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Laboratoire de Mécanique et d’Acoustique
Chemin Joseph Aiguier – B.P. 121

F-13000 Marseille Cedex

lebon@lma.cnrs-mrs.fr (Lebon Frédéric)

Abstract

This paper deals with numerical methods for unilateral contact problems with dry friction
(Signorini-Coulomb problems) written in terms of stresses (dual formulation). The formula-
tion of the problem is first presented, we use the equilibrium finite element method to discretize
it. With this method, the stress field is obtained by derivation of an Airy stress function which
nodal values are taken to be the degrees of freedom. Therefore, forces can not be prescribed
directly as displacements are prescribed in the classical finite element method (primal formula-
tion). Forces are thus introduced in the system using Lagrange multipliers. For this reason, the
matrix system is not positive definite and dedicated solvers have to be used. Four solvers are
thus proposed, three of them are based on the condensation of the problem on the contact zone,
using various partitions of the global matrix system and various linear solvers to perform con-
densation. The obtained condensed system is then solved and contact and friction conditions
are applied using a classical Gauss Seidel relaxation algorithm. One solver is based on the use
of the augmented Lagrangian version of the problem and is solved using the Uzawa algorithm.
Two solvers are shown to be very efficient and allow the problem to be solved quickly.

Keywords: Contact, friction, equilibrium finite elements, augmented Lagrangian, con-
densation.
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1 Introduction
In this paper, we propose original solvers for the dual
contact problem with dry friction.

In the second section, the problem is briefly presented,
we use equilibrium finite elements to discretize it, due
to prescribed forces and to contact and friction condi-
tions, the problem is non positive definite and non lin-
ear.

In the third section, four solvers are proposed to solve
this system. Three are based on condensation strategies,
one is based on the Uzawa algorithm.

In the fourth section, we compare these solvers on two
examples of various sizes. Classical preconditioners are
evaluated on iterative solvers applied to the proposed
examples. Then all solvers are compared in terms of
computation times and of memory requirements.

2 The contact problem
2.1 Mechanical problem

We consider a deformable body, Ω in receding contact
with a rigid foundation. The boundary Γ is split into
three parts, ΓD, ΓF and ΓC so that Γ = Γ̄D ∪ Γ̄F ∪ Γ̄C .

We take σ = σij(u) = Aijklεkl(u) to denote the stress
tensor and α to denote the flexibility tensor. The body
is in contact on ΓC . The contact is governed by the
Signorini unilateral conditions and the quasi Coulomb’s
friction law. On the contact boundary, the stress vector
is decomposed into normal and tangential parts. The
body is subjected to volume forces F = (Fi) in Ω and
to surface forces f = (fi) on ΓF . We assume that
F ∈ [L2(Ω)]d and f ∈ [L2(ΓF )]d. The displacement
is prescribed on ΓD. Here, we focus on the stress for-
mulation of the problem, proposed in [1]:

Problem (Ps). Find a stress field σ : Ω → H such that
{

σ ∈ Σ(σ)
b(σ, τ − σ) ≥ l(τ − σ) ∀τ ∈ Σ(σ) (1)

with b(σ, τ) =
∫
Ω

A−1σ · τdx

and l(τ) =
∫
ΓD

u0τ · nds.
We define the statically admissible sets:

H = {σ = (σij), σij = σji ∈ L2(Ω)}
HF,f = {σ ∈ H; σij,j + Fi = 0 in Ω ,
σijnj = fi on ΓF }
Σ(τ) = {σ ∈ HF,f ; σn ≤ 0 ,
|σt| ≤ −µτn on ΓC}.

(2)

3 Discretization of stress formulations
3.1 Discrete formulation

In this part, we present the discretization of the dual
problem, we reduce the problem to that of the comple-
mentary energy in order to simplify its expression. The
problem is then written formally as a problem without

any contact or friction; it is discretized using equilib-
rium finite elements introduced by Fraeijs de Veubeke
in [2], and recently used by Kempeneers in [3]. This
type of element has been used in some numerical cases:
by Zavelani-Rossi [4] in a study on plane structures in
the presence of plasticity and cracks, by Wieckowski
and al. [5] for the elastoplastic analysis of plane struc-
tures, and by Bisegna and al. [6] [7] for solving the
Signorini and Coulomb problem in the case of a plane
elastic structure.

