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Abstract

We investigate collisions of solids which can fracture. Equations of motion and constitutive
laws provide a predictive theory. Assuming the collisions instantaneous, the equations of mo-
tion in a damaging collision are derived from the principle of virtual work introducing new
interior forces which describe the very large stresses and the very large contact forces resulting
from the cinematic incompatibilities. They are interior volume percussion stresses and interior
surface percussions both on the unknowns fractures and on the colliding surfaces. In order
to approximate these equations, we assume solids are damageable. In this point of view, we
may assume the velocity is continuous with respect to space but its strain rate is very large in
a thin region where the material is completely damaged, so approximating a fracture. When
the velocity before collision is very large, the damaged zone may be large accounting for parts
of the solid completely transformed into powder. The constitutive laws result from dissipa-
tive functions satisfying the second law and able to model the fracturation phenomenon at the
macroscopic engineering level. Representative numerical examples confirm that the model ac-
counts for the fracturation and fragmentation qualitative properties. In particular, the model is
able to reproduce real experimental tests.
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1 Introduction
Collisions and fractures of solids are important engi-
neering issues, for instance, fragmentation of solids by
blasting, by collisions,... [1], [2].

The present work deals with collisions of deformable
and damageable solids. In particular, we investigate
the appearance of fractures due to collision. Collisions
are phenomenons which occur in a very short period
of time, they involve large impulsive forces in the bod-
ies. We limit the investigation of this problem at the
engineering macroscopic level and derive a model by
discontinuous mechanics theory. We suppose that colli-
sion events are very short if compared with the duration
of the other phenomena. Thus, we assume the collisions
are instantaneous according to [3] and [4]. A collision
is characterized by a time discontinuity of the velocity
field: there is the velocity before collision u−(x) and
the velocity after collision u+(x). A fracture is char-
acterized by a spatial discontinuity of the velocity after
collision u+(x).

The predictive theory is based on the principle of vir-
tual work giving the equations of motion and constitu-
tive laws relating the internal forces to pertinent quanti-
ties describing the evolution. The equations of motion
introduce interior percussion stresses, and percussions
which result from the kinematic incompatibilities. They
are interior volume percussion stresses and interior sur-
face percussions both on the unknowns fractures and
on the colliding surfaces. The constitutive laws are de-
rived with dissipative potentials which fulfill the second
law of thermodynamics. This collision theory applies to
collision of either rigid or deformable solids [4] as well
as of a solid colliding with an incompressible fluid [5].

In order to solve numerically the resulting set of partial
differential equations (reference is made to [6] and [4]
for details), we assume solids are damageable and that
a damage quantity β(x) with value 1 when the mate-
rial is undamaged and value 0 when completely dam-
aged. We consider that the damage quantity evolves
rapidly in the collision: thus we assume it is discon-
tinuous with respect to time at collision time : β−(x)
before collision and β+(x) after. In this point of view,
we may assume the velocity u+(x) is continuous with
respect to space but its strain rate is very large in a layer
where the damage quantity β+(x) is almost zero, i.e., a
fracture is approximated by a thin damaged zone where
β+(x) ' 0, (this damage is 1 where the material is not
fractured). When the velocity before collision is very
large, the damaged zone may be large accounting for
parts of the solid completely transformed into powder.

The variational formulation of the equations of mo-
tion is discretized by the classical finite element tech-
nique. Moreover, kinematic constraints on the velocity
field u(x) are introduced in order to avoid overlapping
phenomena along the contact surface and in the vol-
ume damaged zones. Finally, the discrete solution is
obtained as a minimization of a non convex problem,
reached through a specific method that couples descent
technique and the Uzawa method. This scheme permits

to account for the duality variables introduced by the
constraints, for instance the impenetrability condition.

Several numerical simulations are proposed. Their aim
is to demonstrate the capabilities of the predictive the-
ory to describe qualitatively different failure modes oc-
curring at collision time.

2 The Principle of virtual work
It is usual to derive the equation of motion through the
principle of virtual power [3]. This principle can be
used when all the quantities have densities with respect
to the Lebesgue measure. When they have densities
with respect to the atomic measure, as in the present sit-
uation, the principle of virtual power is advantageously
replaced by the principle of virtual work. The princi-
ple of virtual work we use here, is not to be confused
with the principle of virtual power where the velocities
are understood as small displacements. This relation is
often also called in a misleading way, the principle of
virtual work.

