Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

INTRODUCTION TO OBJECT-ORIENTED
MODELING AND SIMULATION WITH MODELICA
USING THE OPENMODELICA ENVIRONMENT

Peter Fritzson', Adrian Pop®, Peter Aronsson?, Hakan Lundvall®,
David Broman®, Daniel Hedberg?, Jan Brugérd?

'PELAB — Programming Environment Lab, Dept. Computer Science
Linkoping University, SE-581 83 Linkdping, Sweden
*MathCore Engineering AB, Teknikringen 1F, SE-583 30, Linkdping, Sweden

petfr @ida.liu.se (Peter Fritzson)
Abstract

Modelica is a modern, strongly typed, declarative, equation-based, and object-oriented lan-
guage for modeling and simulation of complex systems. Mgjor features are: ease of use, vis-
ual design of models with combination of lego-like predefined model building blocks, ability
to define model libraries with reusable components, support for modeling and simulation of
complex applications involving parts from several application domains, and many more use-
ful facilities. This paper gives an overview of some aspects of the Modelica language and the
OpenModelica environment — an open-source environment for modeling, ssmulation, and de-
velopment of Modelica applications.

Keywords. Modelica, OpenModelica, M odeling, Equation-Based, Open Source

Main Author's biography:

Peter Fritzson is a Professor and Director of the Programming Environment
Laboratory (PELAB), at the Department of Computer and Information Sci-
ence, Linkoping University, Sweden. Peter Fritzson is chairman of the
Scandinavian Simulation Society, secretary of the European simulation or-
ganization, EuroSim; and vice chairman of the Modelica Association. His
main area of interest is software engineering, esp. design, programming lan-
guages and environments, including modeling and simulation.

Presenting Authors' biographies:

Hakan Lundvall, MSc, is a PhD student at PELAB, Linkdping University,
Sweden. He is involved in the OpenModelica efforts since several years, and
has among other things designed and implemented the hybrid and discrete
event support. His main area of interest is generation of parallel code from
Modelica, targeting clusters and multi-core architectures.

Jan Brugérd, MSc, is the CEO of MathCore Engineering AB, Linkdping,
Sweden. He is an experienced modeler with several years of experience of
modeling complex engineering applications, primarily mechanical and elec-
trical applications, and is a driving force behind the development of the
MathM odelica System Designer product.

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

1 Introduction

A large number of modeling and simulation tools are
available on the market. Most tools are very special-
ized and only address a specific application domain.
These tools usually have incompatible model formats.

However, certain tools are of a more genera nature.
For modeling and simulation of dynamic systems, we
have e.g. the following de-facto standards:

e Continuous: Matlab/Simulink,... [15], MatrixX/
SystemBuild, Scilab/Scicos, ACSL,... for general
systems, SPICE and its derivates for electrical cir-
cuits, ADAMS, DADS/Motion, SimPack, Sim-
Mechanics,... for multi-body mechanical systems,
ANSYS, FEMLAB, etc. for finite-element analy-
Sis, ...

e Discrete: general-purpose simulators based on the
discrete-event GPSS line, VHDL- and Verilog
simulatorsin digital electronics, etc.

e Hybrid (discrete + continuous): Modelica,
gPROMS [2], AnyLogic, VHDL-AMS and Ver-
ilog-AMS simulators (not only for electronics but
also for multi-physics problems), etc.

The insufficient power and generality of the former
modeling languages has stimulated the development of
Modelica (as a true object-oriented, multi-physics lan-
guage) and VHDL-AMS/Verilog-AMS (multi-physics
but primarily for electronics, and therefore often not
general enough).

1.1 ModédicaBackground

In 1996 severa first generation object-oriented mathe-
matical modeling languages and simulation systems
(ObjectMath [9], Dymola [6] [7], Omola [16], NMF
[22], gPROMS [2], Allan, Smile, etc.) had been devel-
oped.

However, the situation with a number of different in-
compatible object-oriented modeling and simulation
languages was not satisfactory. Therefore, in the fall of
1996, a group of researchers from universities and
industry started work towards standardization and
making this object-oriented modeling technology
widely available. This language is called Modelica
[10][17][23] and designed primarily for modeling dy-
namic behavior of engineering systems, moreover,
meta-modeling extensions have recently being devel-
oped [11]. The language is intended to become a de
facto standard.

The language allows defining models in a declarative
manner, modularly and hierarchically and combining
various formalisms expressible in the more general
Modelica formalism. The multidomain capability of
Modelica allows combining electrical, mechanical,
hydraulic, thermodynamic, etc., model components
within the same application model.

ISBN 978-3-901608-32-2

9-13 Sept. 2007, Ljubljana, Slovenia

Compared to most widespread simulation languages
available today this language offers several important
advantages.

¢ Object-oriented mathematical modeling. This tech-
nigue makes it possible to create model compo-
nents, which are employed to support hierarchical
structuring, reuse, and evolution of large and com-
plex models covering multiple technology do-
mains.
Acausal modeling. Modeling is based on equations
instead of assignment statements as in traditional
input/output block abstractions. Direct use of equa-
tions significantly increases re-usability of model
components, since components adapt to the data
flow context in which they are used. Interfacing
with traditional software is also available in Mode-
lica

Physical modeling of multiple application domains.

