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Abstract  

While the term object-oriented programming (OOP) settled down the paradigm of classes as 
encapsulations of data and methods (procedures), specialization of classes (subclasses) and  
virtuality of the methods (late bindings), there are further offers related to OOP but enhancing 
it in essential way; they are sometimes called super-object-oriented programming (SOOP). 
Curiously, SOOP arose with OOP and rooted more tightly in simulation than OOP itself. 
Nowadays, after 40 years of existence of both paradigms, one can observe essential contribut-
ions of SOOP, among which there is simulation of intelligent systems having elements (com-
puters, persons) that create and use their “private” (simulation) models for decision support; 
that allows deciding with respect to possible future consequences. The properties that enrich 
SOOP above OOP will be in detail explained (namely: life rules, block structure, classes local 
in other classes and in blocks, and quasi-parallel control), their relation to general aspects of 
computer simulation (namely to the process paradigm) will be exposed and existing applicat-
ions will be presented. The participants will get a free and efficient PC implementation of 
SIMULA programming language, in which particular examples will be formulated. 

Keywords: Object-oriented programming, Super-object-oriented programming, Simula, 
Intelligent systems simulation. 
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1 Prehistory of OOP 

1.1 Process-oriented simulation languages 

The is a common understanding that programming 
simulation models can be made easy so that instead of 
description what should happen in the simulating 
computer one describes what should happen in the 
simulated system such a description in a suitable si-
mulation language can be automatically converted into 
an executable program. And it was not later than in 
1961, when the author of simulation language GPSS 
[1] realized that the dynamics of simulated discrete 
event systems can be described as a result of parallel 
processes, each of them having some data (attributes) 
and being subjected to its life rules that can be expres-
sed by tools for controlling algorithms; processes with 
similar attributes and life rules belong to common 
classes. The life rules function in time flow common 
for all processes; therefore, at a mono-processor pro-
grammed computer, they are interpreted as switching 
one to another according to scheduling statements. 

The rather primitive programming tools of GPSS were 
elevated up to the common state of the 60 years algo-
rithmization practice in 1964 in SOL [2] and especial-
ly in 1965 in SIMULA [3]. They can be characterized 
by means of the following principles: 

(A) the classes are formulated as encapsulation of 
attributes and life rules; 

(B) similarly as variables local in blocks on ALGOL 
60 [4] or in procedures and in program modules, the 
attributes have names and types; 

(C) in the life rules, the sorts of the statements, which 
exist in common algorithmic languages (assignments, 
branchings, cycles, …), are feasible; 

(D) scheduling statements can be among the life rules, 
where they can mean e.g. “hold until the simulated 
time accesses a given value” or “hold until a signal for 
continuing comes”; 

(E) procedures (subroutines, functions) can be declare-
ed in classes so that the life rules of a class can call 
them; 

(F) a class is a source for generating instances; their 
number is a priori unlimited. 

Let a class satisfying (A)-(F) be called p-class in the 
present paper. 

Let us illustrate the life rules of a p-class cell of cells, 
which passes through three states S, G and M, in each 
of them remains during a time, the duration of which 
is a random value of normal distribution with mean 
value A and sigma B, and – after leaving state M – dies 
(with a probability P) or multiplies (otherwise): 

L: into(S); hold(normal(A,B,U)); into(G); hold(normal 
(A,B,U)); into(M); hold(normal(A,B,U)); if draw(P,U) 
then begin  activate new cell; go to L end; 

Note that multiplying of a cell is considered in a form 
that the multiplying cell generates and activates 
another cell and repeats its life rules from the start. 
The states are interpreted as sets and it allows e.g. int-
roducing a model of an appliance tracing the numbers 
of the cells in various states any time divisible by K: 

while true do begin hold(K); outint(cardinal(S),5); 
outint(cardinal(G),5); outint(cardinal(M),5); nextline 
end; 

The languages following the principles (A)-(F) are 
called process-oriented simulation languages. They 
differ from the event-oriented simulation languages. 
If one wishes, he can use a process-oriented language 
as an event-oriented one, but in the opposite way that 
is not possible.  

