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Abstract

While the term object-oriented programming (OORjleg down the paradigm of classes as
encapsulations of data and methods (proceduresgjadization of classes (subclasses) and
virtuality of the methods (late bindings), there &urther offers related to OOP but enhancing
it in essential way; they are sometimes called sopgct-oriented programming (SOOP).
Curiously, SOOP arose with OOP and rooted moretlyigh simulation than OOP itself.
Nowadays, after 40 years of existence of both pgnagl one can observe essential contribut-
ions of SOOP, among which there is simulation ¢dlligent systems having elements (com-
puters, persons) that create and use their “pfiateulation) models for decision support;
that allows deciding with respect to possible fataonsequences. The properties that enrich
SOOP above OOP will be in detail explained (namidly:rules, block structure, classes local
in other classes and in blocks, and quasi-paradietrol), their relation to general aspects of
computer simulation (namely to the process parafigith be exposed and existing applicat-
ions will be presented. The participants will getree and efficient PC implementation of
SIMULA programming language, in which particulaaexples will be formulated.

Keywords: Object-oriented programming, Super-objectoriented programming, Simula,
Intelligent systems simulation.
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. Note that multiplying of a cell is considered itficam

1 Prehistory of OOP that the multiplying cell generates and activates
1.1 Process-oriented simulation languages another cell and repeats its life rules from thartst

) . _ The states are interpreted as sets and it allogvsr-
The is a common understanding that programmingquycing a model of an appliance tracing the nusiber
simulation models can be made easy so that insteadyf the cells in various states any time divisibyekb
description what should happen in the simulating ) ) _
computer one describes what should happen in tMdlile true do begin hold(K); outint(cardinal(S),5);
simulated system such a description in a suitable $utint(cardinal(G),5); outint(cardinal(M),5); nextle
mulation language can be automatically converted in€nd;

an executable program. Angl it was not later than e languages following the principles (A)-(F) are
1961, when the author of simulation language GPSgjled process-oriented smulation languages. They
[1] realized that the dynamics of simulated diseretyiffer from the event-oriented simulation languages.
event systems can be described as a result ofi@daralt one wishes, he can use a process-oriented lgegua

processes, each of them having some daadtributes) a5 an event-oriented one, but in the opposite Way t
and being subjected to iige rules that can be expres- g not possible.

sed by tools for controlling algorithms; procesgéth
similar attributes and life rules belong to commor.2 Hoare’s Data Structures

classes. The life rules function in time flow common One of the authors of SIMULA. O.-J. Dahl. was iavit
for all processes; therefore, at @ mono-processdY p o to take a lecture [5] at the NATO Summer School
grammed computer, they are interpreted as switching, programming languages [6]. There he met another
one to another according $oheduling statements. lecturer, C. A. R. Hoare who spoke [7] on hieracehi

The rather primitive programming tools of GPSS weréata structures, introducing the following prineigi

elevated up to the common state of the 60 years alqg)  data structure is composed of data, idehtfia
rithmization practice in 1964 in SOL [2] and espéCi according to their names; any component of such a
ly in 1965 in SIMULA [3]. They can be characterizedsyyciure has its type, either a conventional seal{

by means of the following principles: integer, Boolean, text etc.) ceference one;
(A) the classes are fprmulated as encapsulation @fyy the data structures anestances of classes, which
attributes and life rules; serve as definitions of the names and types of thei

(B) similarly as variables local in blocks on ALGOL components; in a class, any reference componest get

60 [4] or in procedures and in program modules, thés qualification, i.e. a classQ; the values of that
attributes have names and types; component have to be either “none” or instanceg;of

(C) in the life rules, the sorts of the statementsich (1) if X'is a name of a data structure which has compo-
exist in common algorithmic languages (assignmentg8entY, then thedot notation allows to express “com-
branchings, cycles, ...), are feasible; ponentY of data structurX”; dot notation can be iter-

. ) ated; e.g. ifY is a reference component qualified into
(D) scheduling statements can be among the lifestul ¢|ass that has a componéhtthenX.Y.Zis meaning-
where they can mean e.g. “hold until the simulateg)-

time accesses a given value” or “hold until a sidoa ' _
continuing comes”; (J) asubclass C of a classD can be introduced by

) ] explicit formulating that all components Dffigure as
(E) procedures (subroutines, functions) can beadec! ose ofC, too; while C can have other components
ed in classes so that the life rules of a classc@in hat have no origins d; an instance o€ is also an

them; instance ofD; D is calledprefix or superclass of C
(F) a class is a source for generatingances; their  forming a subclass d is calledspecialization of D;
number is a priori unlimited. (K) any class is open for any number of its inséanc
Let a class satisfying (A)-(F) be callgeclass in the and for any number of its specializations.

present paper. Let a class satisfying (G)-(K) be calldetlass.

