, (2)

with rt andpt being reference price and observed price
respectively for a brand in periodt. This formulation
was first introduced in the adaptive expectations frame-
work by [17]. α is called thememory parameterand

Fig. 1 Evolution of sample paths

captures how strongly the reference price depends on
past prices. Lower values ofα represent a shorter term
memory; in particular, ifα = 0, the reference price is
the one-period lagged price for a brand (rt = pt+1) as
in [18]. α also serves as a proxy for loyalty.

An in economic literature commonly used stochastic
demand model is the piecewise linear demand function

Dt(pt, rt, εt) = β0 + β1 · pt + β2 ·max{pt − rt, 0}
+ β3 ·min{pt − rt, 0}+ εt,

(3)

with β0 ≥ 0 andβ1, β2, β3 ≤ 0 being estimated pa-
rameters such that the demand function is decreasing
in price and increasing in reference price. The mem-
ory parameterα used in equation (2) is estimated in a
way that we obtain the highest possibleR2 of equation
(3) in OLS regression. Empirical studies in e.g. [11]
and [12] find that estimated parameters ofα range from
α ∈ [0, 0.925].

[10] proposed that according to prospect theory, the ef-
fect of (pt − rt) on demand is asymmetric, depending
on whether it is positive or negative. Prospect theory
predicts that when(pt− rt) is negative, consumers per-
ceive a gain; on the other hand, when it is positive, they
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Fig. 2 Formation of reference price

perceive a loss. If equation (3) is symmetric with re-
spect to the effect of gains and losses (β2 = β3), buyers
are loss-neutral and the demand function is smooth. For
loss-averse consumers the value function is steeper for
losses than for gains (β2 < β3). In other words, a loss
decreases value more than an equivalently sized gain
would increase value. This is how we expect a rational
consumer to behave.

2.2 The dynamic programming formulation

Let the state variables bext, the inventory on hand be-
fore ordering andrt the consumers’ reference price at
the beginning of time periodt. The decision variables
yt, the inventory level after ordering andpt, the price
charged at the beginning of periodt effect the system’s
evolution. State and decision variables are related via
the following transistion functions over time:

xt = yt+1 −Dt+1(pt+1, rt+1, εt+1) (4)

rt = α(rt+1) + (1− α)(pt+1)

Equation (4) gives the gross quantity of stock on hand
at the beginning of periodt, which equals the inven-
tory on hand after ordering at the beginning of the pre-
vious time period less the total quantity actually sold
during that period (compare figure 3). The objective is
to maximize total expected profit over the entire selling
horizon. Figure 4 gives a sketch of the system and the
relationships among the variables and time.

Fig. 3 Inventory sample path

For each periodt we definect as the variable per unit
purchase or production cost. Therefore the cost func-
tion is calculated asct(yt − xt). At the end of the pe-
riod t per unit inventory holding costsht(u) are charged

for each end-of-the period inventory levelu > 0 and
per unit backlogging costsbt(u) arise for a possible
end-of-the period shortfallu < 0. Furthermore we
assume in the following that the price charged and all
costs arising are nonnegative (pt, ct, ht, bt ≥ 0), that
the price is never below the ordering costs (pt ≥ ct),
that the demand is nonnegative (Dt(pt, rt, ε) ≥ 0) and
thatE[Dt(pt, rt, ε)] is decreasing inpt and increasing
in rt.

The single period profit is now given for periodt by the
following equation:

πt(xt, yt, pt, rt, εt) = pt ·Dt(pt, rt, εt)− ct(yt − xt)−
− ht ·max((yt −Dt(pt, rt, εt)), 0)−
− bt ·max((Dt(pt, rt, εt)− yt), 0).

(5)

At the end of the selling season (t = 0) there is the pos-
sibility that the leftover stock has some salvage value
s0, as it could perhaps be returned at some buyback
price to the vendor or sold at a very low price (at or
even below cost) in a liquidation sale. Possible short-
falls are reordered at the end of the last time period. Let
V ∗t (xt, rt) be the maximum expected profit from period
t onwards (profit-to-go function), with initial inventory
xt and reference pricert. For a specified discount fac-
tor γ the recursive bellman equation has the following
form:

V ∗t (xt, rt) = max
yt≥xt,pt

{Jt(xt, yt, pt, rt)} (6)

Jt(xt, yt, pt, rt) = E[πt(xt, yt, pt, rt, εt)]+

+ γE
[
V ∗t−1(yt −Dt(pt, rt, εt), αrt+(1−α)pt)

]
,

(7)

with the boundary condition

V ∗0 (x0, r0) = s0 ·max{x0, 0}+c0 ·min{x, 0}, ∀x0, r0.

Fig. 4 Dynamic Program

Since only integer values of demand can be realized, we
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can discretize Eq. (7) by substituting expected values:

Jt(xt, yt, pt, rt) =
∞∑

Da,t=0

p ·Da,t − ct(yt − xt)−

−
∞∑

Da,t=0

ht ·max((xt −Da,t), 0)−

−
∞∑

Da,t=0

bt ·max((Da,t − xt), 0)+

+γ
∞∑

Da,t=0

{
V ∗t+1(yt −Dt(pt, rt, εt), αrt+(1−α)pt)·

·PDt [Dt(pt, rt, εt)=Da,t]},
(8)

whereDa,t denotes the actual realised demand in pe-
riod t andPDt

[·] denotes the probability mass function
of the number of actual sales in periodt.