1.2 Hoare’s Data Structures 

One of the authors of SIMULA, O.-J. Dahl, was invit-
ed to take a lecture [5] at the NATO Summer School 
on Programming languages [6]. There he met another 
lecturer, C. A. R. Hoare who spoke [7] on hierarchical 
data structures, introducing the following principles: 

(G) a data structure is composed of data, identifiable 
according to their names; any component of such a 
structure has its type, either a conventional one (real, 
integer, Boolean, text etc.) or reference one; 

(H) the data structures are instances of classes, which 
serve as definitions of the names and types of their 
components; in a class, any reference component gets 
its qualification, i.e. a class Q; the values of that 
component have to be either “none” or instances of Q; 

(I) if X is a name of a data structure which has compo-
nent Y, then the dot notation allows to express “com-
ponent Y of  data structure X”; dot notation can be iter-
ated; e.g. if Y is a reference component qualified into 
class that has a component Z, then X.Y.Z is meaning-
ful; 

(J) a subclass C of a class D can be introduced by 
explicit formulating that all components of D figure as 
those of C, too; while C can have other components 
that have no origins at D; an instance of C is also an 
instance of D; D is called prefix or superclass of C 
forming a subclass of D is called specialization of D; 

(K) any class is open for any number of its instances 
and for any number of its specializations. 

Let a class satisfying (G)-(K) be called d-class. 

2 Step to object-oriented programming 

The sets (A)-(F) and (G)-(K).of the principles offer to 
be included in a certain synthesis of them. 

(L) reference attributes can occur among the attributes 
of p-classes; 

(M) the attributes of an instance of a p-class can be 
identified by means of the dot notation; 
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(N) the p-classes can be specialized similarly as the d-
classes; beside adding new attributes, new life rules 
can be subjoined to those of the prefix, either after its 
last life rule or at a place explicitly marked in it. 

According to Dahl’s oral statements (and some printed 
ones, as e.g. in [8-9]), he was due to Hoare and his 
paper for discovering the principles of OOP. Nowa-
days, such Dahl’s statements reflect more his modesty 
than the historical development. In fact, the synthesis 
mentioned above does not lead to what was accepted 
as an essential component of OOP and what was later 
called methods. 

Note that the character of dot in the don notation does 
not need to be dot, but e.g. – like in Smalltalk – space. 

3 Object-orientation  

A new step to OOP was performed by introducing the 
following two principles: 

(O) Procedures mentioned in (E) can be called by 
using dot notation. Later, such procedures were called 
methods and the statements for calls of them were 
called messages. New methods can be added to sub-
classes.  

It was an essential step to OOP, logically independent 
on the synthesis mentioned above, but not yet suffi-
cient. The next step concerned late bindings: 

(P) The contents of a certain procedure introduced for 
a class can be (re)formulated in any subclass; such a 
procedure is called virtual. 

Virtuality became the last principle for characterizing 
what is called object-oriented programming. Summa-
rized, this programming paradigm is based on classes 
as encapsulations of attributes and methods. 

4 Super-object-oriented programming 

4.1 Simula 67 

The new language, i.e. the old SIMULA enriched by 
aspects mentioned under (G)-(P) (and by other tools 
described further as (Q)-(U)) was called SIMULA 67. 
Although it was the first OOP language, since its first 
international presentation in [10] SIMULA 67 has 
offered more than that covered by term OOP; namely 
life rules and their mutual switching (see principles 
(C) and (D)) enriched the supply of the OOP tools. 
Note that they offer SIMULA 67 as an excellent pro-
cess-oriented simulation language, or – more precisely 
– as a base to define many more or less independent 
process-oriented languages. The simulationists who 
use it do not suffer similarly as those applying stan-
dard OOP languages, i.e. they do not need to forma-
lize their models under a paradigm of event-oriented 
programming (see the end of part 1.2), i.e. to destroy 
the processes into heaps of events. 

The first presentation of SIMULA 67 appeared at a 
conference on the simulation programming languages 

[10], but at the same meeting an idea arose that what 
this language offers was applicable outside simulation, 
too. After some years, OOP was really accepted as an 
excellent paradigm of programming in a general 
sense. Already since 1967, SIMULA independence of 
simulation has been reflected also in its principle that 
eliminated the “absolute” importance of the schedul-
ing statements for the switching (i.e. the owning of 
switching to the simulated time): 

(Q) For switching among the life rules, general tools 
called sequencing statements are offered, while any 
scheduling statement can be understood as a procedure 
defined with use of them; some of such procedures are 
offered as standard procedures but any SIMULA 67 
user can define his own procedures for such a purpose. 