For the sake of simplicity, let us consider a deformable
solid Ω colliding a rigid fixed obstacle on ∂Ω1. Due
to the kinematic incompatibilities very large interior
forces appear within the solid, along the contact sur-
face and on the unknown fracture surfaces. We con-
sider the duration of the collision is very short, i.e., the
time for the velocities to adapt to the presence of the
obstacle is very short. Thus we assume the collision as
instantaneous. Very large interior forces become per-
cussion stresses Σ and percussions R. The percussions
and percussion stresses can be thought of as time con-
centrated quantities which define an atomic measure (a
Dirac measure) and intervene only at collision times.
The different virtual works are linear functions of the
virtual velocities. They involve the percussions and per-
cussion stresses.

The interior virtual work we choose is a linear function
of the virtual strain rate and reads

Tint (v) = −
∫

Ω\Γ

Σ : E
(

v+ + v−

2

)
dΩ (1)

−
∫

∂Ω1

R ·
(

v+ + v−

2

)
dΓ +

∫

Γ

R ·
{

v+ + v−

2

}
dΓ ,

where E(v) = ∇symv is the classical symmetric strain
rate tensor, v+ and v− are virtual velocity fields. The
fracture Γ is oriented thus we are allowed to consider
a “left” part (vl) and a “right” part (vr) of the velocity
field. So, the spatial velocity discontinuity is denoted
{v} = vr − vl.

The densities with respect to the Dirac measure are per-
cussion stress tensors and interaction percussions be-
tween the solid and the obstacle as well as percus-
sions between fracture surfaces. Percussions are gen-
eralized interior forces which appear when collisions
occur. They are, as said earlier, usual interior forces
concentrated in a very short period of time.
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The virtual work of the acceleration forces is

Tacc (v) =
∫

Ω

ρ [u] ·
(

v+ + v−

2

)
dΩ , (2)

where ρ is the solid density and [u] = u+ − u− is the
velocity discontinuity in the collision and ρ[u] is the
collision inertial percussion. We may note that the ac-
tual work of the acceleration forces is equal to the vari-
ation of the kinetic energy during collision. Moreover,
for the sake of completeness, we assume an external
percussion Rext concomitant to the collision may be
applied on boundary portion ∂Ω2 = ∂Ω/∂Ω1

Text (v) =
∫

∂Ω2

Rext ·
(

v+ + v−

2

)
dΩ . (3)

This problem has been analyzed in [6]. A variational
problem is proposed and its solution is studied in the
space of special functions with bounded deformation.
Besides, in [7] a 1-D example is proposed.

2.1 Regularized approach

Numerical solution of the previous problem presents a
major difficulty due to the unknown positions of frac-
ture surfaces Γ (free discontinuities). So, we propose a
regularized approach in the context of fracture damage
mechanics. In particular, we introduce a spatial dam-
age variable β ∈ [0, 1] that approximately describes the
zone where the material is fractured. In fact, β = 1
represents the sound material while β = 0 is equivalent
to the completed damaged state. The main idea, firstly
proposed in [8] and [9], is based on adaptation of the
principle of virtual work. In particular, we assume that
damage results from microscopic motions, and include
the work of these motions in the principle of virtual
work. This contribution is assumed to depend on the
rate of damage and on the rate of the damage gradient.
The damage gradient is introduced to account for the
local interaction of the damage at a material point on
the damage of its neighborhood. So, the internal virtual
work (1) is replace by

Tint (v, b) = −
∫

Ω

Σ : E
(

v+ + v−

2

)
dΩ

−
∫

∂Ω1

R ·
(

v+ + v−

2

)
dΓ

−
∫

Ω

{B [b] + H · grad [b]}dΩ , (4)

where v+, v− and b+, b− are virtual velocities. The
first and the second terms are classical and are related
to the mechanical action and reactions. The third and
fourth terms are new: B is a mechanical work, in partic-
ular the internal damage work which is responsible for
the evolution of the damage during the collision. H is a
flux vector responsible for the interaction of the damage
at a point on the damage on its neighborhood.