Model components can correspond to physical ob-

jects in the real world, in contrast to established

techniques that require conversion to “signal”
blocks with fixed input/output causality. In Mode-
lica the structure of the model naturally correspond
to the structure of the physical system in contrast to
block-oriented modeling tools such as Simulink.

For application engineers, such “physical” compo-

nents are particularly easy to combine into simula

tion models using a graphical editor.

e A general type system that unifies object-
orientation, multiple inheritance, compo-
nents/connectors, and templates/generics within a
single class construct.

Hierarchical system architectures can easily be de-
scribed with Modelica thanks to its powerful compo-
nent model. Components are connected via the con-
nection mechanism realized by the Modelica system,
which can be visualized in connection diagrams. The
component framework realizes components and con-
nections, and ensures that communication works over
the connections.

For systems composed of acausal components with
behavior specified by equations, the direction of data
flow, i.e, the causality is initially unspecified for con-
nections between those components. Instead the cau-
sality is automatically deduced by the compiler when
needed. Components have well-defined interfaces con-
sisting of ports, also known as connectors, to the ex-
ternal world. A component may internally consist of
other connected components, i.e., hierarchical model-
ing.. Fig. 1 shows hierarchical component-based mod-
eling of an industry robot.

Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

n*transpose (n) + (identity(3) -
e)

kb rananaoa fn))

Fig. 1. Hierarchical model of an industrial robot,
including components such as motors, bearings, control
software, etc. At the lowest (class) level, equations are
typicaly found.

The language design and model library development
has proceeded through a number of design meetings
(the 52:th May 2007), a nonprofit Modelica Associa-
tion was started in Linkdping, Sweden year 2000, and
a conference series was started the same year, with the
5th conference in Vienna Sept. 2006. Several commer-
cial implementations of Modelica (i.e., subsets thereof)
are available, including Dymola [5], MathModelica
[14], and IDA [3]. This paper primarily focuses on the
OpenModelica, which currently is the major Modelica
open-source tool effort.

2 TheOpenModedlica Environment

The OpenModelica environment described in this pa-
per has several goals, including, but not limited to the
following:

e Providing an efficient interactive computational
environment for the Modelica language.

o Development of a complete reference implementa-
tion of Modelica in an extended version of Mode-
licaitself.

¢ Providing an environment for teaching modeling
and simulation. It turns out that with support of ap-
propriate tools and libraries, Modelica is very well
suited as a computational language for develop-
ment and execution of both low level and high
level numerical algorithms, e.g. for control system
design, solving nonlinear equation systems, or to
develop optimization agorithms for complex ap-
plications.

e L anguage design, e.g. to further extend the scope
of the language, e.g. for use in diagnosis, structural
analysis, system identification, etc., as well as
modeling problems that require extensions such as
partial differential equations, enlarged scope for
discrete modeling and simulation, etc.

e Language design to improve abstract properties
such as expressiveness, orthogonality, declarativ-
ity, reuse, configurability, architectural properties,
etc.

e Improved implementation techniques, e.g. to en-
hance the performance of compiled Modelica code
by generating code for parallel hardware.

ISBN 978-3-901608-32-2

9-13 Sept. 2007, Ljubljana, Slovenia

e Improved debugging support for equation based
languages such as Modelica, for improved ease of
use.

e Easy-to-use specialized high-level (graphical) user
interfaces for certain application domains.

e Visualization and animation techniques for inter-
pretation and presentation of results.

e Application usage and modéd library development
by researchersin various application aress.

In this paper we briefly present a few of the subsys-
tems, as well as some architectural aspects of the envi-
ronment. Further, we will give examples of the usage
of the interactive session handler, the DrModelica
notebook, and the debugging support.

2.1 Environment Overview

The OpenModelica environment consists of several
interconnected subsystems, as depicted in Fig. 2.

Eclipse Plugin Graphical Model
Editor/Browser \ Editor/Browser
E Interactive i
~Emacs | session handler Textual
Editor/Browser / — Model Editor
DrModelica / \
NoteBoqk Execution Model!ca
Model Editor Compiler
Modelica
Debugger

Fig. 2. The architecture of the OpenModelica
environment.

Arrows denote data and control flow. Severa subsys
tems provide different forms of browsing and textual
editing of Modelica code. The debugger currently pro-
vides debugging of an extended algorithmic subset of
Modelica. The graphical model editor is not really part
of OpenModelica but integrated into the system and
available from MathCore [14] without cost for aca
demic usage. The following subsystems are currently
integrated in the OpenM odelica environment:

¢ An interactive session handler, that parses and in-
terprets commands and Modelica expressions for
evaluation, simulation, plotting, etc. The session
handler also contains simple history facilities, and
completion of file names and certain identifiers in
commands.

e A Modelica compiler subsystem, translating Mode-
licato C code, with a symbal table containing defi-
nitions of classes, functions, and variables. Such
definitions can be predefined, user-defined, or ob-
tained from libraries. The compiler also includes a
Modelica interpreter for interactive usage and con-
stant expression evaluation. The subsystem also in-
cludes facilities for building simulation executables

Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

linked with selected numericad ODE or DAE
solvers.