Fig. 5 The optimal ordering decision (lossneutral)

Fig. 6 The optimal pricing decision (lossneutral)

3 Numerical Study
In this section we report on a numerical study con-
ducted to attain qualitative insights into the structure

of optimal policies and their sensitivity with respect to
several parameters. Due to the lack of data from a re-
tailer in practice, a case study with real world data is
left for future research. In order to obtain results with
the highest possible managerial impact we basically use
the linear demand model and the parameters [8] already
obtained in an empirical study on a high-end women’s
apparel retailer, which we enrich by the dependence on
reference price effects. In the interpretation of results
we focus in particular on:

1. The sensitivity of the optimal base-stock/list-price
combination with respect to different demand dis-
tributions.

2. The structure of the optimal inventory and pricing
policy as a function of initial inventory before or-
dering and reference price.

3. The sensitivity of the optimal base-stock/list-price
combination as a function of initial inventory be-
fore ordering and reference price.

Fig. 7 The optimal ordering decision (lossaverse)

Fig. 8 The optimal pricing decision (lossaverse)

4. The sensitivity of the optimal base-stock/list-price
combination with respect to the variability in de-
mand.
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In our base scenario we use the demand model given in
eq. (3) and set the parameters for lossneutral customer
behaviour toβ0 = 100, β1 = −20, β2 = β3 = −40
andβ2 = −60, β3 = −20 for lossaverse customers, re-
spectively. Because of the cost of capital, maintenance,
insurance, loss, and damage, the per period holding cost
rates amount to approximately 1% of the ordering costs
(c = 0.5, h = 0.005). High service levels are ensured
by setting the backlogging cost rates about the same
magnitude as the ordering costs (b = 0.4). For an eas-
ier interpretation of the results, the salvage value is set
equal to zero (s=0). For the same reason we assume that
demand perturbation as all costs are stationary and do
not vary over time, why we can omit the subscriptst.
For the figures given in this paper no discounting fac-
tor is used (γ = 1). The stochastic term in the demand
function follows an arbitrary distribution function with
mean zero and variance cv· E[D(p, r, ε)], with cv de-
noting the coefficient of variation.

It is interesting that by adding refference effects to the
demand model, a base-stock/list-price policy still turns
out to be optimal (see fig. 5 and 6). Of course the
optimal policies is now depending on the two states
’inventory before ordering’ and ’reference price’. Thus
we investigate if these policies have any new structural
properties with respect to the reference price as a new
system state. There is strong evidence that the optimal
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Fig. 11 Base-stock level, period-to-go = 1
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Fig. 12 List-price, period-to-go = 1

list-price is increasing in reference price (see fig. 6 and
8), which is intuitive, since given a higher reference
price the retailer wants to skim as many margins
as possible. He can charge a high price just below
reference price without losing possible sales in order
to raise his current profit and to keep the customers’
reference price high for future periods. However,
the situation is not so clear for the optimal inventory
level. Simulations give that for lossneutral customers,
the optimal inventory level is also increasing. This is
because since for high reference price levels, a high
mean demand is expected although a relatively high
price is charged. Therefore the retailer wants to hedge
against the higher variance cv·E[D(p, r, ε)] by a higher
inventory level (see fig. 5). In the case of lossaversion
the situation behaves a litte differently. In fig. (8) one
can observe a high slope of the optimal prices for the
interval where price equals reference price (p = r). In
this region an optimal inventory level is decreasing in
reference price.

Fig. 9 illustrates the different shapes of the demand’s
probability density functions for several demand
distributions (uniform, truncated normal,lognormal,
negative binomial, and beta) with the same mean and
variance. Note that the lognormal, negative binomial,
and beta distribution has a considerably heavier tail
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Fig. 13 Base-stock level, period-to-go = 10
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Fig. 14 List-price, period-to-go = 10

than the corresponding truncated normal and uniform
distribution, respectively. All three of them are skewed
to the left (their mode is smaller than the expected
value) and allow only for positive demands, therefore
there is no need for truncating negative demands as in
the case of the normal distribution.

Since it is very costly to have unsold inventory on
hand after the last time period, the main aim here is
to reduce as much risk as possible of not selling the
inventory on stock in the last time period. The higher
degree of system uncertainty is - that is either a high
coefficient of variation or a heavy tail distribution,
the more the retailer aims for decreasing the standard
deviation of demand. This can be obtained by reducing
the mean demand, since then the standard deviation is
reduced by the same proportion. Since demand is a
decreasing function in price it is benificial to respond to
an increase in system uncertainty by increasing prices
(see fig. 12 and 16). This on the other hand results in a
decreasing optimal base stock level (see fig. 11 and 15).

However in earlier time periods, the domitating objec-
tive is not to clear stock, but to optimize long run profits.
In order not to run into expencive backlogging cost, the
aim is to have sufficient inventory on stock. As we dis-
cussed above, it is clear that for a heavy tail distribution
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the risk of high demands is higher than for symmetric
distribution function. Thus the optimal policy is to in-
crease the inventory stock level for a higher degree of
system uncertainty (see fig. 13), which on the other
hand results in lower optimal prices (see fig. 14).

Fig. 17 shows that the optimal price is a decreasing
function in inventory before ordering. Furthermore we
can observe that the higher the reference price level
is the later a discount on the listprice is given and the
smaller the maximal discount is.

Fig. 18 and 19 show the difference in the optimal deci-
sions, when we use a model with and without reference
price effects. Where the corresponding intercepts in the
base-stock and list-price is to be found, depends on the
parameters and the range of the considered pricing in-
terval.
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