3 The equations of motion
The principle of virtual work

∀ v, b Tacc (v) = Tint (v, b) + Text (v) , (5)

gives two sets of equations of motion. By choosing con-
venient virtual velocity, we obtain

ρ [u] = divΣ , in Ω , (6)

Σ · n = −R on ∂Ω1 , (7)
Σ · n = Rext on ∂Ω2 , (8)

divH−B = 0 in Ω , (9)
H · n = 0 on ∂Ω , (10)

where n is the outward normal to Ω. Equations (6)-(10)
are the equations of motion accounting for macroscopic
and microscopic effects.

4 The constitutive laws
For the sake of simplicity we assume the temperature
to be constant though the thermal effects are important
and may be taken into account, [4]. In our problem
we assume that the velocity u−, supposed for the sake
of simplicity to be a rigid body velocity, and the dam-
age β− before the collision are assigned and let the un-
knowns be the velocity u+ and the damage β+ after the
collision. The constitutive laws, which have to satisfy
the second law, for the mechanical and damage inte-
rior forces are defined by three functions: the volume
free energy Ψ, the volume dissipative function Φ and
the contact surface with the obstacle pseudo-potential
of dissipation Φs. We have to choose them in such a
way that β+ is zero in thin layers and 1 elsewhere and
in such a way the strain rate is very large in the thin
layer and almost zero else where. We choose the vol-
ume free energy as

Ψ(ε, β, gradβ) = w (1− β) (11)

+
k

2
(gradβ)2 +

β

2
εCε + I (β) .

The volume dissipative function is addressed as follows

Φ
(
E

(
u+ + u−

2

)
, [β] , grad [β]

)
=

c

2
[β]2

+
µ

q

(
β− +

[β]
2

) ∥∥∥∥E
(

u+ + u−

2

)∥∥∥∥
q

+

+
λ

r

∥∥∥∥E
(

u+ + u−

2

)∥∥∥∥
r

(12)

+I− ([β]) + I+

(
div

(
u+ + u−

2

))
.

The contact surface with the obstacle pseudo-potential
of dissipation is

Φs

(
u+ + u−

2

)
= λs

(
u+ + u−

2

)2

+ I−
(
u+

n

)
.

(13)
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The quantity w is the cohesion of the material, C is
the classical elasticity tensor, ε the deformation tensor
which does not change during collision and k is the
damage collision coefficient which quantifies the influ-
ence of the damage at a point onto the damage of its
neighborhood. The parameters c, λ, µ, λs characterize
the microscopic and macroscopic dissipations. The ex-
ponents r ∈ ]0, 1[ and q ∈ ]1, 2] indicate the nature of
the behaviour of the constitutive law: convex or con-
cave. In particular, the convex term involving the strain
rate E consists of the visco-plastic Norton-Hoff-Friaa
potential which approximates the perfect plastic poten-
tial, when q tends to one. Moreover, the effect of the
concave term with power r lower than 1 is to avoid hav-
ing many regions with small discontinuities and to have
the strain rates very large in thin damaged zones.

The functions I , I−, I+ are the indicator functions of
the intervals [0, 1], (I(γ) = 0, if 0 ≤ γ ≤ 1 and I(γ) =
+∞, if γ /∈ [0, 1]), of ] − ∞, 0] = R−, (I−(γ) = 0,
if γ ≤ 0 and I−(γ) = +∞, if γ > 0), and of [0,∞[=
R+, (I+(γ) = 0, if γ > 0 and I+(γ) = +∞, if γ <
0), (see [10]). The indicator functions take care of the
internal constraints

β ∈ [0, 1] , [β] ≤ 0, u+
n ≤ 0, div

(
u+ + u−

2

)
≥ 0 .

(14)
The first internal constraint results from the definition
of damage. The second constraint means that the solid
does not mend during the collision. The other con-
straints are related to the velocity field and take into
account impenetrability conditions: the first is on the
obstacle contact surface and the last one, following an
idea of Jean Jacques Moreau [11], replaces the impen-
etrability condition on the fractures by a volume non
overlapping condition.