An execution and run-time module. This module
currently executes compiled binary code from
tranglated expressions and functions, as well as
simulation code from equation based models,
linked with numerical solvers. Limited event han-
dling facilities are included for the discrete and hy-
brid parts of the Modelica language.

Emacs textual model editor/browser. In principle
any text editor could be used. We have so far pri-
marily employed Gnu Emacs, which has the advan-
tage of being programmable for future extensions.
A Gnu Emacs mode for Modelica has previously
been developed. The Emacs mode hides Modelica
graphical annotations during editing, which other-
wise clutters the code and makes it hard to read.
The Emacs mode has been largely superceeded by
the Eclipse plugin described below.

Eclipse plugin editor/browser/compilation man-
ager. The Eclipse plugin [21] provides file and
class hierarchy browsing and text editing capabili-
ties. Some syntax highlighting facilities are al'so in-
cluded. The Eclipse framework has the advantage
of making it easier to add future extensions such as
refactoring and cross referencing support. A com-
pilation manager is also included. Automatic in-
dentation and debugging facilities are recently be-
ing added [20].

DrModelica notebook textual model editor. This
subsystem provides a lightweight notebook editor,
compared to the more advanced Mathematica
notebooks available in MathModelica. This basic
functionality till allows essentialy the whole
DrModelica tutorial to be handled. Hierarchical
text documents with chapters and sections can be
represented and edited, including basic formatting.
Cells can contain ordinary text, graphics, or Mode-
lica models and expressions, which can be evalu-
ated and simulated. However, no mathematical
typesetting facilities are yet available in the cells of
this notebook editor.

Graphical model editor/browser. This is a graphi-
cal connection editor, for component based model
design by connecting instances of Modelica
classes, and browsing Modelica modél libraries for
reading and picking component models. The
graphic modd editor is not realy part of Open-
Modelica but a MathModelica Lite version of the
editor, see Section 9, is integrated with the system
and provided by MathCore AB [14] without cost
for academic usage. The graphic model editor also
includes a textual editor for editing model class
definitions, and a window for interactive Modelica
command evaluation.

Modelica debugger. The current implementation of
the debugger [18] provides debugging for an ex-
tended algorithmic subset of Modelica, excluding
equation-based models and some other features,
but including some meta-programming and model

ISBN 978-3-901608-32-2

9-13 Sept. 2007, Ljubljana, Slovenia

transformation extensions [11] to Modelica. Thisis
conventional full-feature debugger, using Emacs
for displaying the source code during stepping, set-
ting breakpoints, etc. Various back-trace and in-
spection commands are available. The debugger
also includes a data-view browser for browsing hi-
erarchical data such as tree- or list structuresin ex-
tended Modelica. As just mentioned, this debugger
has been integrated in the OpenModelica Eclipse

plugin.

2.2 Implementation Status

The current version of the OpenModelica environment
(June 2007) allows most of the expression, equation,
algorithm, and function parts of Modelica to be exe-
cuted interactively, as well as to being compiled into
efficient C code. The generated C code is combined
with a library of utility functions, a run-time library,
and a numerical DAE solver. An external function
numeric library interfacing a LAPACK subset and
other basic algorithms has aso recently been devel-
oped.

Not all subsystems are yet integrated as well asisindi-
cated in Fig. 3. Currently there are two versions of the
Modelica compiler, one which supports most of stan-
dard Modelica including simulation, and is connected
to the interactive session handler, the notebook editor,
and the graphic model editor, and another meta
programming Modelica compiler version which is
integrated with the debugger and Emacs, supports
meta-programming Modelica extensions [11], but does
not allow equation-based modeling and simulation.
Those two versions are currently being merged into a
single OpenModelica compiler version.

3 The OpenModelica Client-Server Ar-
chitecture
The OpenModelica client-server architecture is sche-

matically depicted in Fig. 3, showing three typical
clients.

—
Client: Graphic
I Model Editor
Server: Main Program
Including Comgﬂer, Corba
Inter preter, etc. Client:
Inter active

Session Handler

‘ SCode I‘_‘.‘ I nter active |€

Client: Eclipse
\ Untyped API Plugin
Typed Checked Command API

plot

€etc.

Fig. 3. Client-Server interconnection structure of the
compiler/interpreter main program and interactive tool
interfaces.

Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

The three clients are: a graphic model editor, an inter-
active session handler for command interpretation, and
the MDT Eclipse plugin.

Commands or Modelica expressions are sent as text
from the clients via the CORBA interface, parsed, and
divided into two groups by the main program:

o All kinds of declarations of classes, types, func-
tions, constants, etc., as well as equations and as-
signment statements. Moreover, function calls to
the untyped API also belong to this group — afunc-
tion name is checked if it belongs to the API
names. The Interactive module handles this
group of declarations and untyped APl commands.

e Expressions and type checked APl commands,
which are handled by the ceval module.