In this work, we used the Hsieh Clough and Tocher tri-
angular element. In order to verify the local equilibrium
condition, an Airy stress function is interpolated on the
element, the stress field is the curl of the Airy function
and is thus in equilibrium. Prescribed forces and con-
tact forces are introduced, using Lagrange multipliers,
in the complementary energy functional:

π∗ = 1
2 [φ]T [S][φ]− [φ]T [q] + [λ]([CF ][φ]− [F ])

+[λ′]([CC ][φ]− [FC ])
(3)

Since contact and friction conditions have still to be ap-
plied, the obtained matricial system is non linear, con-
strained and non positive definite. Dedicated solver
need to be used, and are thus presented in the follow-
ing section.



S CF
T CC

T 0
CF 0 0 0
CC 0 0 −I
0 0 −I 0


 .




φ
λ
λ′
FC


 =




q
F
0
0




(4)

3.2 Condensation on the contact boundary

The goal of the condensation is to obtain the reduced
(condensed) system:

[D][FC ] = [G] (5)

to be solved with a relaxation algorithm. This con-
densed system can be obtained using various meth-
ods: “blind condensation”, condensation using the
SYMMLQ solver and a three-step solver.

3.2.1 Blind condensation

The first way to obtain this system is to apply the ba-
sic idea of condensation, starting from the system (4)
and taking the first three unknowns as the internal un-
knowns φi the symbolic system to be reduced is:

[
M11 M12

M21 0

]
.

[
φi

FC

]
=

[
Ui

0

]
(6)

By solving:

φi = M−1
11 Ui −M−1

11 M12FC (7)

the condensed system is obtained:

M21M
−1
11 M12FC = M21M

−1
11 Ui ⇒ [D][FC ] = [G]

(8)
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Inverting M11 could be very expensive, the resolution
of Eq. (7) can be performed using a linear solver, M11

is factorised one time and φi is obtained by (1+nC) tri-
angular matrices multiplications. Since the matrix M11

is not positive definite and can not be stored using effi-
cient storage scheme, this first method is very expensive
and has not been used here.

3.2.2 SYMMLQ condensation

Since the slowness of the previous condensation strat-
egy comes from the inefficiency of direct solvers ap-
plied to non positive definite matrices, we used the
SYMMLQ iterative method to solve the previous (1 +
nC) systems. The SYMMLQ method was introduced
in [8]; it is a conjugate gradient like method for solving
symmetric indefinite linear systems. It solves the pro-
jected system and keeps the residual vectors orthogonal
to all previous ones. The efficiency of this algorithm
highly depends on the choice of a preconditioner, an ef-
ficient diagonal block preconditioner, presented in [9],
is thus used here.

3.2.3 Three-step condensation

We propose here an efficient condensation method in
order to take advantage of the structure of each matrix.
Note that in the following, the brackets will be omitted
on matrices to simplify the notations.The condensation
has three major steps:

Step 1: Evaluation of φ such that:

φ = S−1q − S−1CF
T λ− S−1CC

T λ′ (9)

which can be achieved by two ways:

• Use of a direct solver: S is factorised one time us-
ing LDLT factorization with skyline storage and
the products S−1q, S−1CF

T and S−1CC
T are ob-

tained by (1 + nf + nC) system resolutions. The
costliest part of this step is thus done only one
time.

• Use of a conjugate gradient algorithm (CG): an ef-
ficient preconditioner is computed one time and
allows to obtain quickly the products presented
above by (1 + nf + nC) system resolutions.

Step 2: φ is then introduced in lines 2 and 3 of Eq.
(4), and λ is obtained by (1 + nC) resolutions a full
symmetric nf by nf matrix. Here again, the matrix is
factorised only one time.

Step 3: λ is the introduced in line 2 of Eq. (4) and λ′
is obtained by the same process ((1 + nC) resolutions
a full symmetric nC by nC matrix). Finally, λ′ is in-
troduced in the last line of Eq. (4) and the condensed
system is obtained. Please note that the last two steps
involve full symmetric matrices, but since nf and nC

are small compared to nφ, their factorization is not ex-
pensive.

3.3 Condensed system solver

The condensed system, obtained using one of the con-
densation methods, is solved using a Gauss Seidel al-

Initial guess of φ, λ, λ′, and FC

Until convergence, iteration k:
1- Determination of Ũk(λk, λ′k, F k

C)

2- Determination of φk by solving S̃φk = Ũk

3- Update of FC :
F k+1

C = PΣ(FC)(CCφk − λ′k
2 )

4- Update of λ and λ′:
λk+1 = λk + ρ(CF φk − F )
λ′k+1 = λ′k + ρ(CCφk − FC)

Convergence if ikC small
End of loop
Where PΣ(FC) is the projection operator in the
Signorini Coulomb friction cone.

