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Abstract

The paper investigates the role of the nonlinear-function approximation in the case of Wiener-
model predictive control for nonlinear time-delayed systems. As the control law is derived
in a closed analytical form, it is important that the open-loop prediction of the process out-
put is as accurate as possible. In this sense we studied three different approximations of the
static function in the Wiener model, the piecewise-linear (PWL), fuzzy-system (FS) and spline
approximation. In the FS case we also considered the cases with triangular and exponential
membership functions, and 1st- and 2nd-order consequent functions of the fuzzy system. The
main scope of the study was to analyze how the optimizing the static-function approximation
affects the derivative of the function, which plays the key role in the control law. The results
show that the best results can be achieved with the FS approximations. The only problem can
be seen in the possible discontinuity of the derivative function for a low number of approxima-
tion segments. In the PWL case we get consistent results in terms of the approximation for any
number of the segments; however, the overall results are worse than in the FS case. In the spline
case it can be clearly seen that for good performance one needs more segments than in the FS
case. However, due to a continuous derivative function, good results are obtained in terms of
the energy of the control signal.

Keywords: Wiener system, time-delayed systems, predictive control, function approxima-
tion, pH neutralization

Presenting Author’s Biography
Simon Oblak received a B.Sc from the Faculty of Electrical Engineering,
University of Ljubljana in 2003. Currently he is working in the same insti-
tution as junior researcher. His research interests primarily include appli-
cations of fuzzy systems, especially in the fields of nonlinear control and
fault detection. For his work he received many awards, including Prešeren
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1 Introduction
Model-predictive control has played one of the key
parts of automatic control for three decades [1]. The
essence of the approaches is the mathematical model
of the process we want to control. On the basis of the
model the process-output prediction is calculated for
a specific time in the future. With respect to the pre-
diction horizon, we can distinguish between discrete-
time and continuous-time methods [2, 3]. In this paper
we will focus on a continuous-time nonlinear method,
presented in [4]. The method is appropriate for the
nonlinear processes that can be efficiently modelled by
a Wiener model. This model structure facilitates the
model-output prediction, so that the predictive control
law can be derived in a closed analytical form. The
resulting closed-loop system is open-loop optimal, as
the calculation of the optimal control signal is based on
an open-loop cost function, the model accuracy plays a
key role. For this specific model, the accuracy of the
nonlinear static output function is crucial. However,
when the identification of the model is performed, we
seldom focus on the derivative of the static function,
which is in fact an inherent part of the control law. The
majority of procedures, e.g. [5], focuses only on ap-
proximating the static curve. This paper, on the other
hand, investigates the effect of using different types of
approximation and compares the performance both in
the derivative-approximation stage and in using the ob-
tained models in control.

The structure of the paper is as follows. In the first
part the continuous-time prediction of the model out-
put is presented. The section consists of presenting the
approximations in question (piecewise-linear (PWL)
approximation, fuzzy-system (FS) approximation, and
spline approximation), calculating the model output us-
ing a Maclaurin series expansion, and forming a closed
analytical predictive control law. The second part gives
the results of the investigation, first the approximation
results and second the control results. Final section con-
cludes the paper.

2 Using nonlinear approximations in
continuous-time system-output predic-
tion

We shall focus on a nonlinear time-delayed continuous-
time system

ẋp(t) = f(xp(t), u(t− Td))
yp(t) = g(xp(t))

(1)

where f : Rn → Rn and g : Rn → R are smooth
functions, xp ∈ Rn is a vector of n state variables, Td

denotes the time delay, u ∈ R is a process input and
yp ∈ R is a process output.

Let us assume that we model the system with a Wiener
time-delayed model

ẋ(t) = Ax(t) + Bu(t)
v(t) = Cx(t− Td)
y(t) = h(v(t))

(2)

where A ∈ Rn × Rn, B ∈ Rn and C ∈ Rn. The
variable v(t) ∈ R represents the intermediate variable
that when connected in series with a static nonlinear-
ity h : R → R forms the model output y(t). Note
that in the real system v is not necessarily measured;
hence, it has to be extracted from either the physical
model or the identification data, obtained from the pro-
cess. Furthermore, we assume the so-called undelayed
linear system, the output of which forms the auxiliary
model output containing no time delays:

ẋ(t) = Ax(t) + Bu(t)
v(t) = Cx(t)
y(t) = h(v(t))

(3)

As we are dealing with a methodology suitable for pro-
cesses that can be accurately described by their first-
principle continuous-time models, we will assume that
the steady-state data for the intermediate and output
variables is be obtained from the model. The resulting
curve is in general nonlinear and it has to be approx-
imated by a universal nonlinear approximator, such as
a fuzzy system, a piecewise-linear function or a spline
curve. In the following subsections we will review the
approximations that were included in the research.