Another principle introduced in SIMULA 67 relates to 
life rules, too: 

(R) The goal of a transfer inside the life rules can be 
virtual: among the life rules of a class, statements can 
occur that transfer the continuing of the instance “life” 
to a statement that is not just yet among the life rules 
of the class but is expected to occur in some subclass.   

4.2 Block structure and local classes 

Like the old SIMULA, also SIMULA 67 based its al-
gorithmic tools upon those of ALGOL 60 [4], which 
was a perfect block-oriented language. Soon after 
1967, block orientation was condemned by the gurus 
of programming theory, because it seemed being in 
contradiction with the paradigm of modular program-
ming, which was modish in the seventies and eighties 
of the last century. Even after omitting that paradigm, 
the ignorance of the importance of blocks remained 
and therefore it was not sooner than in the present cen-
tury when this importance is slowly penetrating into 
the programmers’ and simulationists’ minds, discover-
ing a fascinating synthesis with the object orientation. 
The synthesis roots in the fact that a declaration of a 
class has the same context as any other declaration; it 
can be characterized by the following principles: 

(S) similarly as variables and subroutines local in 
blocks occurring in the former block-oriented langua-
ges, SIMULA 67 admit classes to be local in blocks; 
the true block orientation views entities with the same 
names but local to different blocks as different entities 
(their homonymy has no importance); 

(T) classes can be declared like attributes for a class; 
then it is called main class and the mentioned classes 
are called nested classes; the instances of a main class 
represent world viewings, formal theories, models or 
formal languages, while the nested classes represent 
concepts or knowledge applied in that world viewings, 
theories, models and languages; two instances of the 
same main class can represent two different vies at the 
same “world”, two different models of the same 
object, judgments pronounced by different observers 
of the same object, or two theories differing by their 
parameters;   
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(U) the contents of a class can be introduced into a 
block by prefixing it by the class; such a block is cal-
led prefixed block; if the “life” of an instance of C en-
ters a block prefixed by a main class the instance be-
comes a model of something that enters its life phase 
enriched by an ability of a world viewing (thinking, 
expressing, modeling) using the contents of the main 
class; if the lives of more instances of C are in such a 
phase they can apply their own attributes when using 
the contents of the prefixing class. 

Rational synthesis of block orientation and object 
orientation needs the process orientation. The fruits of 
this synthesis form a programming paradigm called 
super-object-oriented programming (SOOP) [11-12]. 

Suppose a block B occurs among the life rules of class 
C nested inside main class M; suppose further a main 
class µ is local in B; an instance X of M can be viewed 
as a model of a system S described by M, and an 
instance Y of C can be viewed as an image of a 
component γ of S. When Y enters B it reflects that γ 
has got an ability to model (or “think on”) system σ, 
expressed by means of µ. If Y generates an instance ξ 
of µ it reflects that γ manipulates with a model ξ of a 
certain system σ.  

Such a situation is outlined in Fig. 1, where squares 
represent instances of a main class, circles represent 
instances of the other classes, a horizontal incise 
represents the “life” (flow of performing life rules) of 
the instance represented by the surrounding circles, a 
rectangle with rounded edges represents a block and 
the relation of nesting a graphical construct z inside 
another one w represents that the object represented 
by z is local to that represented by w (in other words: 
that the object represented by z has access to that re-
presented by w). A > D(E) represents that A is model-
ed by an instance D of class E. The circles with digits 
represent elements existing in the same system S 
where γ exists (or images of their elements, existing in 

the same model X of which Y is a component) and the 
small circles represent elements of system σ or their 
images, i.e. components of model ξ. 

 In such a case, one says that model ξ is nested inside 
X and one speaks on nested modeling or – if M and m 
serve for simulation – on nested simulation. If M is 
similar to m an instance like y can be an image of an 
element that has ability to observe its environment (i. 
e. system S) in that it is being, to reflect the observed 
pieces of knowledge in model of the environment of γ, 
and to apply it e.g. for generating information on the 
future of S. In such a case (i.e. in this special case of 
nested modeling), one speaks on reflective modeling 
or reflective simulation  

Fig. 2 is a symbolic illustration of such a reflective si-
mulation – when model ξ exists its elements can 
communicate with corresponding elements of model X 
(see the dashed arrows) and even both the models can 
communicate (see the full arrow). 