The reason the untyped API calls are not passed via
SCode (@ module generating an intermediate form of
the abstract syntax tree) and 1nst (which performs
symbolic instantiation of components) to ceval isthat
ceval can only handle typed calls — the type is dways
computed and checked, whereas the untyped API pri-
oritizes performance and typing flexibility. The Main
module checks the name of a called function name to
determine if it belongs to the untyped API, and should
berouted to Interactive.

Moreover, the Interactive module maintains an
environment of all interactively given declarations and
assignments at the top-level, which is the reason such
items need to be handled by the I1nteractive mod-
ule.

4 Simplified Overall Structure of the
Compiler

The OpenModelica compiler is divided into a number
of modules, to separate different stages of the transla-
tion, and to make it more manageable. The top level
function is called main, and appears as follows in sim-
plified form that emits flat Modelica (leaving out the
code generation and symbolic equation manipul ation):

function main
input String f

protected
Absyn
SCode
SCode

algorithm
ast

"file name";

ast;
scodel;
scode2;

Parser.parse (f) ;

scodel := SCode.elaborate (ast) ;
scode2 := Inst.elaborate(scodel) ;
DAE.dump (scode2) ;

end main;

The simplified overall structure of the OpenMaodelica
compiler is depicted in Fig. 4, showing the most im-
portant modules, some of which can be recognized
from the above main function. The total system con-
tains approximately 40 modules.

ISBN 978-3-901608-32-2

9-13 Sept. 2007, Ljubljana, Slovenia

L ookup

SCode.Class

Flat Modelica

(Env, name)

SCode

SCode | _DaE

lexplode

Inst

(Exp.Exp,
TypesType)

SCode.Exp)

Exp.Exp
(Env, name)

Static

l VauesVaue

Fig. 4. The OpenModelica compiler (omc) decomposed
into modules and data flow connections.

The parser generates abstract syntax (absyn) which is
converted to the simplified (scode) intermediate form.
The code instantiation module (1nst) calls Lookup to
find a name in an environment. It also generates the
DAE equation representation which is simplified by
DAELow. The ceval module performs compile-time or
interactive expression evaluation and returns values.
The static module performs static semantics and
type checking. The paELow module performs BLT
sorting and index reduction (see Chapter 18 in [10]).
The DAE module internally uses Exp.Exp,
Types.Type and Algorithm.Algorithm; the
SCode module internally uses Absyn.

5

The following is an interactive session using the inter-
active session handler in the OpenModelica environ-
ment. (Called OM Shell — the OpenModelica Shell).

I nteractive Session with Examples

The Windows version which at installation is made
available in the start menu as OpenModelica-
>OpenModelica Shell responds with an interaction
window shown in Fig. 5.

Fig. 5. Initia screen of the interactive session handler.

We enter an assignment of a vector expression, created
by the range construction expression 1:12, to be
stored in the variable x. The value of the expression is
returned.

Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

>> X := 1:12
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
Look at the type of x:

>> typeOf (x)
"Integer|[]"

The function bubblesort is called to sort this vector
in descending order. The sorted result is returned to-
gether with its type. Note that the result vector is of
type Real[:], instantiated as Real [12], Since thisis
the declared type of the function result. The input In-
teger vector was automatically converted to a Real
vector according to the Modelica type coercion rules.
The function is automatically compiled when called if
this has not been done before.

>> bubblesort (x)
{12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}

It is also possible to give operating system commands
via the system utility function. A command is pro-
vided as a string argument. The example below shows
the system utility applied to the UNIX command cat,
which here outputs the contents of the file bubble-
sort .mo to the output stream. However, the cat com-
mand does not boldface Modelica keywords — this
improvement has been done by hand for readability.

>> cd("C:/OpenModelical.4.0/testmodels")
>> gystem("cat bubblesort.mo")

function bubblesort
input Reall[:] x;
output Real[size(x,1)] y;
protected
Real t;
algorithm
Yy 1= X;
for i in 1l:size(x,1)
for j in 1l:size(x,1)
if y[i]l > y[j] then
t = yl[il;
y[il := yI[3l;
y[3l := t;

loop
loop

end bubblesort;

It is aso possible to enter a function directly into the
session handler.

>> function MySqgr input Real x; output
Real y; algorithm y:=x*x; end MySqr;
Ok

And then call the function:
>> b:=MySqgr (2)
4.0

Another built-in command is cd, the change current
directory command. The resulting current directory is
returned as a string.