Fig. 1 The Uzawa algorithm

gorithm which allows to apply contact and friction con-
ditions. This algorithm is presented in [10], but since
its computation time is usually less than 1% of the total
computation time, it is not presented here.

3.4 Augmented Lagrangian formulation

Another way to solve Eq. (3) is to modify it to obtain
an augmented Lagrangian formulation. The functional
becomes:

πa∗ = 1
2φT Sφ− φT q

+λ(CF φ− F ) + λ′(CCφ− FC)
+ r

2 (CF φ− F )2 + r
2 (CCφ− FC)2

with FC ∈ Σ(FC)

(10)

where r is the penalty parameter. Cancelling the first
variation of this functional in comparison with the vari-
ables φ, λ, λ′ and FC gives the augmented system,
solved using the Uzawa algorithm, presented on Fig. 1,
where ρ is the Uzawa’s step. Please note that the aug-
mented Lagrangian formulation is used to improve the
convergence rate of the Uzawa algorithm. Since many
iterations are usually needed to obtain convergence, the
first step of this algorithm is performed using a direct
skyline solver. The factorization of S̃, which is the
costliest operation, is thus performed only one time and
the factorised matrix is used at each step of the algo-
rithm. The convergence indicator has been defined such
as:

ikC = supi||rk(i)|| (11)

with rk = CCφk − F k+1
C + CF φk − F (12)

the limit value of iC has been chosen to be 10−3 New-
tons.

4 Numerical results
The algorithms presented here have been implemented
in the computer code LMGC90 (http://www.lmgc.univ-

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM



Tab. 1 Sizes of treated examples

Name nφ nf nC

Mesh0 761 96 38
Mesh1 1973 144 80
Mesh2 3105 176 120
Mesh3 6287 232 160
Mesh4 8360 392 200
Mesh5 19128 588 480
Mesh6 26538 708 576
Mesh7 50483 920 640

montp2.fr/˜dubois/LMGC90/) and tested on the exam-
ple of a steel tooth, presented in Fig. 2, with prescribed
displacements on its left edge, and which is in contact
on a rigid foundation where µ = 0.2.

Fig. 2 The example of a tooth and its meshes (named 1,
2 and reference meshes)

4.0.1 Descriptions of benchmarking examples and
algorithms parameters

In this section, we compare the proposed resolution
methods on the examples of Fig. 2 (Mesh0 to Mesh3)
and on the same problem with four teeth (Mesh4 to
Mesh7) with various sizes presented on Tab. 1. All
meshes have been previously renumbered using the
Cuthill McKee algorithm [11] and matrices have been
equilibrated using diagonal equilibration to improve
convergence rates and accuracy.

The following methods have been compared :

• The SYMMLQ condensation strategy.

• The three-step condensation using two different
methods in the first level of condensation: A sky-
line LDLT solver, or a conjugate gradient solver.
Those two methods will be named 3STEPD and
3STEPCG in the following.

• The resolution of the augmented Lagrangian for-
mulation using the Uzawa algorithm.

When using the CG and SYMMLQ methods, the fol-
lowing approximations S∗ of S have been tested as pre-
conditioners:

• Drop tolerance incomplete Cholesky factorization
(DTICx), with tolerance parameter x ∈ [3; 6].

• Filling level incomplete Cholesky factorization
(FLICx), with filling level factor x ∈ [1; 5].

• The SSOR preconditioner (SSω), with relaxation
parameter ω ∈]0; 2[.

• The exact Cholesky factorization of S (SKY).

Those preconditioning strategies are reviewed in [12].
Note that in the SYMMLQ case, these precondition-
ers are used to construct the block preconditioner.
When using incomplete Cholesky factorisations, one
can choose to compute line i using the previous lines of
the incomplete factorisation or of the full factorisation.
The first strategy has been applied to the computation
of FLIC and the second to the computation of DTIC.
To use the Uzawa’s algorithm, one has to choose the
parameters ρ and r defined in the section 3.4. Since
the parameter r defines the importance of the product
matrices CT

F CF and CT
CCC against S, the matrices CF

and CC have been multiplied by the factors pF and pC

such as:

pF =

√
mean(S)

mean(CF )

pC =

√
mean(S)

mean(CC)

(13)

It allows to give the same importance to a chosen r
on all examples. In another hand, we had no rule to
chose ρ and r, thus we tried various combinations of
both parameters in [1; 20; 40; 60; 80; 100; 200; 300] for
each example and took the best sets for the following
comparisons.