There is a small number of programming languages 
that satisfy some principles leading from OOP to 
SOOP. For example MODSIM [13] and NEDIS [14] 
are object-oriented and process-oriented simulation 
languages, i.e. languages satisfying – among other – 
(C) and (D), but not (Q) – (U). JAVA is block-orient-
ed but its tools that should draw near principle (O) are 
rather wooden.  

Only SIMULA 67 [15] and Beta [16] appear to satisfy 
all the mentioned principles. The syntax rules of Beta 
are rather strange and separate it from current use. 
When SIMULA 67 became an ISO standard in the 
eighties of the XX century [17], the increment 67 was 
refused, as the old simulation language SIMULA fell 
into oblivion, being replaced by SIMULA 67 at its 
hitherto users. The syntax rules of SIMULA (67) have 
followed usual customs and therefore it is suitable as a 
base for starting with SOOP; another advantage of 

S > X(M) 

Fig. 2 Reflective modeling 
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1 
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SIMULA is that a lot of experiences were obtained 
with it, which allows solving many obstacles related 
to the fact that the synthesis of block structure with 
object orientation leads to something like nesting for-
mal theories (or like formal theories, the elements han-
dled by which can be carriers of other theories) – note 
that some discoveries how to make something what 
had been considered as unfeasible, came after tens of 
years of the language analysis [18]. Another property 
of SIMULA, which appears especially suitable for 
programming models, is its complete separation from 
what could happen inside the used computer: although 
that makes problems when one would wish to apply 
SIMULA for programming of some software deeply 
concerning the computer run (e.g. an operation 
system), that allows this language to be safely applic-
able for knowledge representation on such models and 
for model portability. Last but not least, SIMULA 
serves well because there are real applications of its 
highest principles. 

5 SIMULA 

5.1 Common rules 

The fundamental concept of SIMULA is block 
instance. It is a component of computing process, 
which has its local entities and its life. It is described 
as textual block, which is closed in “brackets” begin 
and end and composed of two parts, which describes 
the local entities and the life. The first part is a 
sequence of declarations. The following sorts of 
declaration are important: variable declaration, proce-
dure declaration and class declaration. 

Variable declaration has form like real x, a, ww 
which tells that variables x, a and ww can be viewed 
as carrying real values; in place of real, other key 
words can occur like integer, Boolean, character and 
text. Reference declaration is another sort of variable 
declaration; its form is like ref(C) q, s, where C is a 
class and the declaration tells that q and s either may 
point to an instance of class C (or its subclass) or to 
nothing (identified as none)  

Procedure declaration is composed of its heading and 
body. The heading has a form like procedure G or 
procedure F(u,w);  real w; text u; introducing proce-
dures called G and F, G being without parameters and 
F with two parameters, specified as text and real ones. 
Other components can be in the heading, concerning 
the style of calling. A procedure can be a function (i.e. 
gives a result and can be called in expressions); then 
the type of the result is defined in front of key word 
procedure by using the same key words as in the 
variable declarations. The body of a procedure is any 
statement (see further), nevertheless it is often a block. 

Class declaration is similar, only in place of proce-
dure a key word class occurs and some other possibi-
lities are offered for the heading (e.g. specifications of 
virtual entities). If the introduced class is a subclass of 

a class the name of that “superclass” is to be put in 
front of word class.  

The life of a block is described as a sequence of 
statements. Examples of statements: 

Assignment statement is like a:=b for assigning value 
b to variable a, or like a:-b for assigning reference b to 
a. At the right part of such statements, expressions can 
occur. Common usages for arithmetic expressions are 
respected, Boolean operations are expressed by key 
words like not, and, or,... relations serve for comput-
ing Boolean values from numerical, character and tex-
tual ones, and conditional expression (if b then x else 
y) serves for the opposite conversion. Constants and 
function calls are permitted, too. A lot of standard 
functions exist like sin, ln or log10, and among them 
there are those for generating pseudorandom values.  

Procedure statement has a usual form F(a,b,c) where 
an expression of form R.F can occur in place of F, tel-
ling that procedure F should be performed by the ob-
ject pointed by R (R can a more or less complex refer-
ence expression, possibly in brackets).  