2.1 Piecewise-linear functions

The process-model output using the PWL approxima-
tion is defined as

ymp(t) = ĥmp(v(t)) = ΘT Λ(v(t)), (4)

where ΘT ∈ Rσ+1 and Λ ∈ Rσ+1. Using the PWL ap-
proximation, any nonlinear function h can be uniquely
represented by the segmentation of its input domain.
Let us consider the segmentation into σ segments by the
parameters αi, with α0 ≤ α1 ≤ . . . ≤ ασ. In addition,
the elements of the basis functions can be expressed as

Λ(v) =




1
1
2 (v − α0 + |v − α0|)

...
1
2 (v − ασ−1 + |v − ασ−1|)


 (5)

and the vector of the parameters is defined as

ΘT = [θ0, θ1, . . . , θσ] . (6)

The locations of the segments are chosen by clustering
algorithms [6], and the vector of the parameters can be
calculated using common least-square algorithms.

2.2 Fuzzy systems

A fuzzy TS-type system in affine form with one an-
tecedent variable and a polynomial consequent part is
assumed. It can be given as a set of rules in the form

Rj : if xp is Aj ,

then ymf = θj,0 + θj,1xc + . . . + θj,nxn
c ,

(7)

where j = 1, . . . , σ is the number of fuzzy rules
and n is the polynomial order. The variable xp de-
notes the input or variable in premise, and the vari-
able y is the output of the model. The antecedent
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variable is connected with σ fuzzy sets Aj , and each
fuzzy set Aj (j = 1, . . . , σ) is associated with a real-
valued function µAj (xp) : R → [0, 1], that produces
a membership grade of the variable xp with respect to
the fuzzy set Aj . The consequent vector is denoted
XT

c = [1, xc, . . . , x
n
c ], and it implicitly represents an

additional input to the fuzzy system. The system output
is a linear combination of the consequent states. The
system in (7) can be described in closed form

ymf = βT (xp)ΘfXc, (8)

where the membership vector βT (xp) =
[β1(xp), . . . , βσ(xp)] is composed of normalized
degrees of fulfilment

βj(xp) =
µAj (xp)∑σ

j=1 µAj (xp)
, j = 1, . . . , σ, (9)

and the matrix of fuzzy-model parameters

ΘT
f = [ θ1 . . . θσ ] (10)

is composed of vectors of parameters in individual
fuzzy domains:

θT
j = [ θj,0 θj,1 . . . θj,n ] , j = 1, . . . , σ (11)

It is obvious that
∑σ

j=1 βj(xp) = 1 irrespective of xp

as long as the denominator of βj(xp) in Eq. (9) is not
equal to zero (which can easily be prevented by stretch-
ing the membership functions over the whole potential
area of xp).

Using the intermediate variable v(t) as the antecedent
variable xp, the nonlinear output mapping can be writ-
ten in closed form as

ymf (t) = ĥmf (v(t)) = βT (v(t))ΘfXc(v(t)), (12)

where βT ∈ Rσ, Θf ∈ Rσ × Rn and Xc ∈ Rn.