Computations have been performed on an Intel P4
1.7Ghz computer with 1Gb Ram memory in order to
evaluate performances on a middle-range computer.

4.0.2 Influence of the preconditioner

Before comparing all methods, we analyse the influence
of preconditioners on the SYMMLQ and 3STEPCG
methods. The same behaviour has been observed on
each example and with both methods, thus we focus on
results obtained with the SYMMLQ method and on the
Mesh3 example. The Computation times and memory
requirements are represented on Fig. 3

First looking at the DTIC preconditioner, one can see
that increasing the drop tolerance parameter decreases
computation times. With the FLIC preconditioner,
an average parameter exists, here this parameter is 3.
By comparing both incomplete Cholesky factorisations,
one can see that, even with an equivalent size (for ex-
ample when comparing DTIC3 and FLIC4), the DTIC
preconditioner is the more efficient, principally because
it is constructed using the full Cholesky factorisation.
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Fig. 3 Comparison of various preconditioners, up: com-
putation times in seconds, down : Memory require-
ments in Mb.

With the SSOR preconditioner, the optimum parameter
was around 1 on all treated examples, but this precon-
ditioner was not very efficient on the kind of treated
problems.

In the following, only the best preconditioners are
used: the DTIC3 which gives a good compromise
beetween computation times and memory require-
ments, the DTIC6 which gives very good computation
times, and the full Cholesky factorisation in order to
compare iterative and direct solvers.

4.0.3 Comparison of algorithms

The previous section permitted us to choose efficient
conditioners in order to limit the number of compared
methods. In this part, we use only the DTIC and SKY
preconditioners with iterative methods. The following
methods have been compared on examples of Tab. 1:

• The SYMMLQ condensation with the DTIC3,
the DTIC6 and the SKY preconditioners, which
will be respectively named SDTIC3, SDTIC6 and
SSKY.

• The 3STEP condensation with the direct LDLT

and the conjugate gradient solver, using the DTIC3
and the DTIC6 preconditioners, which will be
respectively named 3STEPD, 3STEPCG3 and
3STEPCG6.

• The resolution of the augmented Lagrangian for-
mulation using the Uzawa algorithm, named

ALM.

The computation times and memory requirements are
respectively summarised on Fig. 4 and Fig. 5.
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Fig. 4 Comparison of computation times (in seconds)

First, by comparing SDTIC3 with 3STEPCG3 and
SDTIC6 with 3STEPCG6, one can see that the
SYMMLQ method and the 3STEPCG method are
equivalent when using equivalent preconditioners, but
these four strategies are less efficient than others. In
a general rule, iterative methods can only be as effi-
cient as the 3STEPD and ALM methods when using
very efficient preconditioners as in the case of SSKY
strategy. But these methods need the storage of both the
global matrix and of the preconditioner, they thus need
a greater amount of memory than the 3STEPD and the
ALM methods.

The 3STEPD and the ALM methods thus seams to
be the more efficient methods. On all examples, both
methods give equivalent computation times, the ALM
method is slightly faster.

The main advantage of the ALM method is that it re-
quires a very low memory amount whereas the 3STEPD
methods needs the storage of intermediate matrices
at each step of condensation. This drawback of the
3STEPD method could be overcame using an appro-
priated file storage.

The main advantage of the 3STEPD method is its ro-
bustness since it is not parameter dependent as the ALM
method. Computation times are thus predictable since
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Fig. 5 Comparison of used memory (in Mb)

they principally depend on the profile of the flexibility
matrix. In another hand, this method can be parallelized
very easily.

5 Conclusion
In this paper, a dual method dedicated to unilateral con-
tact problems with friction has been presented. Due to
the type of finite elements used and to contact and fric-
tion conditions, the global system is non positive defi-
nite and non linear; it has thus to be solved using appro-
priated solvers.

Four solvers have been proposed, three based on the
principle of condensation, one on the Uzawa algorithm.
All solvers have been compared on examples of vari-
ous sizes, two have been shown to be particularly ef-
ficient: the three-step direct condensation strategy and
the Uzawa algorithm, the first has the advantage to be
usable as a black box, the second needs a very low
memory amount but needs the determination of the
Uzawa step parameter.
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