>> cd("..")
"/home/petfr/modelica"

We load a model, here the whole Modelica standard
library:

ISBN 978-3-901608-32-2

9-13 Sept. 2007, Ljubljana, Slovenia

>> loadModel (Modelica)
true

We also load afile containing the dcmotor model:

>>

loadFile ("C:/OpenModelical.4.0/testmodels
/dcmotor.mo")

true

It is simulated:

>> gimulate (dcmotor, startTime=0.0,
stopTime=10.0)

record
resultFile =
end record

"demotor res.plt"

Welist the source code of the mode!:

>> list (dcmotor)
"model dcmotor
Modelica.Electrical.Analog.Basic.Resistor
rl(R=10) ;
Modelica.Electrical.Analog.Basic.Inductor
i1;
Modelica.
Modelica.
load;
Modelica.Electrical.Analog.Basic.Ground g;
Modelica.Electrical.Analog.Sources.Constan
tVoltage v;
equation
connect (v.p,rl.p);
connect (v.n,g.p) ;
connect (rl.n,il.p);
(
(

Electrical.Analog.Basic.EMF emfl;
Mechanics.Rotational.Inertia

connect (il.n,emfl.p) ;

connect (emfl.n,g.p) ;

connect (emfl.flange b,load.flange a);
end dcmotor;

We plot part of the simulated result:

>> plot ({load.w,load.phi})
true

The output is shown in Fig. 6.

= . tmpPlot. plt
File Edit

Special

Plot by OpenModelica

1 loadw =

39y load.phi ®

a0y
287
207
157
107

05y
oo

Fig. 6. Plot of the simulated dcmotor model.
Clear al loaded libraries and models:

>> clear ()
true

List the loaded models — but nothing left:

>> list ()

nn

Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

We load another model, the Influenza model:

>>

loadFile ("M:/modeq/VC7/Setup/testmodels/
Influenza.mo")

true

It is simulated:

>> simulate (Influenza, startTime=0.0,
stopTime=3.0)
record

resultFile
end record

"Influenza res.plt"

The simulated population is plotted, which is shown in
Fig. 7.

>> plot ({Infected Popul.p})
true

i tm pPlot.plt
File Edit

Special

Plot by OpenModelica
‘ [[[Infected_Popul.p ®
BO T

a8
56
54

21
50|
L
0.0

i I i i i L
0.4 1.0 1.5 20 25 3.0

Fig. 7. Plot of the Influenza model.

For a complete list of the available commands, see
[13].

6 DrModédica Notebook and Textual
Model Editor

The OpenModelica electronic notebook (OMNote-
book) and model editor subsystem [1] [8] can be used
as a textual modeling interface for Modelica, or as a
Modelica tutoring system, i.e., a ssimplified version of
the earlier Mathematica-based DrModelica tutoring
system for teaching Modelica.

The simplified OpenM odelica el ectronic notebooks are
however able to handle the full DrModelica tutorial
material, containing most of the Modelica examplesin
[20]. It is advanced enough to represent hierarchical
documents, simple type setting, text editing, graphic
cells, etc.

ISBN 978-3-901608-32-2

9-13 Sept. 2007, Ljubljana, Slovenia

Farzion 2006-04-11
— - o
DrMod elicatodeica ediion
Copymght (¢) Leksping Ureveraty, PELAB, 2003 Wiley-IEEE Press, Modehea Assotiana
C [odel ida
thea, Book author Peter Fritzsonsda bu se
DiMedelics Authe M Evaelenal Peaes Fritzson, Peter Bunas

Ao | . B
EhModelies Authess (205 e baler updabes) Peles Frdzacs

Ting Drifodelica noisbook has been developed to facthiate laarmng the Modehea language as well as
providing an 2o ok d modelng and At 1z based on and 1z
supplementary material to the Medehca book: Foter Frizeon: " Frinciples of Obyect-Orented
Modelng and Simulatton vith Modehea® (2004), 240 pages, Wiley-IEEE Fress, ISEN (-471-47165 1.
Al of the examples and exercises i Dridodeliea and the page references are from that book, Mozt of
the text v Dridodehioa iz also based on that book.

Detatled Copyright and Acknowledgment Information
Gerring Started Using OMNotebook
Openhlodelica commands

Berkeley license Openhlodelica

1 A Quick Tour of Modelica

Geetting Started - First Basic Examples

bealy ust by Declanng Tustances of Clagses (p. 26). Almost asibing
e keywords for specibi use of the chiss comeept, called i

[

Fig. 8. The start page (main page) of DrModelicain the
OpenModelica notebook system.

Thisis exemplified by Fig. 8, showing the DrModelica
main page (start page) in the teaching material.

6.1 Some OpenM odelica Notebook Commands

The current prototype of OpenModelica notebooks
includes, but is not limited, to the following opera
tions:

e Opening and closing groups of cells by double
clicking the hierarchical tree view (to theright).

e Evaluation of Modelica code, commands, and ex-
pressions in input cells by typing SHIFT+RETURN.
The evaluation results are shown in a created out-
put cell.

e Opening loading, and saving notebook files in
XML (.onb) format.

e Terminating the notebook subsystem (aLT+Q or
ALT+F4).

e Select acedll, by asingle click on the cell in the tree
view to theright.

¢ Possihility to edit the style template to change the
appearance of different cell types.

e Move cursor, by CTRL + UP ARROW Of CTRL +
DOWN ARROW.

e Close current document (CTRL +W).

e Select and copy text inside a cell.

