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Abstract  

In this paper, a multiobjective predictive control based on fuzzy hybrid modeling and solved 
by Evolutionary algorithm is presented. At every instant, a genetic method is used to find the 
Pareto optimal front. Provided that only one input can be applied to the system, different 
criteria are used to explore ways of using Pareto Optimal front. Besides, EMO solution allows 
obtaining a new tuning method for the weighting factor of the typical Model Predictive 
Control. An illustrative experiment on a hybrid tank system is conducted to show the benefits 
of the proposed approach. 

 

Keywords: Predictive Control, Hybrid Predictive Control, Fuzzy Model, Evolutionary 
Multiobjetive Optimization. 

 

Doris Sáez. She received the M.Sc. and Ph.D. degrees in electrical 
engineering from the Pontificia Universidad Católica de Chile, Santiago, 
in 1995 and 2000, respectively. She is currently an Assistant Professor at 
the Electrical Engineering Department, Universidad de Chile. Her 
research interests include fuzzy systems control design, fuzzy 
identification, predictive control, control of power generation plants and 
control of transport systems. Dr. Sáez is President of the IEEE Chilean 
Section and a Co-Founder of the Chilean chapter of the IEEE Neural 
Networks Society. Dr. Sáez has authored and coauthored more than 40 
technical papers in international journals and conferences, and is author 
of the book Advanced Control of Solar Plants (New York: Springer-
Verlag, 2001). She has acted as a Reviewer for such journals as the IEEE 
Transactions on Power Systems, IEEE Transactions on Power Delivery, 
IEEE Transactions on Energy Conversion and IEEE Transactions on 
Neural Networks. 

 

 

 

 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM



1 Introduction 
Evolutionary Multiobjective Optimization (EMO) has 
been applied for a large number of static problems. 
For example, an EMO solution has been designed for 
a static assignment problem with fuzzy rules [1]. On 
the other hand, some works have been developed for 
dynamic multiobjective problems and there is a lack 
of methods that allow testing them adequately [2].  

Recently, there are some works related to 
Multiobjective Predictive Control problems. One 
important application of Dynamic Multiobjective is 
the Multiobjective Predictive Control proposed by 
Kerrigan and Maciejowski [3]. They solve the 
multiobjective predictive control problem based on 
prioritized constraints and objectives. In this case, the 
most important optimization problem is solved first 
and the solution to this problem is then used to impose 
additional constraints on the second optimization, etc. 
Also, the control action of predictive controller 
proposed is solved based convex programming 
techniques by considering certain convexity 
assumptions. Thus, prioritized multiobjective 
predictive controller can be solved on-line without 
redesigning the controller off-line, however, this 
increase in flexibility also demands an increase in the 
amount of on-line computational power.  

Núñez et al. [4] presents a comparison of different 
multiobjective predictive controllers applied to an 
olive oil mill.  A typical Model Predictive Control 
(MPC) approach based on mono-objective function, a 
prioritized multiobjective predictive controller and 
structured MPC controller are compared. The last one, 
structured MPC, uses a decision list to select the 
current objective function must be supplied to the 
MPC control action. Based on simulation tests, the 
prioritized multiobjective predictive controller gives 
the best results without the need of tuning weights as 
the typical MPC, however complex software is 
required and therefore, a big computational cost is 
needed. An intermediate solution is the structured 
MPC however abrupt behavior in the switching 
between different objectives is observed. 

Zambrano and Camacho [5] describe a multiobjective 
predictive control algorithm based on a goal 
attainment method, which considers the different 
objective functions as constraints for the minimization 
of relaxation variables. This multiobjective predictive 
controller allows the specification of different goals, 
like economic factor, at different operation points and 
it was applied to a solar refrigeration plant and 
formulated for variable configuration systems.  The 
results show benefits of including the multiobjective 
approach. 