Let us illustrate the life rules of a p-clasall of cells, _ _ _
which passes through three stee& andM, in each 2  Step to object-oriented programming
of them remains during a time, the duration of whic L

is a random value of normal distribution with mea%??niﬁze(g‘)i}](? ca:enr?ai(r(];;-(rﬁ)ﬁg];it:ifﬂugﬁples ofte
valueA and sigmd, and — after leaving staké — dies y '
(with a probabilityP) or multiplies (otherwise): (L) reference attributes can occur among the aitie

L: into(S); hold(normal(A,B,U))into(G); hold(normal of p-classes;
(A,B,U)); into(M); hold(normal(A,B,U)); if draw(P,J (M) the attributes of an instance of a p-class ban
then begin activate new cell; go to L end; identified by means of the dot notation;
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(N) the p-classes can be specialized similarlyhasdt [10], but at the same meeting an idea arose that wh
classes; beside adding new attributes, new lifesrulthis language offers was applicable outside sirarat

can be subjoined to those of the prefix, eithegrats too. After some years, OOP was really acceptechas a
last life rule or at a place explicitly marked tn i excellent paradigm of programming in a general

. , sense. Already since 1967, SIMULA independence of
According to Dahl's oral statements (and some pnt simulation has been reflected also in its principiet

SQEZ} ?sr ed%c:)r:/ggi_ngg})’thze pvé?\SciSIléz t(; I(-;(z;:r;e Is}'é;(;\/;f_éliminated the “absolute” impqrtanpe of the sc_hedul
| L ing statements for the switching (i.e. the ownirfg o
days, such Dahl’s statements reflect more his mydesswitching to the simulated time):
than the historical development. In fact, the sgsif ’
mentioned above does not lead to what was accept@l) For switching among the life rules, generalldoo
as an essential component of OOP and what was latailed sequencing statements are offered, while any
called methods. scheduling statement can be understood as a precedu
defined with use of them; some of such procedures a
offered as standard procedures but any SIMULA 67

user can define his own procedures for such a jgerpo

Note that the character of dot in the don notatioas
not need to be dot, but e.g. — like in Smalltakpace.

3 Object-orientation Another principle introduced in SIMULA 67 relates t
) . life rules, too:

A new step to OOP was performed by introducing the o ]

following two principles: (R) The goal of a transfer inside the life rules ¢

} ] virtual: among the life rules of a class, stateraar@n
(O) Procedures mentioned in (E) can be called byccyr that transfer the continuing of the instatiiée”

using dot notation. Later, such procedures weredtal o 5 statement that is not just yet among therlifes
methods and the statements for calls of them Wer%f the class but is expected to occur in some asicl

called messages. New methods can be added to sub-
classes. 4.2 Block structure and local classes

on the synthesis mentioned above, but not yet-suf@orithmic tools upon those of ALGOL 60 [4], which
cient. The next step concernkete bindings: was a perfect block-oriented language. Soon after
) ) 1967, block orientation was condemned by the gurus
(P) The contents of a certain procedure introddoed of programming theory, because it seemed being in
a class can be (re)formulated in any subclass; auchontradiction with the paradigm of modular program-
procedure is calledrtual. ming, which was modish in the seventies and eightie

Virtuality became the last principle for charactarg ~ ©Of the last century. Even after omitting that pagad
what is callecbbject-oriented programming. Summa- the ignorance of the importance of blocks remained
rized, this programming paradigm is based on ctass@nd therefore it was not sooner than in the presemt

as encapsulations of attributes and methods. tury when this importance is slowly penetratingoint
the programmers’ and simulationists’ minds, disceve