2.3 Spline approximation

A cubic spline has σ + 3 degrees of freedom, and we
can write it in the form

s(x) =
σ+3∑

j=1

cjNj(x), x0 ≤ x ≤ xσ, (13)

where the Nj are linearly independent, normalized cu-
bic B-splines (or basis-splines). Let x−2 ≤ x−1 ≤
x0 < x1 < . . . < xσ ≤ xσ+1 ≤ xσ+2 be an aug-
mented knot set. The {Mr,i(x)}σ+r

i=1 defined by the re-
currence

M0,i(x) =

{
1

(xi−xi−1)
for xi−1 < x < xi

0 otherwise
(14)

Mr+1,i(x) =
k1(x)Mr,i−1(x) + k2(x)Mr,i(x)

xi − xi−2−r

k1(x) = (x− xi−2−r), k2(x) = (xi − x),
for r = 0, 1, 2

(15)

are splines of degree r defined on [x0, xσ]. They satisfy
Mr,i(x) = 0 for x0 ≤ x < xi−1−r and xi ≤ x ≤
xn, and Mr,i(x) > 0 for xi−1−r < x < xi, and their
derivatives can be for r = 0, 1, 2 computed from

M ′
r+1,i(x) = (r + 1)

Mr,i−1(x)−Mr,i(x)
xi − xi−2−r

. (16)

The normalized cubic B-splines are given by

Ni(x) = (xi − xi−4)M3,i(x). (17)

They satisfy

σ+3∑

j=1

Nj(x) = 1 for x0 ≤ x ≤ xσ (18)

This choice of representation for the splines has some
advantages. Each Ni(x) is nonzero only in four
consecutive knot intervals, and in the typical inter-
val [xj−1, xj ] only Nj(x), Nj+1(x), Nj+2(x) and
Nj+3(x) are nonzero. Furthermore, the number of pa-
rameters equals the number of degrees of freedom, so
that the size of the system of equations defining the ac-
tual spline is as small as possible. Also, it should be
noted that all quantities in (14) and (15) are positive.
This implies that the recurrence is numerically stable.

Using a segmentation into σ segments v0, v1, . . . , vσ

and the coefficients cj , obtained by a curve-fitting pro-
cedure, the system output in the spline-approximation
case will be written as

ysp(t) = ĥsp(v(t)) =
σ+3∑

j=1

cjNj(v(t)), v0 ≤ x ≤ vσ.

(19)

2.4 How to calculate the model-output prediction

In general the objective of a model-predictive control
law is to drive the predicted future output of a sys-
tem as close as possible to the future reference. In the
continuous-time framework this implies that the predic-
tions of the reference and the process output must be
either known or estimated. Let us define the reference
model by the triple in state-space as Ar, Br and Cr and
denote the reference signal as w(t). In the moving time
frame the model-output prediction at time τ can be ap-
proximated by a truncated Maclaurin series expansion

y(t + τ |t) = ΓT (τ)Y (t) (20)

where the vectors Γ and Y are given by

Γ(τ) =
[
1 τ . . .

τ i

i!
. . .

τny

ny!

]T

, (21)

Y (t) =
[
y(t) y[1](t) . . . y[i](t) . . . y[ny](t)

]T

, (22)

with Y ∈ Rny , ny is the output order, and y[i](t) stands
for the ith derivative of y(t) with respect to t. Anal-
ogously, the reference-model output prediction can be
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defined as yr(t + τ |t) = ΓT (τ) · r · w(t) where the
vector of the Markov parameters r ∈ Rny+1 is defined
as

r =
[
0 CrBr CrArBr · · · CrA

ny−1
r Br

]T
. (23)

Let us first investigate the model-output prediction (20)
in the PWL approximation case. The ith derivative of
y(t) is defined as

y[i]
mp(t) =ΘT dΛ(v)

dv
CAix(t)+

+ΘT dΛ(v)
dv

[
CAi−1B . . . CB

]
U(t),

(24)

where U(t) stands for

U(t) =
[
u(t) u[1](t) . . . u[i](t)

]T

(25)

and where

dΛ(v)
dv

=




0
1
2 (1 + sign (v − α0))

...
1
2 (1 + sign (v − ασ−1))


 . (26)

Because all of the higher derivatives of the PWL map-
ping with respect to v are equal to 0 (d2Λ(v)

dv2 = . . . =
dnΛ(v)

dvn = 0), all of the higher powers of v̇(t) are can-
celled as well. This is, however, not the case when
using the FS approximation and B-splines. Differen-
tiating (12) or (19) with respect to time, the first two
derivatives will be as follows:

ẏmf =
dĥmf (v)

dv
· v̇(t)

ẏsp =
dĥsp(v)

dv
· v̇(t)

(27)

ÿmf =
d2ĥmf (v)

dv2
· (v̇(t))2 +

dĥmf (v)
dv

· v̈(t)

ÿsp =
d2ĥsp(v)

dv2
· (v̇(t))2 +

dĥsp(v)
dv

· v̈(t).