7 Modelica Algorithmic Subset Debug-
ger

This section presents a comprehensive Modelica de-
bugger [18] for an extended algorithmic subset of the
Modelica language. The debugger replaces debugging

Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

of algorithmic code using primitive means such as
print statements or asserts which is complex, time-
consuming and error- prone.

Two versions of the debugger has been developed. The
first version, [18], is based on Emacs as user interface.
The second more recent and substantially improved
version is integrated in Eclipse as part of the Open-
ModelicaMDT Eclipse plugin, and is being released at
the time of this writing. Some aspects of this new de-
bugger are described in [19].

The debugger is portable since it is based on transpar-
ent source code instrumentation techniques that are
independent of the implementation platform.

The usual debugging functionality found in debuggers
for procedural or traditional object-oriented languages
is supported, such as setting and removing bresk-
points, single-stepping, inspecting variables, back-
trace of stack contents, tracing, etc.

In this section we present parts of the Emacs version of
the debugger functionality. Some of the functionality
of the Emacs version of the debugger is shown Fig. 9.

7.1 Debugger Commands

The Emacs Modelica debug mode is implemented as a
specialization of the Grand Unified Debugger (GUD)
interface (gud-mode) from Emacs. Because the Mode-
lica debug mode is based on the GUD interface, some
of the commands have the same familiar key bindings.

The actua commands sent to the debugger are also
presented together with GUD commands preceded by
the Modelica debugger prompt: mdbe>.

If the debugger commands have severa alternatives
these are presented using the notation:

alternativel|alternative2]....

The optional command components are presented us-
ing notation: [optionall.

In the Emacs interface: M-x stands for holding down
the Meta key (mapped to a1t in general) and pressing
the key after the dash, here x, c-x stands for holding
down the control (ctrl) key and pressing x,
<RET> IS equivalent to pressing the Enter key, and
<SPC> to pressing the Space key.

7.2 Starting the M odelica Debugging Subprocess

The command for starting the Modelica debugger un-
der Emacsisthe following:

M-x modelicadebug <RET> executable
<RET>

7.3 Setting/Deleting Breakpoints

A pat of a session using this type of commands is
shown in Fig. 9 below.

ISBN 978-3-901608-32-2

9-13 Sept. 2007, Ljubljana, Slovenia

=181

macs@kafka.carafe.ida.linse

File Edit Opfions Buffers Tools Complete In/Out Signals Help

S IR R R R A

function ewal
input Exp exp_1:
output Real rval_1:
alzorithm
rwal_1
match exp_1
local Integer wl.wvi:
Exp el,e2;:
cazs[RCONST¢wl} then vi:
case FLUS{el.e2) equation
wl = evaliell: v2 = euallsli:
then vl+u2:
case SUE(el.eZ) squation
vl = evaliell: 2 = evalledi:
then vi-vz2:
caze MUL{el.e2) equation
vl = evaliell: v2 = evalleZ):

then wlsu2:
caze DIV{el.e2) equation
——(I05)-- eval.mo (Modelica)--1 9--CE--Top-=========---—= =
Current directory is fcugdrive/c/homesadrposdocderojectess/modelica @
Eﬁode%icaCDnFerenCEZOO5/tests/
Init

nodbE> - Modelica debugger

nolb@> - 2002, 2003, 2004 LIU/IDA/PELAB, adrpolics,liu.se
nodb@> - debugzing process 3716

ncdbE> - on thyiddev/ttyl

ndb@>Breakpoint oni [eval,moi9] added to breakpoints list,
nadb@>Breakpoint oni [eval.mo3ll] added to breakpoints list,
nolb@>[Parse]

4-16/2%3+10

[Evall

Breakpoint [1]. on eval,mo:ll reached
eval,moill, TEevalBocallievaliel) => (vl
ndbErun

Breakpoint [0]. on eval,mo:3 reached
eval.mo:d . 8Fevalfaxion RCONSTIvl) = (vl
mdb@)l

ixx kguds Debuzgerirunt--LE0--C5--AlLl-~—=--=-----—- g

Fig. 9. Using breakpoints.

This is only a brief presentation of a subset of the de-
bugger functionality. See the OpenModeica Users
Guide [13] for a more complete description.

8 Modelica Development Tooling (MDT)
Eclipse Plug-In

The Modelica Development Tooling (MDT) Eclipse
Plugin [21] integrates the OpenModelica compiler
with Eclipse. MDT, together with the OpenModelica
compiler, provides an environment for working with
Modelica development projects.

The following features are available:

e Browsing support for Modelica projects, packages,
and classes

e Wizards for creating Modelica projects, packages,
and classes

e Syntax color highlighting

e Syntax checking

e Code completion

e Automatic indentation

e Automatic display of information about declared
items

¢ Browsing of Modelicamodules and libraries

8.1 Usingthe Modelica Per spective

The most convenient way to work with Modelica pro-
jects is to use to the Modelica perspective. To switch
to the Modelica perspective, choose the window menu

item, pick oOpen Perspective followed by

Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

Other... Select the Modelica option from the dia-
log presented and click ox.

8.2 CreatingaProject

To start a new project, use the New Modelica Pro-
ject Wizard. It is accessible through File->New->
Modelica Project or by right-clicking in the Mode-
lica Projects view and selecting New->Modelica
Project.