Branching is expressed by a statement like if b then S 
or if b then S else T, where b is a Boolean expression 
and after instantaneous evaluation of it, statement S is 
performed in case the evaluation gives true (logical I). 
In the opposite case (if the evaluation of b gives false, 
i.e. logical O), the second form of the statement per-
mits performing the statement following else. 

Textual block (see above) is a sort of statement and 
can occur among the life rules. A text that is similar 
but contains no declaration after begin, is called com-
pound statement and serves for gathering statements 
to figure as one statement.  

Jumps in the sequence of the life rules is allowed by 
performing a statement of form go to L, where L de-
notes the target of the jump; the place of the target is 
given by “label” of form L followed by a colon. It is 
not possible to jump inward a statement, therefore 
neither inward a block. 

Other SIMULA sorts of statements (like cycles) exist 
but their explaining is omitted in this paper. Let us 
express the general rudders.  

The users give names to the entities they introduce, 
using identifiers that begin with a letter that can be 
followed by any letters, digits and sign of underline. 
The identifiers have to differ from the key words. All 
names of variables, procedures, classes and labels 
should follow these rules. 

Let C be a class declaration. In the statements occur-
ring in it (i.e. in the life rules of the class and in those 
of any textual block nesting in this declaration (e.g. in 
procedure declarations), the expression this C (called 
local reference) points to the instance of C, which is 
just performing the statement where the local refer-
ence occurs.  
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If we introduce a common concept phrase for covering 
the statements and the declarations, then it is possible 
to state that the phrases should be separated by 
semicolons. Note that the statements that are life rules 
of a textual block should follow the declarations of the 
same textual block.  

5.2 Block orientation 

Every block instance has its program sequence cont-
rol (PSC), which points to the life rule that is to be 
performed. PSC is important when another block ins-
tance arises or disappears. The dynamics of rise and 
disparition of block instances respect the following 
rules. 

(1) The program has a form a textual block and the 
corresponding block instance exists during the whole 
existence of the corresponding program rum. 

(2) When the life rules belonging to a block instance J 
enter a textual block B a block instance K correspond-
ing to B arises and is attached to J. More exactly, K is 
called subblock instance. PSC of J is set to the 
statement that follows B. 

(3) When the life rules belonging to block instance J 
enter a procedure call, a block instance H correspond-
ing to the body of the called procedure arises and is 
attached to J. More exactly: H is called procedure 
instance. PSC of J is set to the step that should follow 
the procedure call. 

(4) When the life rules belonging to block instance J 
enter an expression like new C, where C is a name of a 
class, a block instance G corresponding to the body of 
the declaration of class C arises and is attached to J. 
More exactly, G is called class instance. PSC of J is 
set to the step that should follow the generating G. A 
custom exists to speak on object in place of class 
instance, on attributes in place of local variables and 
on methods in place of procedures. 

(5) When a block instance X arises, the computing 
switches to the necessary administrating of it and then 
it goes on according to the life rules of X. Suppose X 
is attached to Y. When the “life” of X is exhausted the 
computing switches to place of the life rules of Y, 
pointed by PSC of Y.  

(6) Only class instances can get names (for example 
by means of assignment R:-new C). The subblock in-
stances and those of procedures become inaccessible 
as soon as they exhaust their “lives”. 

(7) In a textual block A that is among the life rules of a 
textual block B, the entities accessible in B are acces-
sible. The same holds when A is a body of a procedure 
or of a class declared in B. 

(8) If A and B are two block instances generated 
according to the same textual block T the sets of their 
local entities are quite different. In other words, if X is 
declared in T then X of A and X of B are entities as 
different as if they would get different names. 

(9) Let T1 and T2 be two different textual blocks so 
that in each of them an entity with a certain common 
name X is declared. If Ai (i=1,2) are block instances of 
Ti, then X of A1 is quite different from X of A2, even 
in case T1 is a part of T2. 

Let X(i) (i=1,…, k) be a sequences of block instances 
so that X(i+1) is attached to X(i) for i=1,…k–1. Then 
the sequence is called operation chain with head 
X(1). 