The norm of symmetric tensor A is defined as

‖A‖ =
√

AijAij =
√

A2 . (15)

The previous functions give the following set of consti-
tutive laws

Σ = λ

∥∥∥∥E
(

u+ + u−

2

)∥∥∥∥
r−2

E
(

u+ + u−

2

)
(16)

+µ

(
β− + β+

2

) ∥∥∥∥E
(

u+ + u−

2

)∥∥∥∥
q−2

E
(

u+ + u−

2

)

−pI ,

B ∈ −w +
1
2
εCε + ∂I

(
β+

)
+ c [β] (17)

+
µ

2q

∥∥∥∥E
(

u+ + u−

2

)∥∥∥∥
q

+ ∂I− ([β]) ,

H = k gradβ+ , (18)

R ∈ λs(u+ + u−) + ∂I−
(
u+

n

)
n , (19)

where

−p ∈ ∂I+

(
u+ + u−

2

)
. (20)

The subdifferential sets ∂I+ and ∂I− of the indicator
functions of the positive and negative numbers R+ R−
are defined as: ∂I+(0) = R−, ∂I + −(γ) = 0 for
γ > 0 and ∂I+(γ) = ∅ for γ < 0, ∂I−(0) = R+,
∂I−(γ) = 0 for γ < 0 and ∂I−(γ) = ∅ for γ > 0. The
quantity ∂I− (u+

n )n is the impenetrability percussion
reaction. It is active only if the other interactions are
not sufficient for the solid and the plane not to interpen-
etrate, i.e., when the normal velocity after the collision
is 0. The quantity −p is the internal impenetrability
pressure. This reaction prevents the volume overlap-
ping. From the numerical simulations proposed in sec-
tion 6 clearly outcomes that −p is active only in the
fractured zones in compression or in the fragmented re-
gions, avoiding interpenetration. In fact, the undam-
aged portions of the solid after collision have nearly
rigid body velocity.

Let us note that the second law of thermodynamics
equivalent to the following inequality is satisfied for
r ∈ ]0, 1[ and q ∈ ]1, 2], [4]

Σ : E
(

u+ + u−

2

)
+ B [β]− [Ψ] ≥ (21)

µ

(
β− + β+

2

) ∥∥∥∥E
(

u+ + u−

2

)∥∥∥∥
q

+λ

∥∥∥∥E
(

u+ + u−

2

)∥∥∥∥
r

− w [β] + c [β]2

+
µ

2q
[β]

∥∥∥∥E
(

u+ + u−

2

)∥∥∥∥
q

+ ∂I− ([β]) [β]

+∂I
(
β+

)
[β] + k gradβ+ grad [β] ≥ 0 .

5 The equations
The principle of virtual work and a proper use of the
constitutive laws leads to two sets of equations and per-
mits to compute the velocity and damage of the body
after the collision depending on the incoming velocity
and the damage state before the collision.

For simplicity, we assume the body is undamaged be-
fore the collision, that its velocity is a rigid body veloc-
ity and that it is not deformed before collision

β− = 1, E(u−) = 0, ε = 0 . (22)

Moreover, assuming (22) it results

∂I(β+) + ∂I−(β+ − 1) = ∂I(β+) . (23)

So, the equations to find u+ and β+ are

ρu+ − divΣ(u+) = ρu− , in Ω , (24)

Σ·n+λs(u++u−)+∂I+(u+
n )n 3 0 on ∂Ω1 , (25)

Σ · n = Rext on ∂Ω2 , (26)

cβ+ − k4β+ + ∂I(β+) 3 (27)

w + c− µ

2q

∥∥∥∥E
(

u+

2

)∥∥∥∥
q

in Ω ,
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∂β+

∂n
= 0 on ∂Ω . (28)

6 Numerical examples
In this section three numerical experiments are pre-
sented. Let us emphasize that we do not try to com-
pare our results with those of actual experiments - this
will be object of a forthcoming investigation - but to
illustrate the capability of the proposed model to de-
scribe different failure modes. In particular, after col-
lision the material may present three different states:
not fractured, fractured, fragmented. In details, the not
fractured region is represented by the undamaged zone
(β(x) = 1), the fractured state presents completed dam-
aged materials with an opening mode (i.e., div(u+) >
0) or in compression regime (i.e., div(u+) = 0) while
the fragmented regions are diffused damaged zones
mainly due to very high strain rate gradients.

Moreover, we restrict our attention to the case of a 2-
dimensional problems in plane strain condition of a sin-
gle deformable body colliding a rigid, immobile obsta-
cle.