(28)

It is obvious that the first term cannot be canceled, and
hence the analytical definition of the output prediction
becomes too complex for higher derivatives. For this
reason, all the terms (v̇(t))k, k ≥ 2 are assumed to be
0, and the prediction problem is reformulated to be very
similar to the form in the PWL case:

y
[i]
mf (t) =

dĥmf (v)
dv

· div

dti
=

=
dĥmf

dv

(
CAix(t) +

[
CAi−1B . . . CB

]
U(t)

)
,

(29)

where

dĥmf

dv
=

dβT

dv
ΘfXc + βT Θf

dXc

dv
(30)

for the FS case and

y[i]
sp(t) =

dĥsp(v)
dv

· div

dti
=

=
dĥsp

dv

(
CAix(t) +

[
CAi−1B . . . CB

]
U(t)

)
,

(31)

where
dĥsp

dv
=

n+3∑

j=1

cj
dNj(v(t))

dv
(32)

for the B-spline case. For the sake of clarity we will
assume the same notation of the model output y for all
three cases of approximations. Let us define the control
order as follows.

Definition 1 The control order in the continuous-time
predictive control is said to be nu if the following is
valid: u[nu](t + τ) 6= 0, ∀ τ ∈ [0, T ] and u[i](t +
τ) = 0, ∀ i > nu, τ ∈ [0, T ] where u[nu](t + τ)
stands for nuth derivative of u(t + τ) with respect to
τ . The control order defines the allowable set, U , of
the optimal control input in the receding horizon frame,
and hence imposes the constraints on u(t + τ).

The control vector U(t) of the nuth order is then de-
fined as

U(t) =
[
u(t) u[1](t) . . . u[nu](t)

]T

. (33)

Combining equations (20)-(22) with (24), (29) or (31),
the prediction of the model output y(t + τ |t) at time τ
is defined as

y(t+τ |t) = ΓT [Py(t) + q(v)Kqx(t) + q(v)KhU(t)] ,
(34)

where P = [1 0 . . . 0]T ∈ Rny+1. The matrices
Kq ∈ Rny+1 × Rn and Kh ∈ Rny+1 × Rnu+1 can
be calculated offline as they only depend on the linear-
model dynamics. Scalar function q(v) ∈ R represents
the gradient of the static output mapping, and is calcu-
lated as

q(v) = ΘT dΛ(v)
dv

(35)

for the PWL approximation,

q(v) =
dβT (v)

dv
ΘfXc(v) + βT (v)Θf

dXc(v)
dv

(36)

for the FS approximation, and

q(v) =
n+3∑

j=1

cj
dNj(v(t))

dv
(37)

for the B-spline approximation. Matrices Kq and Kh

are defined as

Kq =
[
0 (CA)T (CA2)T . . . (CAny )T

]T
, (38)
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and

Kh =




0 · · · · · · 0
CB 0 · · · 0

CAB CB · · ·
...

...
...

. . .
...

CAny−1B CAny−2B · · · CAny−1−nu B


 .

(39)

2.5 Continuous-time Wiener-model predictive
control (CTWMPC)

The future control error should decrease according to
the dynamics defined by the reference model

e(t + τ) = ΓT r
(
w(t)− yp(t)

)
, (40)

where yp(t) is the estimated undelayed process output.
Since this signal is not available in the measurements,
we have to estimate it from the actual process output
and the process model. We assume that the difference
between the actual and the undelayed process outputs
is equal to the difference between the delayed and the
undelayed process-model outputs:

yp(t)− yp(t) = y(t)− y(t). (41)

In this sense the undelayed process output yp can be
replaced by

yp(t) = yp(t)− y(t) + y(t). (42)

The idea of the proposed continuous-time MPC, refer-
ring to the predictive functional control derivation [7],
is based on a minimization of the difference between
the future control error and the difference between the
predicted model output at time horizon τ ∈ [0, T ] and
the current model output:

ε(t, τ) = e(t + τ)− (y(t + τ |t)− y(t)) (43)

The control law will be obtained by minimizing the cost
function

V =
∫ T

0

‖ε(t, τ)‖2dτ. (44)

Given the prediction of the process-model output in
(34), the cost function V (U, v, t) (44) is

V =
∫ T

0

Ψ(v)T ΓΓT Ψ(v)dτ, (45)

where

Ψ(v) = r
(
w − yp

)− q(v)KhU − q(v)Kqx (46)

denotes the term depending only on the values of u and
v in time instant t. The minimization of the cost func-
tion results in the continuous-time model-predictive
control law

∂V

∂U
= −2q(v)KT

h

∫ T

0

ΓΓT Ψ(v)dτ = 0. (47)

Let us define the matrix Γ ∈ Rny+1 × Rny+1 as

Γ =
∫ T

0

ΓΓT dτ. (48)

Given that the general term of the matrix ΓΓT is
T i−1+j−1/((i − 1)!(j − 1)!), equation (48) can be
rewritten as

Γ =




γ(1,1) · · · γ(1,ny+1)

...
. . .

...
γ(ny+1,1) · · · γ(ny+1,ny+1)


 , (49)

where

γ(i,j) =
1

(i + j − 1)(i− 1)!(j − 1)!
T i+j−1 (50)

for every i, j = 1, . . . , ny + 1. Equation (47) is then
reformulated as

∂V

∂U
= −2q(v)KT

h ΓΨ(v) = 0 (51)

and by inserting the estimation from (42) the control
vector becomes

U =
1

q(v)
(
KT

h ΓKh

)−1
KT

h Γ×
× [r(w − yp + y(t)− y(t))− q(v)Kqx] .

(52)

When we apply the calculated control signal we only
need the first element of the control vector. Let us now
define the first row of the matrix

(
KT

h ΓKh

)−1
KT

h Γ ∈
Rnu+1 × Rny+1 as κ. Now the control law of the non-
linear Wiener-type model-predictive control is given by

u(t) =
1

q(v)
κ [r(w − yp + y(t)− y(t))− q(v)Kqx] .

(53)

It is obvious that the term q(v), presented in Eqs.
(35),(36), and (37), plays the key role in the quality of
control, as it eliminates the effect of the system nonlin-
earity in each time instant. This is why it is necessary
that the approximation we are using be as accurate as
possible.

3 Main results
3.1 Wiener model of a pH neutralization process

The proposed method was tested on a chemical process
with marked nonlinearity. A mathematical model of a
pH neutralization process was adopted from [8]. The
example consists of a neutralization reaction between a
strong acid (HA) and a strong base (BOH) in the pres-
ence of a buffer agent (BX). The neutralization takes
place in a continuous stirred tank reactor (CSTR) with
a constant volume V . It is a well-known fact that the
pH processes are extremely difficult to deal with due to
their highly nonlinear behaviour with respect to differ-
ent titration curves.
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Figure 1 shows a scheme of the continuous pH neutral-
ization process. An acidic solution with a time-varying
volumetric flow qA(t) of a composition x1i(t) is neu-
tralized using an alkaline solution with volumetric flow
qB(t) of known composition consisting base x2i and
buffer agent x3i. Due to the high reaction rates of the
acid-base neutralization, chemical equilibrium condi-
tions are instantaneously achieved. Moreover, under
the assumption that the acid, base and buffer are strong
enough, total dissociation of the three compounds takes
place. The process-dynamics model can be obtained

1
,

A i
q x

A B
q q+

B
q

pH2 3
,

i i
x x

V

Fig. 1 pH-neutralization process

by considering the electroneutrality condition (which is
always preserved) and through mass balances of equiv-
alent chemical species (known as chemical invariants).
For this specific case, the dynamic behaviour of the pro-
cess can be described considering the state variables

x1 = [A−];

x2 = [B+];

x3 = [X−].