Recently, Subbu et al. [6] present a multi-predictive 
multi-objective optimization approach for thermal 
power plants. In this case, the approach integrates an 
adaptive predictive model based on neural network, 

optimization based on multi-objective evolutionary 
algorithms and decision making methods based on 
Pareto frontier techniques. In this case, the 
multiobjective optimization approach gives the Pareto 
front of set-points for the MPC controllers, as a 
supervisory level and the selection of the current set-
points applied is based on a decision making. 

Thus, multiobjective predictive controllers, reported at 
the specialized literature, are interesting 
developments, however the multiobjective 
optimization problem is not completed solved, and 
sub-optimal solutions are generated. In this work, we 
propose a dynamic multiobjective predictive controller 
based on fuzzy hybrid modeling that provide solutions 
using evolutionary algorithms and also based on that 
to generate an on-line tuning method for the typical 
MPC used at industrial processes.   

There are different approaches of hybrid predictive 
control design. Slupphaug [7] and Slupphaug & Foss 
[8] describe a predictive controller with continuous 
and integer input variables solved by nonlinear mixed 
integer programming.  

Bemporad & Morari [9] present a predictive control 
scheme for hybrid systems solved by using Mixed 
Integer Quadratic Programming (MIQP). The main 
problem of the MIQP is its computational complexity 
which increases the time to find the solution. To 
overcome this problem, Thomas et al. [10] propose 
partitioning the state space domain. 

On the other hand, Potočnik et al. [11] propose a 
hybrid predictive control algorithm with discrete input 
based on reachability analysis. The computation time 
is reduced by building and pruning an evolution tree. 

Núñez et al. [12] present a hybrid predictive control 
strategy based on a fuzzy model. The key element of 
the fuzzy identification is the detection and estimation 
of switching regions by combining fuzzy clustering 
and principal component analysis. The nonlinear NP-
Hard optimization problem was solved efficiently by 
the use of genetic algorithms in terms of accuracy and 
computational time. Thus, a typical Model Predictive 
Control objective function was considered where the 
reference tracking and control effort were minimized. 

In this work, we propose the use of evolutionary 
multiobjective optimization (EMO) in order to provide 
better solutions for Multiobjective MPC based on 
Fuzzy Hybrid modeling, that are not explored with the 
typical MPC. 

The outline of the paper is as follows. In Section 2 
Hybrid Fuzzy Predictive Control based on 
Evolutionary Multiobjective Optimization is 
presented. Section 3 gives simulation results of the 
control of a hybrid tank system. Finally, in Section 4 
the conclusions are included. 
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2 Hybrid Fuzzy Predictive Control 
based on Evolutionary Multiobjective 
Optimization 
 

2.1 Hybrid Fuzzy Predictive Control (HFPC) 

The HFPC strategy is a generalization of model 
predictive control (MPC), where the prediction model 
based on fuzzy logic includes both discrete/integer and 
continuous variables. In general, HFPC minimizes the 
following objective function:  
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where J is the objective function, 
( )ŷ k j+ corresponds to the j step-ahead prediction of 

the controlled variable based on a fuzzy model, 
( )r k j+   is the reference, ( )1u k j∆ + −   is the 

increment of the control action, and λ(k+j) is the 
weighting factor. 1 , yN N   and uN   are the prediction 
horizons and the control horizon, respectively. The 
optimization results in a control sequence being 

( ) ( ){ }, ..., 1uu k u k N+ − . 

Note that the weighting factor is important for stability 
purposes. However, finding the optimal weighting 
function sequences is not an easy task. Therefore, a 
fixed weighting is commonly used [4].  

As we assume that the hybrid predictive control 
problem includes discrete input variables, the 
optimization could be solved by evaluating all 
possible feasible solutions, Branch & Bound and other 
algorithms like GA [13]. 

 

2.2 Hybrid Fuzzy Predictive Control based on 
Evolutionary Multiobjective Optimization (HPFC-
EMO) 

The HFPC-EMO strategy is a generalization of HFPC, 
where control objectives are similar to HFPC but the 
optimal control action must be chosen based on a 
criterion that selects a solution from the Pareto 
Optimal region of following problem: 
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where 
1 2,J J  are the objective functions to minimize. 