5.3 Detach and call statements 

There is a are statement called detach, looking like a 
standard procedure, which any class instance can 
perform. Let X be such a class instance, attached to a 
block instance Z, and let it be the last element of an 
operation chain O1. During performing its life rules, X 
can enter blocks, call procedures and generate objects 
and so a more or less long operation chain O2 with 
head X can develop. O2 develops as a continuation of 
O1.  Suppose that during performing its life rules, the 
last element Y of O2 meets statement detach and 
determines that it is X that should perform it. Than the 
whole operation chain O2 is really detached from O1 
and exists as an isolated operation chain. The PSC of 
Y is set after the detach statement and the computing 
returns to the PSC of Z (see Fig. 3, left). Although X 
might perform its life rules it becomes “dormant”. 

Let V be the head of operating chain O3 – in general 
different from O1. Suppose sometimes later the last 

Z 
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element W of O3 should perform statement call(X). 
This statement has also a form of standard procedure 
with one argument that can point to any class instance. 
Then O3 is joined with O1 so that X becomes attached 
to W and the “life” of V continues from the PSC of Y 
(see Fig. 3, right). 

Statements detach and call allow to declare a main 
class called SIMULAT that makes SIMULA a simula-
tion language, without neglecting its SOOP tools. 
SIMULAT contains function time that gives the value 
of simulated time, and class process that allows every 
instance of its subclasses to manage its life rules in re-
lation to simulated time. Namely, the following proce-
dures like those in table 1 are for disposal. 

5.4 Simulation tools 

An integral component of SIMULA is a standard class 
SIMULATION; although it is very suitable for conven-
tional simulation it makes great difficulties for nesting 
simulation. The obstacles root in the fact that using the 
mentioned class prohibits models to get names. There-
fore serious obstacles arise when one should express 
that a state of simulation model A should be copied as 
initial state of another model B, namely if B is nested 
inside an element of model A. Although – after 25 
years of working with SIMULA – technique to sur-
mount the obstacles was discovered [18], it demands 
the users to do rather sophisticated steps. A better 
implement than SIMULATION was discovered (note 
that that happened not sooner than in 2005). This 
implement is a main class called SIMULAT; it is com-
pletely based on the pair of call/detach statements, 
mentioned in the preceding subsection. 

In class SIMULAT, the switching among the life rules 
is overviewed by a hidden object H that elaborates a 
“calendar of events”, i.e. a list of all elements that 
demand to work when the simulated time accesses a 
certain value. H scans the calendar and according to 
the items read at its beginning assigns simulated time 
and stepwise calls the elements that just came to state 
of influencing the computation by continuing to per-
form their life rules. When the life rules of such an 
element lead to a decision to wait, the element sends 
the corresponding information to H and performs 
detach. The elements that can be governed by H in the 
mentioned manner are called processes and are instan-
ces of class called process (more perfectly, of subclas-
ses of class process). It is to note that the life rules of 
the simulation model itself behave in the manner as 
the model would one of the processes (a principle 
realized already in class SIMULATION and in the best 
discrete-event simulation languages of the history). 

The switching among the life rules of the processes in 
programmed by means of scheduling statements, like: 

hold(T) – interrupt until (simulated) time grows up 
of T, 

passivate – interrupt until a signal of activation 
comes, 

P.run – activate P immediately, 
P.run_at(T) – activate P at (simulated) time T, 
P.run_after(Q) – schedule P after Q performs its 

scheduled phase, 
P.run_before(Q) – schedule P before Q performs 

its scheduled phase, 
etc. 

The scheduling develops dynamically – during the in-
terval between scheduling a process and the perform-
ing of its life rules the scheduling can be modifies, e.g. 
by 

 cancel(P) – P it is passivated even if it has been 
scheduled for some future (simulated) time, 
 P.rerun_at(T) – P is scheduled for (simulated) 
time T, even in case it was scheduled for some other 
occasion. 

A consequence of the fact that detaching and calling 
manipulate with the whole operation chain, is that the 
scheduling statement related to an instance R of class 
C can occur in any procedure, subblock and even class 
nested inside the declaration of C (SIMULA allows 
more but its description would overpass this tutorial). 

Let C be a subclass of SIMULAT. Then new C causes 
the life rules of class C to run. They function like to 
belonging to a certain process called main; scheduling 
statements can be among them and other processes 
can activate it by using main.run… etc. R:-new C 
represents start of a simulation experiment called R; it 
is concluded when the flow of the life rules of C 
leaves C (often by accessing end of the body of C).  
Nevertheless, the attributes and methods of R can be 
applied. 