The discrete solutions, obtained via finite element
method, involves the resolution of a non-linear non con-
vex minimization problem. The solution is obtained by
an iterative calculation with a sequence of decreasing
parameter q → 1 starting from a quadratic convex term
(q = 2). Specially, the calculation can be stopped at
any iterative step and restart from the previous solu-
tion even with an updated parameter q. This technique
demonstrates to considerably speed up numerical con-
vergence. Kinematical constraints are introduced by
duality via the well known technique of the Lagrange
multipliers. An ad-hoc Uzawa algorithm has been de-
veloped for the resolution of the resulting saddle point
problem.

6.1 Falling Bar

We consider the case of a slender rectangular bar col-
liding three rigid supports. Prior the collision, the bar
is assumed to be undamaged (β−(x) = 1) and falls
with a constant vertical descending velocity (see Fig.
1). The predictive theory gives the velocity and damage
after collision, u+(x) and β+(x), depending on falling
velocity u−. Two representative cases have been ana-
lyzed: all the parameters are fixed except the density of
the material thus an heavy material and a light material,
having the same resistance, have been considered (a ra-
tio between the material densities equal to 10 has been
adopted).

In Figure 2 is represented the damage field β(x) for dif-
ferent incoming velocities for the case of the heavy ma-
terial. From Figure 2 clearly outcomes that the failure
process can be classified with three states depending on
the amount of imparted energy ∼ (u−)2: not fractured,
fractured and fragmented states with a rather sharp tran-
sition in between. For value of u− smaller than 1 m/s,
no fracture appears in the solid. For 1.5625 ≤ u− ≤
3.125 m/s well defined fractures appears in the solids.
It may be noted that the fractured portions of solid in

Fig. 1 Bar falling onto three rigid supports. The length
of the bar is L = 4 m and ratio L/l = 20 and h/l =
0.8 have been assumed. The other parameters have the
following value: µ = 5.e2, λ = 1.e2, ρ = 3.e3 or 3.e2,
p = 0.5, q = 1.01, c = 3.e3, k = 0.1, w = 1.e2,
λs = 2.e3.

compression are larger than those in traction. Interme-
diate incoming velocity value 6.25 ≤ u− ≤ 12.5 m/s
outlines the coexistence of the fractured and fragmented
states. In fact, if above the rigid supports fragmented re-
gions appear after collision, well defined fractures are
still present inside the solid. Differently, high values
of the impact velocity do not allowed the creation of
well defined fractures and only fragmentation due to the
large percussion transmitted between the solid and the
rigid obstacles is present. It is important to note that
the fragmented parts of the solids do not change a lot
passing from u− = 25 m/s to u− = 50 m/s even if
the kinetic energy becomes four times higher.

In Figure 3 the velocity field u+(x) is reported for the
case u− = 1.5625 m/s. The bar is broken into five
pieces after the collision. A central block stops above
the central obstacle while instantaneous rigid rotations
in the other block are induced by fracture creations.

This fact is shown by the representation of the horizon-
tal displacement along two straight horizontal lines lo-
cated at different positions reported in Figure 4. Strong
discontinuities in the displacement behaviour are local-
ized in the fractured regions while the remaining pieces
of the solid undergo a nearly rigid body motions. More-
over, the fractures in opening mode are outlined by the
representation of the divergence of the velocity field re-
ported in Figure 5.

Similar considerations maybe done for the case of
u− = 3.125 m/s reported in Figures 6 and 7 except
by the fact that the bar breaks into seven pieces.

In Figure 8 is represented the damage field β(x) for
different incoming velocities for the case of the light
material. In Figures 9-12 are reported the velocity fields
and div(u+) for two different values of falling velocity:
u = 6.25, 12.5 m/s. The main differences with respect
to the previous case can be summarized as follow:

• because of minor weight of the body, rebounds oc-
cur on the obstacles. This a general property of
collisions both theoretical and experimental, [4];

• the central crack is completely different in this
case: it is induced by rebound of the central por-
tion;
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• for high velocity values the light body breaks in
several parts while the heavy material is cut into
two elements.

6.2 Annular disk

The proposed model has been applied to the case of an
annular disk falling with a rigid vertical velocity and
colliding with a fixed rigid floor. In Figures 13-16 are
represented the damage field, the divergence of the ve-
locity field u+ after the collision and the horizontal and
the vertical components of the velocity field. We only
underline the fact that two failure zones appear in the
ring after collision. A first major fragmented zone is
above the contact surface and involves the entire thick-
ness of the annulus while in the opposite part a well de-
fined fracture is produced along the vertical direction.