The optimization solution is a control sequence region 
called the Pareto Optimal set. To formalize the 
previous notions, the following concepts are important 
to define.  
Let us consider ( ) ( ){ }, ..., 1i ii

uu k u k NU + −=  a control 

action sequence, where ( )iu k t+  belongs to the set 
of feasible control action. 
A solution iU  Pareto-dominates to a solution jU  if 
and only if,   

( ) ( ) ( ) ( )( )1 1 2 2
i j i jJ J J JU U U U≤ <∧  or 

( ) ( ) ( ) ( )( )2 2 1 1
i j i jJ J J JU U U U≤ <∧ . 

 
A solution iU  is said to be Pareto optimal if and only 
if there is not jU  that Pareto-dominates iU . Pareto 
optimal set sP  contains all Pareto optimal solutions. 
The set of all objective function values corresponding 
to the solutions in sP  is 

( ) ( )( ){ }1 2, :i i i
F sP J U J U U P= ∈ . FP  is known as 

Pareto optimal front. If the discrete manipulated 
variable case is considered, where the feasible input 
set is finite, the size of sP  is also finite.  
 
As just one input u(k) has to be applied to the system, 
a criterion is used in order to find the best control 
sequence that belongs to the Pareto front 

( ) ( ){ }, ..., 1i
uu k u k NU + −= . This criterion will be 

related to tracking error as well as control effort and it 
will be defined later. 
 
The multiobjective optimization could be solved by 
evaluating all solutions, Branch & Bound and other 
algorithms [14]. Next, an efficient optimizer based on 
Genetic Algorithms (GA) is described for this 
problem. 
 
As the Pareto front could be hard to obtain in real time 
application, new method that connects HFPC-EMO 
solution with HFPC is suggested. With an off-line 
model, a HPFC-EMO is used to obtain the responses 
of the system. Based on the dynamic Pareto Optimal 
front, the weight value λ at instant k could be 
estimated, that connects HFPC-EMO solution with the 
HFPC. Then in the real-time application the estimated 
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weighting function ( )kλ  from HFPC-EMO could be 
used instead of a fixed value.  This also could be 
interpreted as a new tuning method for the weighting 
factor of typical MPC. 
 

2.3 Optimization based on Genetic Algorithm 

Genetic algorithm is used to solve the multiobjective 
optimization problem because it can efficiently cope 
with mixed-integer non-linear problems. The idea is to 
find the Pareto optimal set and then from the Pareto 
optimal front that will be used to obtain the control 
action. A potential solution of the GA is called 
individual. The individual can be represented by a set 
of parameters related to the genes of a chromosome 
and can be described in a binary or integer form. The 
individual represents a possible control-action 
sequence ( ) ( ){ }, ..., 1uu k u k N+ − , where each element 
is a gene, and the individual length corresponds to the 
control horizon Nu.  

Using genetic evolution, the fittest chromosomes are 
selected to assure the best offspring. The best parent 
genes are selected, mixed and recombined for the 
production of an offspring in the next generation. For 
the recombination of genetic population, two 
fundamental operators are used: crossover and 
mutation. For the crossover mechanism, the portions 
of two chromosomes are exchanged with a certain 
probability in order to produce the offspring. The 
mutation operator alters each portion randomly with a 
certain probability [14]. 

In order to find the Pareto Optimal set, the best 
individuals are the ones that belong to the best Pareto 
Optimal set found until current iteration (due to the 
fact that there are solutions that belong to the Pareto 
Optimal set but they are not found yet). Solutions that 
belong to the best Pareto Optimal set will have a 
fitness function equal to 0.9 and the other solution 
fitness will be equal to 0.1 in order to hold the solution 
diversity.  

The genetic algorithm approach in HFPC-EMO 
provides a sub-optimal Pareto front very close to the 
optimal one. The tuning parameters of the GA method 
are the number of individuals, number of generations, 
crossover probability, mutation probability and the 
stopping criteria. 

Once the best Pareto front is found, different criteria 
could be applied in order to select the best control 
action at every instant. 