5.5 Nesting models 

Suppose a system S is to be modeled and suppose M is 
the main class of the models of S. Suppose that in case 
the models are simulation ones, M is formulated as a 
subclass of SIMULAT. Then it is possible to introduce 
a name R of the model by a declaration ref(M)R. A 
creation of the model can be expressed by statement 
like R:-new M. (Note that if SIMULA standard class 
SIMULATION were used in place of SIMULAT, such 
a statement would lead to errors).  

Suppose S contains elements. Their sorts would be 
reflected as classes nested in M.  The elements can be 
divided into two groups, material elements (usual in 
cases of a conventional simulation) and thinking ones. 
The last sort of elements can cover e.g. a computer so 
that (it has certain phases of its “life” during that it 
processes data obtained at its “environment” in S so 
that the results of computing can be applied in instruc-
tions given to the elements of S. The computing can 
be a model ξ of something that could be described by 
a certain main class µ. Especially, ξ could be a simula-
tion model, possibly influenced by the instantaneous 
state of S. In a special case, ξ could be a model of S 
itself, but a bit different from X. One of the differences 
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can be that ξ does not reflect the thinking element(s) 
of S. Let us concentrate to such a case. 

Instead of a computer, a human can represent a think-
ing element. Human is able to think and to use con-
cepts (i.e. something like classes) when it thinks. Hu-
man is able to imagine the future and accordingly to 
decide. When S is automated, such a human can be 
replaced by a computer, the human's thoughts could 
be mapped as a modeling phase of the computer and – 
especially – if the thinking consists in imagining it can 
be replaced by simulation performed at the same com-
puter. 

A similar process comes when such a system S gover-
ned by person(s) should be simulated. In this case, 
such a person is represented by an image of a model-
ing computer, which becomes simulating when reflec-
ting that the person is imagining; note that such a way 
can be also a test whether (and how) the different abil-
ities of computing technique could replace humans. 

Independently of whether the thinking elements are 
computers or humans, class M should contain declara-
tions of the classes of the material elements and a 
declaration of a class C of thinking ones. The life rules 
of C may integrate the instances of C into X, using all 
that is available in the declarations of the material 
classes and e.g. in the life rules of class M itself (there-
fore – among other – the scheduling statements that 
express a certain existence of the thinking elements 
during the same time as the material ones, may be of 
use). 

The best way to reflect the phase of modeling consists 
in a block B existing among the life rules of C. That 
block should contain a declaration of class ξ of the 
models and of a declaration of a name reserved for the 
models, e.g. like ref(mu)xi and the statement like xi:-
new mu. This statement generates the model and gives 
it name xi. Then the model runs and can detect the 
properties of the environment of its carrier Y (e.g. of 
the images of the material elements) by means of dot 
notation where X stands before – like X.car3.place (i. 
e. place of element called car3 and existing in model 
X), or – in a better way – with use of the local refer-
ence this M.car3.place (see the end of 5.1). 

Note that this mu.time corresponds to the (simulated) 
time of the model carried by the given thinking 
element, while this M.time corresponds to the time at 
which the given thinking element would exist in 
system S. 

5.6 Reflective simulation 

What was explained in the preceding subsection corre-
sponds in a full way to Fig. 1, where the material ele-
ments are represented by circles enumerated by digits. 
If we attempt to the reflective simulation we should 
meet something like that presented in Fig. 2. In order 
to understand the next explication it is suitable to take 
into account what was expressed in statement (9) of 
subsection 5.2. In other words, if the main class M and 

µ contain the identical declarations (namely of clas-
ses) there is no relation between classes of the same 
names – they figure as having different names..  

That protects SIMULA against an error called trans-
plantation, the substance of which consists in assign-
ing a name reserved inside a main class, to an instance 
of the class existing in another main class. Also an 
implicit assigning of a name can be of this sort (e.g. 
inserting an element of a certain model into a queue 
belonging to another model) and is automatically re-
jected in SIMULA programs.   