8.3 Creating a Package

To create a new package inside a Modelica project,
select File->New->Modelica Package. Enter the
desired name of the package and a description of what
it contains.

|(New Modelica Package l?|
Modelica Package

Create a new Modelica package.

Source folder: | PPC870

Name: [C ore]

Description: [This package contains the core stuff]

[[Jis encapsulated package

[Finish] l Cancel

Fig. 10. Creating anew package.

8.4 CreatingaClass

To create a new Modelica class, select where in the
hierarchy that you want to add your new class and
select File->New->Modelica Class. When creat-
ing a Modelica class you can add different restrictions
on what the class can contain. These can for example
be model, connector, block, record, Of func-

tion.
|(New Modelica Class I?\

Modelica Class
Create a new Modelica class.
Source folder: [F’PCQ?D.-’Core] [Browse...l
Name: [ALU]
Types
Modifiers: include initial equation block

[Jis partial class

|

[Finish H Cancel I

Fig. 11. Creating anew class.

ISBN 978-3-901608-32-2

9-13 Sept. 2007, Ljubljana, Slovenia

When you have selected your desired class type, you
can select modifiers that add code blocks to the gener-
ated code. ‘Include initial code block’ will for
example add the line ‘initial equation’ to the
class.

85 Syntax Checking

Whenever aModelica (. mo) fileis saved by the Mode-
lica Editor, it is checked for syntactical errors. Any
errors that are found are added to the Problems view
and also marked in the source code editor. Errors are
marked in the editor as ared circle with a white cross,
a squiggly red line under the problematic construct,
and as ared marker in the right-hand side of the editor.
If you want to reach the problem, you can either click
the item in the Problems view or select the red box in
the right-hand side of the editor.

Modelica - ALU.mo - Eclipse SDK
File Edit Navigate Search Project SWT Hierarchy Run Window Help

Pl e e e]y .
X e
% Modeli... 2 T B|[$ &2 =
~ [PPCY70 block ALU L
~ i Core equation
ALU.mo =

® inital .
end ALU;
(2] [r]

L o=
£ =

package.mo
[.project
I» =hSystem Library

Console |[Zl Problems 22

2 errors, 0 wamings, 0 infos

| Resource | In Folder | Location
PPCO970/Core line 5

D unexpected token ALU.mo PPCO70/Core line 5

£l [[o)]|(T I [v)

| |Descnpt|ur1

@ unexpected token ALU.mo

Fig. 12. Syntax checking.

9 Graphic Editing with MathModelica
Lite

A model can be built using the graphical model editor
by using drag-and-drop of aready developed and
freely available model components from the Modelica
Standard Library.

The Modelica Standard Library can be loaded into the
OpenModelica environment when the MathModelica
Lite model editor is started and can be browsed using
the class browser visible at the left of Fig. 13 below.

This section just gives a short sample of using the
graphical model editor. See www.mathcore.com for
the complete MathModelica System Designer User's
Guide, which includes additional capabilities in mod-
eling, simulation, plotting, and Modelica library sup-
port.

As mentioned previously, there is no graphical model
editor in OpenModelica, but the Lite edition of the
MathModelica model editor from MathCore that
works together with OpenModelica can be
downloaded from the OpenModelica web site or di-

Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic)

rectly from www.mathcore.com/products/math-
modelica/lite/. The Lite edition of the editor is
free for academic non-commercial usage.

mEm van

Fig. 13. The modd editor of MathModelica Lite with the
class browser to the left, the graphic editing areain the
middle, and the instance component browser to the right.

10 Conclusion

We have presented some aspects of the OpenMaodelica
environment, including facilities for modeling, smula-
tion, and debugging Modelica code. A number of ob-
jectives of the OpenModelica environment have been
presented and some examples illustrated. It has been
demonstrated that the OpenModelica environment
includes many valuable features for engineers and re-
searchers, and it is the only Modelica environment so
far with good support for debugging Modelica ago-
rithmic code as well as support for meta-programming
integrated in the language. We believe that this open
source platform can be part of forming the foundation
of the next generation of the Modelica language and
environment development efforts, both from aresearch
perspective and a system engineering usage point of
view.

11 Acknowledgments

This work was supported by SSF in the VISIMOD
project, by Vinnovain SafeModSim project, by Veten-
skapsrédet, by Linkoping University, and by MathCore
Engineering AB. Thanks to Ingemar Axelsson and
Anders Fernstrdm for design and implementation re-
garding the OMNotebook, and to Andreas Remar and
Elmir Jagudin for design and implementation regard-
ing the MDT Eclipse plugin.

Note: Most of the material presented in this paper has
been previously published, especially as part of [12]
and [10].

12 References

[1] Ingemar Axelsson. OpenModelica Notebook for
Interactive Structured Modelica Documents. Mas-
ter Thesis LITH-IDA-EX-05/080-SE, 2005.