In this work we propose the following criteria: 

• To choose the control action solution from the 
Pareto front that has a minimal tracking error 
value. 

• To fix a bounded tracking error and to choose the 
control action solution from the Pareto front that 

satisfies that tolerance and has a minimal control 
effort. 

 

2.4 Relation between HPFC-EMO and HPFC 

Once the Pareto Optimal front is obtained as a 
function of instant k (dynamic front), the equivalent 
HFPC problem is obtained by identifying the 
weighting factor λ(k). Provided that an analytical 
solution of the Pareto front is not available, two 
methods are proposed in order to estimate the λ(k) 
factor: 

A) LS Method.- By non-linear regression or least 
mean square, to estimate an analytical function of the 
Pareto front using non-linear regression. After that, at 
the optimal solution chosen from Pareto front, the 
slope of this analytic function is obtained and it is 
related with the λ(k) factor.  

B) IM Method.- In this case, firstly a range of possible 
λ(k )is determinated considering if ( )1 2,* *J J  is the 
selected Pareto front point, the following inequalities 
have to be satisfied:   

0λ ≥ , ( )1 2 1 2 1 2, , * *FJ J P J J J Jλ λ∀ ∈ + ≥ +         (3) 

After that, λ(k) is equal to the minimum λ  that 
satisfies equation (3).  

Once λ(k) is obtained by using one of these two 
alternatives and registered for a time period. After 
that, a model for λ(k) could be identified and will 
provide a tuning method at every instant for a HFPC. 
Thus, we propose a conventional HFPC with λ tuned 
from the multiobjective problem (HFPC-EMO). 

3 Non-linear System 
3.1 Process Description 

The tank system is shown in Figure 1. The controlled 
variable in this case is the level in the first tank h1, and 
the manipulated variable is the voltage of the pump in 
the inlet (u), which has discrete levels. It is also 
assumed that both levels h1 and h2, are measured. 
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Fig. 1 The tank system plant. 
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The behavior of the system is defined by the following 
nonlinear differential equations and algebraic 
equations, which define the switching regions: 

1
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where h1 and h2 stand for the level of the liquid in the 
first and the second tank and 

1min 1max 2min 2max, , ,H H H H  stand for switching 
levels. Note that the rules in (4) represent the 
switching or hybrid behavior. Based on input/output 
data and the identification method proposed by Núñez 
et al [12] the structure of the fuzzy model is defined 
as:  
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where the variable in premise is 1,k kz h=  whose 
membership functions are shown in Fig 2 and the 

consequent vector  equals [ ]1,   1
T

c k kx h u= . The 

parameters of the fuzzy model ( [ ]  i i i iθ a b r= ), are 
obtained by least means squares. 
 Membership Functions 

 
Fig. 2. The corresponding membership functions of 
the fuzzy model. 
 

3.2 Hybrid Fuzzy Predictive Control based on 
Evolutionary Multiobjective Optimization (HFPC-
EMO) 

The tuning parameters of the multiobjective function 
in (2) are given by N1 = 1, N = Ny = Nu = 3. For the 
optimization based on GA the mutation probability 
equals 0.001, the crossover probability equals 0.7, the 
generations number equals 50, the individuals number 
equals 30 and maximum number of generations is 
used as stopping criterion. The proposed controllers in 
section 2.2 will be compared with a conventional 
HFPC with λ = 0.001 reported by Núñez et al [12]. 

HFPC-EMO is tested using the criteria defined in 
section 2.3:  

HFPC-EMO1. To choose the solution from the Pareto 
front that has a minimal tracking error value. 

HFPC-EMO2. To fix a bounded tracking error equal 
to 0.5[cm] and to choose the control action from the 
Pareto front that satisfies that tolerance and has a 
minimal control effort. 

HFPC-EMO3. To fix a bounded tracking error equal 
to 1[cm] and to choose the control action from the 
Pareto front that satisfies that tolerance and has a 
minimal control effort. 