SIMULA allows separate compilation of classes. If 
such a class is needed in a certain textual block, one 
puts there its external declaration (like external class 
M). The compiled program behaves in the same 
manner like if the detailed declaration of the class 
would be copied at the place of the external declarat-
ion. But SIMULA linker is so organized that when 
two or more external declarations of the same class G 
occur at the same source text only one object file 
belonging to G is processed and linked, although it 
behaves like to be particularly linked to each of the 
mentioned places. That essentially shortens the 
programs compiled from SIMULA (rather complex 
models of “intelligent” systems do not need more than 
200 KB). 

In reflective simulation, M and µ may differ only in 
small details (at least so that µ does not introduce the 
image of the thinking elements). In such a case, a 
common superclass G can be declared and separately 
compiled, then called by external declarations at two 
block levels and at each of them specialized either to 
M or to µ. Note that the specialization to µ can have 
use of its textual environment that represents 
specialization of G to M. 

6 Examples of application 

A large field for application is logistic, because there 
are many systems where the transport is planned ac-
cording to the imagining how different variants could 
proceed.  

So – under support of two projects of European com-
mission [19,20] – the logistics of container yards was 
simulated, where two tasks of anticipation for ground 
moving transport tools took place – establishing the 
shortest paths and testing its security against conflicts 
and deadlocks in the labyrinth of passages surrounded 
by containers. The computing of the shortest path was 
implemented according to the metaphor put down 
sometimes to Dijkstra and sometimes to Lee, and rea-
lized as a simulation model of the metaphor, i.e. of a 
system of branching, propagating and emulous pulses 
[5]. The test on the computed path security was imple-
mented by means of the reflective simulation, namely 
by simulation of what could happen if applying the 
computed path: in case the simulation discovered that 
the application of the path passed without obstacles, 
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the path was accepted, in case the simulation discover-
ed that application of the path could lead to a conflict 
(with another transport tool or with a container mean-
while put at a place belonging to the computed path) 
the place of the conflict was marked by a fictitious 
container and a model of the mentioned metaphor was 
applied; it gave another version of the shortest path, its 
security was tested by reflective simulation etc., until 
a secure path was determined. The model is described 
e.g. in [21,22] and a snapshot of its on-line animation 
can be seen in Fig. 4 where the simulation of the yard 
is animated on the left while the tests with the shortest 
path is on the right, the columns of containers are re-
presented by fields with digits (denoting the number 
of containers) and the triangles represent ground-mov-
ing transport tools. 

Another application concerned simulation of circular 
conveyor tending several working areas and their en-
vironment (see Fig. 5). The questions like the follow-
ing ones arise during the container operation: 

(i) A failure came to a certain working area; what is 
better, immediate stop of the system and repairing the 
error, or going on with a limited number of the work-
ing areas? 

(ii) If the decision in case of (i) is “to go on”, would it 
be better to change the present technological programs 
(assigning the work arrays to steps of elaboration), 
and if so, what change to choose? 

(iii) An object comes to the conveyor in order to be 
processed at some of the working areas; the conveyor 
is rather occupied and, therefore, if the object imme-
diately enters the conveyor it no working area accepts 
it, the object performs a full cycle and returns to the 
place where it entered the conveyor; how long should 
the object wait out of the conveyor? 

(iv) An object should be stepwise processed at several 
working areas related to the conveyor; having been 
processed at a certain working area it should come to 
another one but more working areas can perform the 
next step of processing; what working area should be 
chosen for the next step (note that the state of a 
working area can change during the time when the 
object is transported to it)? 

(v) A similar problem of choice exists for objects that 
are waiting according to decision mentioned in (iii). 

The conveyor was simulated so that the questions (i)-
(v) were solved by the help of simulation [23,24]. 

Other simulation of logistic systems was oriented to 
public personal transport in a district, with respect to 
passengers who combine the bus lines according to 
their imagining of instantaneous possibilities [25]. Re-
lating to it, also demographic development was simu-
lated with respect to consulting centers equipped with 
simulation models that allow the citizens to anticipate 
the region development. In the last months, at Ostrava 
University one approached to a project of  reconfigur-
able information systems design (and therefore of 
their simulation, too), where four levels exist: one of 
them introduces fuzzy mathematics, the next one 
introduces control of simulation studies and related 
data files, the third one concerns the simulation mo-
dels and the level of nested simulation models that 
enable automatically to anticipate the consequences of 
the intended reconfiguration is at the bottom [26]. 

 

Fig. 4 

 

Fig. 5 
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