ISBN 978-3-901608-32-2 10

9-13 Sept. 2007, Ljubljana, Slovenia

[2] Paul Barton and Costas Pantelides. The Model-
ling of Combined Discrete/Continuous Processes.
AlChemE Journal, 40, pp. 996979, 1994.

[3] Equa AB. The IDA simulation
www.egua.se. [Accessed 2006].

[4] Ernst Christen and Kenneth Bakaar. VHDL-
AMS—A Hardware Description Language for
Analog and Mixed-Signal Applications. |IEEE
Transactions on Circuits and Systems 11: Analog
and Digital Signal Processing. Vol. 46, Issue 10,
pp. 1263-1272, Oct. 1999.

[5] Dynasim AB. Dymola—Dynamic Modeling
Laboratory with Modelica, Users Manual, Ver-
sion 6.0. Dynasim AB, Research Park |deon, SE-
223 70, Lund, Sweden, 2006.

[6] Hilding EImgvist. A Structured Model Language
for Large Continuous Systems. Ph.D. thesis,
TFRT-1015, Dept. of Automatic Control, Lund
Ingtitute of Technology, Lund, Sweden, 1978.

[7] Hilding Elmqgvist, Dag Bruck, and Martin Otter.
Dymola—User's Manual. Dynasim AB, Research
Park Ideon, SE-223 70, Lund, Sweden, 1996.

[8] Anders Fernstrom. Extending OMNotebook — An
Interactive Notebook for Structured Modelica
Documents. Master thesis, LITH-IDA-EX--
06/057—SE, Linkdping University, 2006.

[9] Peter Fritzson, Lars Viklund, Dag Fritzson, Johan
Herber. High-Level Mathematical Modelling and
Programming, |EEE Software, 12(4):77-87, July
1995, http://www.ida.liu.se/labs/pelab/omath

[10] Peter Fritzson. Principles of Object-Oriented
Modeling and Simulation with Modelica 2.1, 940
pp., ISBN 0-471-471631, Wiley-lEEE Press,
2004.

[11] Peter Fritzson, Adrian Pop, and Peter Aronsson.
Towards Comprehensive Meta-Modeling and
Meta-Programming Capabilities in Modelica. In
Proceedings of the 4th International Modelica
Conference, Hamburg, Germany, March 7-8,
2005.

[12] Peter Fritzson, Peter Aronsson, Hakan Lundvall,
Kaj Nystrém, Adrian Pop, Levon Saldamli, David
Broman. The OpenModelica Modeling, Simula-
tion, and Software Development Environment. In
Simulation News Europe (SNE), 44, January
2006. See aso
www.ida.liu.se/projects/OpenModelica.

[13] Peter Fritzson et al. OpenModelica Users Guide
and OpenModelica System Documentation, May
2006. www.ida.liu.se/projects/ OpenModelica

[14] MathCore Engineering AB. MathModelica User's
Guide. 2006. www.mathcore.com, 2006.

[15] MathWorks. The Mathworks - Simulink - Simu-
lation and Model-Based Design. http://mww.

tool.

Copyright © 2007 EUROSIM / SLOSIM

Proc. EUROSIM 2007 (B. Zupancic, R. Karba, S. Blazic) 9-13 Sept. 2007, Ljubljana, Slovenia

mathworks.com/products/ssmulink/ [Last ac-
cessed: 15 May 2006].

[16] Sven-Erik Mattsson and Mats Andersson. The
Ideas Behind Omola. In Proceedings of the 1992
IEEE Symposium on Computer-Aided Control
System Design (CADCS '92), Napa, Caifornia,
Mar. 1992.

[17] Modelica Association. The Modelica Language
Specification Version 2.2, March 2005.
http://www.modelica.org.

[18] Adrian Pop and Peter Fritzson: A Portable De-
bugger for Algorithmic Modelica Code. In Pro-
ceedings of the 4th International Modelica Con-
ference, Hamburg, Germany, March 7-8, 2005.

[19] Adrian Pop and Peter Fritzson. Run-time Debug-
ging of Equation-based Object-oriented Lan-
guages. Submitted to SIMS2007, Gothenburg,
Sweden, Oct 2007.

[20] Adrian Pop, Peter Fritzson, Andreas Remar, El-
mir Jagudin, David Akhvlediani. OpenModelica
Development Environment with Eclipse Integra-
tion for Browsing, Modeling, and Debugging. In
Proc. of Modelica 2006, the 5th Int. Modelica
Conf., Vienna, Sept 4-5, 2006.

[21] Andreas Remar and Elmir Jagudin. Modelica
Development Tooling for Eclipse. Master Thesis
LITH-IDA-EX-06/024-SE, April 10, 2006.

[22] Per Sahlin. Modelling and Simulation Methods
for Modular Continuous Systems in Buildings.
Ph.D. thesis, Dept. of Building Science, Royal
Inst. of Technology Stockholm, Sweden, May
1996.

[23] Michad Tiller. Introduction to Physical Modeling
with Modelica. 366 pages. ISBN 0-7923-7367-7,
Kluwer Academic Publishers, 2001.

ISBN 978-3-901608-32-2 11 Copyright © 2007 EUROSIM / SLOSIM