Fig. 3 and Fig. 4 show the controlled variable (conic 
tank level h1) and the manipulated variable (discrete 
voltage of pump u), respectively for criteria 1, 2, 3 and 
HFPC with λ = 0.001. 

Fig 5 and Fig 6 show the controlled and the 
manipulated variables detailed in the range of 1100 to 
2000 s.  

From figures 3 to 6 and as we expected from the 
criteria definitions, HFPC-EMO satisfies each 
criterion applied to the controlled variable and the 
control effort is reduced as the tracking error 
increases. The conventional HFPC has a bigger 
control effort than HFPC-EMO2 and HFPC-EMO3, 
but its response follows the reference in a better way. 
HFPC-EMO1 reaches the lower tracking error, but its 
control effort is the biggest. 

In Table 1 the mean values and standard deviation of 
tracking error and control effort are shown for data of 
figures 3 and 4 (performance with a fixed reference). 
From Table 1, HFPC-EMO3 reaches the lowest 
control effort, but the biggest tracking error as we can 
observe also from figures 5 and 6. Therefore, Table 1 
shows that the solutions of the different criteria belong 
to a Pareto front, which is shown in Figure 7. 
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 Fig.3. Controlled variable response, criterion 1, 2, 3 

and HFPC. 
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Fig. 4. Simulation test. Manipulated variable 

responses. 
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 Fig. 5. Controlled variable responses. 
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 Fig 6. Manipulated variable responses. 

 

Tab. 1 Performance with a Fixed Reference. Mean 
Values of tracking error and control effort.  

 Mean(y-r)2 Std (y-r)2 Mean ∆u2 Std ∆u2 

EMO-HFPC 1 4.2864 17.5866 118.7500 389.1165 

EMO-HFPC 2 4.3693 17.5682 19.6023 76.7000 

EMO-HFPC 3 4.6954 17.4941 17.0455 73.4559 

HFPC λ=0.001 4.2884 17.5685 25.0000 98.6984 
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Fig. 7. Pareto front. 

 

3.3 Relation between HPFC-EMO and HPFC 

Next the dynamic Pareto front is shown for HFPC-
EMO2 as function from instant time between 1000 to 
2000 s (Fig 8). For this problem, the Pareto front has 
different shapes at every instant k as shown in Fig 9.  
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Fig. 8. Dynamic Pareto front, Criterion 2. 

 

From figure 9 and using the analytical LS method 
described in section 2.4 A), we propose at fixed 
instant k, that Pareto front belongs to the family of 
curves 2 1

kb
kJ a J −= ⋅ , with ak and bk positive 

constants parameters at instant k. The slope of those 
curves, evaluated at the optimal objective function 
values, provides λ(k) estimation given by: 
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1
2 1

1' kb
k kJ a b J

kλ
− −= − ⋅ = −    (6)  

 

Parameters ak and bk are obtained by least mean 
squares at every instant k. 

Also, few Pareto dominant solutions at some instants 
are observed (see figure 9, instant 4, 5 and 200). That 
happens when the optimization problem has activated 
constraints or the control algorithm has converged. In 
those cases ( FP  have 1 or 2 elements), the IM method 
2.4 B) will be considered in order to obtain λ(k) 
values. 
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Fig. 9. Dynamic Pareto front, HFPC-EMO2. Each 

figure represents the Pareto front at one instant. 

 

Figure 10 shows the function λ(k) for HFPC-EMO2, 
determined based on a LS method 2.4 A) and based on 
the IM method 2.4 B). Note that both estimations are 
similar.  

Fig. 11 shows the evolution for tracking error ( )e k  

and control effort ( )1u k∆ − . 

 

From figures 10 and 11, we realize that there is a 
relationship between ( )kλ  and ( )e k , ( )1u k∆ −  at 
every instant. Thus, two options are proposed to tune 
the λ(k): 

1) By least mean squares based on historical 
data, to identify the parameters of  the 
following proposed linear model: 

( ) ( ) ( ) ( )1 2 31 1k k e k u kλ λθ θ θ= − + + ∆ − . 