(54)

Therefore, the mathematical model of the process can
be written in the following way:

ẋ1 =
1
θ
· (x1i − x1)− 1

V
· x1 · u,

ẋ2 = −1
θ
· x2 +

1
V
· (x2i − x2)u,

ẋ3 = −1
θ
· x3 +

1
V
· (x3i − x3)u,

(55)

g(x, ξ) = ξ+x2+x3−x1−Kw

ξ
− x3

1 + Kxξ
Kw

= 0, (56)

where ξ = 10−pH , θ = V/qA, and u = qA/qB . Kw

and Kx are the dissociation constants of the buffer and
water, respectively. The parameters of the system rep-
resented by (55)-(56) are x2i = 0.0020 mol NaOH/L,
x3i = 0.0025 mol NaHCO3/L, Kx = 10−7 mol/L,
Kw = 10−14 mol2/L2 and V = 2.5 L. Equation (56)
takes the standard form of the widely used implicit ex-
pression that connects pH with the states of the process,

and it can also be rewritten to a third-order polynomial
form:

g(x, ξ) =ξ3 + (Kw/Kx + x2 + x3 − x1)ξ2+

+(x2 − x1 + Kx)ξ −K2
w/Kx = 0.

(57)

A Wiener model is derived directly from the first-
principle model. The approach is particularly appeal-
ing in control of chemical processes because first prin-
ciples give a straightforward way of obtaining nonlin-
ear continuous-time models. Considering the system in
(2), a model in the Wiener form can be obtained by lin-
earization of the functions f and g around a given point,
normalizing the model steady-state gain (the Wiener
model should have a steady-state gain equal to 1), and
calculating the steady-state solutions of the output func-
tion g to get a nonlinear output mapping. The linear ap-
proximation for the nonlinear system (55)-(56) is given
by

A =



− 1

θ (1 + us) 0 0
0 − 1

θ (1 + us) 0
0 0 − 1

θ (1 + us)


 ,

B =




− 1
θx1,s

1
θ (x2i − x2,s)
1
θ (x3i − x3,s)


 , C =

[
∂η
∂x1

∂η
∂x2

∂η
∂x3

]
,

(58)

where

∂η

∂xk
=

∂h(x)/∂k

ξ ln(10)∂h(x)/∂ξ
, k = 1, 2, 3. (59)

From the polynomial pH equation (56) the following
terms are easily calculated:

∂h(x)
∂ξ

= 3Kxξ2 + 2[Kw + (x3 + x2 − x1)Kx]ξ+

+ (x2 − x1 −Kx)Kw,

∂h(x)
∂x1

= −Kxξ2 −Kwξ,

∂h(x)
∂x2

= −Kxξ2 + Kwξ,

∂h(x)
∂x3

= Kxξ2.

(60)

The nonlinear functionality for the input-output map is
given by

xk,s =
1

1 + us
xk,i, k = 1, 2, 3 (61)

ξ + x2,s + x3,s − x1,s − Kw

ξ
− x3,s

1 + Kxξ
Kw

= 0, (62)

where us and xk,s represent the input and the states in
the linearization point. The process input was assumed
to be bounded by the interval 0 ≤ u(t) ≤ 1; there-
fore, we used 200 equidistant steady-state points from
the intermediate-variable range v ∈ [0, 1] for the input
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set. The optimized parameters of the approximations
were then obtained by curve fitting to the steady-state
points.

One can also note the diagonal structure of the matrix
A. In [8] it was shown that the dynamics can be suc-
cessfully approximated by a first-order model. In terms
of a system transfer function it would mean that two
zeros and two poles lie in the same position and can be
cancelled. Therefore, linearization around the steady-
state point us = 0.3692 (pH = 7) gave the following
values:

A = −0.5477, B = 1, C = 0.5477 (63)

3.2 Tuning of the function parameters in the ap-
proximation procedures

We considered six different types of approximations.
In the PWL case we chose PWL approximation of
the static curve, which results in a piecewise-constant
derivative approximation. In fuzzy-system approxima-
tion we explored the difference between triangular and
exponential membership functions and 1st or 2nd-order
polynomial in the consequent part. Spline approxima-
tion was a third-order piece-wise polynomial approxi-
mation with continuous first and second derivative.

To ensure fair comparison, all of the curve-fitting pro-
cedures were unified into the following algorithm:

1. Choose a number of segments and distribute them
equidistantly over the complete input range of the
input-output data set.