6.3 Impact simulation

As a third example we reproduced qualitatively the im-
pact tests reported in [12]. They illustrated different
impact tests on reinforced concrete slabs with the ma-
chine reported in Figure 17. The aim of this example is
to show the capability of the proposed model to simu-
late actual experiments and we do not want to compare
numerical results with experimental evidences. First of
all, we consider a simplified 2D example. Left and right
extremities are clamped while a percussion is applied
on the impact surface. Moreover we do not take into
account the metallic reinforcements. In Figures 18-21
are represented the damage field, the divergence of the
velocity field u+ after the collision and the horizontal
and the vertical components of the velocity field. Dif-
ferent failures are outlined from these Figures.

7 Conclusions
In this predictive theory for collisions and fractures only
macroscopic quantities are involved. The equations of
motion are derived from the principle of virtual work
where new interior forces are introduce to describe the
very large stresses and the very large contact forces re-
sulting from the cinematic incompatibilities. The the-
ory of collisions and fracture of solids outlined in this
article is consistent from the mechanical point of view
and it has good mathematical formulations to which
adapted numerical methods may be applied.

Some numerical simulations have been performed via
the classical finite element method, concerning a solid
colliding against a rigid fixed obstacle or a clamped
solid subjected to high velocity impact. Numerical re-
sults shown a strong versatility of the model to describe
different failure modes. Let us also stress that few pa-
rameters are involved, less than 9, to predict at the en-
gineering level solid fracturation.
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sion. PhD thesis, Université de Montpellier II,
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[8] M. Frémond. Adhérence des solides. J. de
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Fig. 2 Damage in a heavy bar falling at different ve-
locities. The blue zone is not damaged. The thin red
zones are damaged. They account for fractures. When
the falling velocity is very large, the damaged zones be-
come completely fragmented domains

Fig. 3 Velocity u+(x) after the collision for u− =
1.5625 m/s. The bar is broken into five pieces. The
pieces do not bounce on the obstacles
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Fig. 4 Horizontal displacement along two straight hor-
izontal lines located at different positions for u− =
1.5625 m/s. The vertical distances y are measured
from the bottom of the beam. The strong discontinuities
in the displacement values outlined the fractures while
the remaining pieces of the solids undergo a nearly rigid
body motions. Note the 0 velocity of the central piece
on the central obstacle.
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Fig. 5 The divergence of the velocity vector after the
collision for u− = 1.5625 m/s. The opening frac-
tures are represented by zone with high values of
div(u+(x)).

Fig. 6 Velocity u+(x) after the collision for u− =
3.125 m/s. The bar is broken into seven pieces.

14
12
10
8
6
4
2
0

Fig. 7 The divergence of the velocity vector after the
collision for u− = 3.125 m/s. The opening frac-
tures are represented by zone with high values of
div(u+(x)).
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Fig. 8 Damage in a light bar falling at different veloci-
ties. The blue zone is not damaged. The thin red zones
are damaged. They account for fractures. When the
falling velocity is very large, the damaged zones be-
come completely fragmented domains

Fig. 9 Velocity u+(x) after the collision for u− =
6.25 m/s. The bar is broken into four pieces which
bounce on the obstacles
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Fig. 10 The divergence of the velocity vector after the
collision for u− = 6.25 m/s. The opening fractures are
represented by zone with high values of div(u+(x)).

Fig. 11 Velocity u+(x) after the collision for u− =
12.5 m/s. The bar is broken into four pieces which
bounce on the obstacles.
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Fig. 12 The divergence of the velocity vector after the
collision for u− = 12.5 m/s. The fractures are repre-
sented by zone with high values of div(u+(x)).
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Fig. 13 Damage field β+ after collision.
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Fig. 14 Divergence of the velocity field after collision
div(u+(x)).
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Fig. 15 Horizontal component ux of the velocity field.
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Fig. 16 Vertical component uy of the velocity field.

Fig. 17 Precision impact testing system proposed in
[12].

1
0.8
0.6
0.4
0.2
0

Fig. 18 Damage field after impact.

Fig. 19 Velocity field after impact.
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Fig. 20 Horizontal component ux of the velocity field.

0
-3.4
-6.8
-10.2
-13.6
-17
-20.4
-23.8
-27.2
-30.6
-34

Fig. 21 Vertical component uy of the velocity field.
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