2) λ(k) is chosen fixed and equals to the mean 
value of the signal λ(k). 

Table 2 shows the mean value of λ(k) and the 
parameters 1θ , 2θ  and 3θ  of the linear model (option 
1)), obtained for each criterion based on analytical λ(k) 
obtained using LS method. Table 3 also shows the 
parameters when λ(k) is obtained using IM method 
and option 2). 

Fig 12 shows λ(k) and ( )ˆ kλ  obtained based on LS  
(2.4 A) and IM method (2.4 B) for HFPC-EMO2. 
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Fig.10. Lambda, HFPC-EMO2. LS and IM. 
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Fig.11. HFPC-EMO2. Tracking error ( ) ( )y k r k− , 

control effort ( )1u k∆ −  indexes. 
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Fig.12. Evolution of λ(k) for HFPC-EMO2. LS-1: LS 
method with option 1), LS-2: LS method with option 
2), and IM-1: IM method with option 1), IM-2: IM 

method with option 2). 

 

Tab. 2 LS method. Mean values of  λ(k) and 
parameters for the linear model  

 Mean(λ(k)) 
1θ  

2θ  
3θ  

HFPC-EMO 1 4.2864 17.5866 118.7500 389.1165 

HFPC-EMO 2 4.3693 17.5682 19.6023 76.7000 

HFPC-EMO 3 4.6954 17.4941 17.0455 73.4559 

 

Tab. 3 IM method. Mean values of  λ(k) and 
parameters for the linear model  

 Mean(λ(k)) 
1θ  

2θ  
3θ  

HFPC-EMO 1 0.0074 0.27276 0.0018884 -0.000107 

HFPC-EMO 2 0.0086 0.62658 0.0016658 -0.001209 

HFPC-EMO 3 0.0182 0.62506 0.62506 -0.001268 

 

Fig 15, Fig 16, Fig 17 and Fig 18 show the system 
responses using the conventional HFPC algorithm 
with the tuned lambda obtained from HFPC-EMO2.  

Table 4 shows mean values of tracking error and 
control effort of HFPC using λ(k) obtained from 
HFPC-EMO2 with a fixed reference. 

From table 4, the LS method (2.4 A) gives better 
results than the IM method (2.4 B) due the solutions 
are very close to the HFPC-EMO2. 
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Fig. 15. Controlled variable, LS-1, LS-2, IM-1 and 

IM-2. 
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Fig. 16. Manipulated variable, LS-1, LS-2, IM-1 and 

IM-2. 
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Fig. 17. Controlled variable, LS-1, LS-2, IM-1 and 

IM-2. 
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Fig. 18. Manipulated variable, LS-1, LS-2, IM-1 and 

IM-2. 

 

 

Tab. 4 Mean values of tracking error and control 
effort, HFPC-EMO2.  

 Mean(y-r)2 Std (y-
r)2 

Mean 
∆u2 Std ∆u2 

HFPC-EMO 2 4.3693 17.5682 19.6023 76.7000 

LS-1 4.3213 17.5792 25.8523 83.9445 

LS-1 
λ=0.0042 

4.3504 17.5727 20.7386 69.5037 

IM-1 4.2925 17.5856 108.5227 527.3264 

IM-2 
λ=0.0086 

4.5085 17.5448 16.1932 45.1752 

 

4 Conclusions 
This paper presents a new approach of the Hybrid 
Predictive Control problem by using the Evolutionary 
Multi-objective Optimization.  

We propose two different criteria in order to obtain an 
optimal control action from the Pareto front. Both 
criteria are directly related to the tracking error and 
control effort measurements. This fact could be an 
efficient tool for the controller designers in real time 
plants instead of the typical Model Predictive Control. 

Thus a tuning method for weighting factor of typical 
MPC based on the EMO solution was proposed. In 
this case, two alternatives are considered to obtain the 
weighting values and we conclude that the model of 
the Pareto front identified through last mean squares 
gives the best results. 

Further work will be focused on the generalization of 
the multiobjective predictive control design. 
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