2. Calculate the values of the basis functions - PWL
basis in Λ(v), membership functions β(v) for
fuzzy approximations, and values of spline basis
in N(v).

3. Calculate the optimal parameters of the functions
(Θ for PWL, Θf for FS and cj for B-splines) so
that the obtained approximations fit to the data in
least-square sense.

4. Repeat steps 2 and 3 in an optimization proce-
dure to find the optimal segmentation; in the re-
search the Nelder-Mead unconstrained nonlinear
minimization of the sum-square cost function was
applied with end tolerance on the parameter and
the cost function equal to 10−6, and maximum
number of iterations 5000.

5. Stop when tolerances or the maximum number of
iterations have been exceeded.

In the experiment we used 5, 7, 9, and 11 segments, re-
spectively. The measure of approximation quality was
mean-square error of derivatives, and the calculations
for corresponding approximations are given in Table 1.
All of the optimizations were done on the data from
the static curve, and the resulting approximations were
checked for the derivative cases.

Tab. 1 Mean-square-error results for the approximations

Approximation 5 seg. 7 seg. 9 seg. 11 seg.
PWL stat. 57.13 46.53 41.1 42.94

FS triang. 1. 32.94 18.36 11.61 16.92
FS triang. 2. 78.88 12.21 8.21 10.01

FS exp. 1. 375.4 193.1 28.18 23.36
FS exp. 2. 105.2 13.13 8.691 28.42

Spline 51.62 51.21 9.596 7.325

Figures 2 to 4 show the results for the case where 5 seg-
ments were used, and 5 to 7 for the ones where 11 seg-
ments were used. The MSE calculations are presented
in the corresponding figures.

0 0.2 0.4 0.6 0.8 1
0

50

100

PWL of the static curve

MSE: 57.1269

0 0.2 0.4 0.6 0.8 1
0

50

100

FS, triangular MF, 1st order

MSE: 32.9416

Fig. 2 5-segment approx., PWL - static (upper) and FS
- triangular MF, 1st order (lower)

0 0.2 0.4 0.6 0.8 1

0

50

100

FS, triangular MF, 2nd order

MSE: 78.8783

0 0.2 0.4 0.6 0.8 1

−200

0

200
FS, exponential MF, 1st order

MSE: 375.3628

Fig. 3 5-segment approx., FS - triangular MF, 2nd order
(upper), FS - exponential MF, 1st order (lower)

In the cases of the FS exp. 2nd order and spline meth-
ods, the quality of derivative approximation increases
with the increase of the parameter number. In all the
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−100
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100

FS, exponential MF, 2nd order

MSE: 105.1946

0 0.2 0.4 0.6 0.8 1
0

50

100

Piecewise cubic polynomial approximation

MSE: 51.619

Fig. 4 5-segment approx., FS - exponential MF, 2nd or-
der (upper) and spline approximation (lower)
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0

50
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PWL of the derivative

MSE: 42.9372

0 0.2 0.4 0.6 0.8 1
0

50

100

FS, triangular MF, 1st order

MSE: 16.9222

Fig. 5 11-segment approx., PWL - static (upper) and FS
- triangular MF, 1st order (lower)

other cases this does not hold. The quality of the deriva-
tive approximation increases to the cases with 9 seg-
ments when the best results are obtained; then in the
11-segment cases they deteriorate, even though the re-
sults in the static-function approximation improve. This
is because more segments also bring more derivative
discontinuities which contribute to the sum of square
error. This shows that we have to be careful when we
choose the number of segments - the effect of ”over-
parametrization” is here manifested in bigger number
of discontinuities in the derivative approximation. The
other problem is ”under-parametrization” which mani-
fests best in the cases of FS and Spline approximations.
The poor results in the FS exp. 1st and 2nd order are the
consequence of huge jumps of the derivative function
in some discontinuity points. As we will see later, this
does not necessarily affect the overall closed-loop per-
formance; however, a designer should be careful when
he is dealing with systems that can be destabilized by
an excessive control action.
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50

100

FS, triangular MF, 2nd order

MSE: 10.0102

0 0.2 0.4 0.6 0.8 1
0

50

100

FS, exponential MF, 1st order

MSE: 23.3632

Fig. 6 11-segment approx., FS - triangular MF, 2nd or-
der (upper), FS - exponential MF, 1st order (lower)
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FS, exponential MF, 2nd order

MSE: 28.4226

0 0.2 0.4 0.6 0.8 1
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50

100

Piecewise cubic polynomial approximation

MSE: 7.3252

Fig. 7 11-segment approx., FS - exponential MF, 2nd
order (upper) and spline approximation (lower)

3.3 Control experiments

The control-design parameters for the proposed method
were chosen as follows: nu = 1, ny = 4, T =
0.3 s, Ar = −1/0.5, Br = 1, and Cr = 1/0.5.
The choice of ny and T is connected with the desired
model-prediction accuracy, and it was discussed in [4].
Closed-loop experiments on a piecewise-constant ref-
erence signal and using the corresponding approxima-
tions were conducted. We used MSE measure for the
control quality (output error) and the control energy
(derivative of the control signal). The results are pre-
sented in Tables 2 and 3. The results show that the
control quality increases with the increase of the num-
ber of segments. However, taking into consideration the
minimum number of segments, the FS approximations
in the case of second-order consequent functions gave
the best results. The comparison with the PWL case
being to some extent expected, it is surprising to see
how they outperform the case with spline approxima-
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Tab. 2 Mean-square-error results for the output error
w − yp

Approximation 5 seg. 7 seg. 9 seg. 11 seg.
PWL stat. 7.85 4.67 3.81 3.83

FS triang. 1 11.8 3.83 2.91 2.89
FS triang. 2. 3.98 3.45 2.79 2.39

FS exp. 1. 7.73 4.42 3.65 3.01
FS exp. 2. 3.53 2.71 2.42 2.16

Spline 28.3 14.9 2.64 2.52

Tab. 3 Mean-square-integral results for the control-
signal changes u̇

.= ∆u

Approximation 5 seg. 7 seg. 9 seg. 11 seg.
PWL stat. 2.06 2.08 2.77 2.09

FS triang. 1. 2.61 2.19 1.95 1.96
FS triang. 2. 1.95 1.81 2.05 1.95

FS exp. 1. 1.65 2 2.4 2.01
FS exp. 2. 2.02 2.04 2.2 1.8

Spline 1.13 1.58 1.89 1.74

tion for 5 and 7 segments. This shows that for a small
number of segments one should consider using fuzzy
systems. When the number of the segment increases,
the values of the cost function become more even in all
the cases. The only fact that encourages the designer
to consider using the spline approximation is that it re-
sults in a smoother control signal, which demonstrates
through a low value of the cost function regarding the
control-signal change. This can be seen in the last row
of table 3 where the values are minimal in all cases.

Figures 8 and 9 present the diagrams of the output and
control signals in the cases of the worst and best results
in the closed-loop test, respectively.
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Fig. 8 Closed-loop experiment in the spline case, 5 seg-
ments, reference and the output (upper), control signal
(lower)
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Fig. 9 Closed-loop experiment in the FS exp. 2nd-order
case, 11 segments, reference and the output (upper),
control signal (lower)

4 Conclusion
In the paper the role of the nonlinear-function approxi-
mation was studied in the case of Wiener-model predic-
tive control for nonlinear time-delayed systems. As the
control law is derived in a closed analytical form, it is
important that the open-loop prediction of the process
output is as accurate as possible. In this sense we stud-
ied three different approximations of the static func-
tion in the Wiener model, the piecewise-linear (PWL),
fuzzy-system (FS) and spline approximation. In the FS
case we also considered the cases with triangular and
exponential membership functions, and 1st- and 2nd-
order consequent functions of the fuzzy system. The
main scope of the study was to analyze how the op-
timizing the static-function approximation affects the
derivative of the function, which plays the key role in
the control law. The results show that the best results
can be achieved with the FS approximations. The only
problem can be seen in the possible discontinuity of the
derivative function for a low number of approximation
segments. In the PWL case we get consistent results in
terms of the approximation for any number of the seg-
ments; however, the overall results are worse than in the
FS case. In the spline case it can be clearly seen that for
good performance one needs more segments than in the
FS case. However, due to a continuous derivative func-
tion, good results are obtained in terms of the energy of
the control signal.
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