_Ahiart_Ar : ing a fascinating synthesis with the object oritata
4 Super-object-oriented programming The synthesis roots in the fact that a declaratiba
4.1 Simula 67 class has the same context as any other declgrdtion

The new language, i.e. the old SIMULA enriched b)?an be characterized by the following principles:

aspects mentioned under (G)-(P) (and by other todlS) similarly as variables and subroutines local in
described further as (Q)-(U)) was called SIMULA 67 blocks occurring in the former block-oriented laagu
Although it was the first OOP language, sinceiitstf ges, SIMULA 67 admit classes to be local in blocks;
international presentation in [10] SIMULA 67 hasthe true block orientation views entities with teme
offered more than that covered by term OOP; namefyames but local to different blocks as differertiteEs

life rules and their mutual switching (see prinel (their homonymy has no importance);

(C) and (D)) enriched the supply of the OOP tOOIS(’I’) classes can be declared like attributes folaasc

Note that they offer SIMULA 67 as an excellent pro'then it is calledmain class and the mentioned classes

Ce;i'grfg:dtg'rgggiiionmfr?gl:ﬁg;’ g: I_eg]soirr? dfbgrlfd are callechested classes; the instances of a main class
y PENAEiMresent world viewings, formal theories, models o

process-oriented languages. The simulationists qurmal languages, while the nested classes regresen

3:‘? dltodgpngnstgereilTiargeas dtgor;soet 222g'?§?§mcgncepts or knowledge applied in that world viewging
. ) guages, 1.e. Y : eories, models and languages; two instanceseof th
lize their models under a paradigm of event-orignte

. . same main class can represent two different vitiseat
programming (.see the end of part 1.2), i.e. tordgst same “world”, two different models of the same
the processes into heaps of events. object, judgments pronounced by different observers
The first presentation of SIMULA 67 appeared at &f the same object, or two theories differing bgith
conference on the simulation programming languaggsrameters;
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(U) the contents of a class can be introduced &tothe same modeX of whichY is a component) and the
block by prefixing it by the class; such a bloclc&-  small circles represent elements of sysigrar their
led prefixed block; if the “life” of an instance o€ en-  images, i.e. components of model
ters a block prefixed by a main class the instaree ) o
comes a model of something that enters its lifespha !N such a case, one says that maflislnested inside
enriched by an ability of a world viewing (thinking X @nd one speaks arested modeling or — if M andm
expressing, modeling) using the contents of thenmaferve for simulation — onested simulation. If M is
class; if the lives of more instances®@fre in such a Similar tom an instance likg/ can be an image of an
phase they can apply their own attributes whengusirflement that has ability to observe its environnient
the contents of the prefixing class. e. systenf) in that it is being, to reflect the observed
. ) . i . pieces of knowledge in model of the environmeny,of
Rational synthesis of block orientation and objecing to apply it e.g. for generating information tbe
orientation needs the process orientation. Thesfefi  fyture ofS In such a case (i.e. in this special case of

this syn'.[hesis.form a programming paradigm calledested modeling), one speaks raflective modeling
super-object-oriented programming (SOOP) [11-12]. o reflective simulation

Suppose a blocB occurs among the life rules of class
C nested inside main class; suppose further a main| S > X(M)
classyis local inB; an instance of M can be viewed
as a model of a syste@ described byM, and an
instanceY of C can be viewed as an image of g
componenty of S, WhenY entersB it reflects thaty
has got an ability to model (or “think on”) systesm
expressed by means gf If Y generates an instanée
of w it reflects thaty manipulates with a modéel of a
certain systena.

Such a situation is outlined in Fig. 1, where sgqaar
represent instances of a main class, circles reptes
instances of the other classes, a horizontal inci
represents the “life” (flow of performing life rug of
the instance represented by the surrounding cjreles
rectangle with rounded edges represents a block &
the relation of nesting a graphical constradhside
another one w represents that the object reprasen
by z is local to that represented ty(in other words: : - -
that the object represented byas access to that re- Fig. 2 Reflective modeling
> - . . .. . .
e o ot e s vt F1: 215 8 SOOI U0 f s s
represent elements existing in the same sys&m mulation — when modeE exists its elements can

. , . .. .communicate with corresponding elements of madel
whereyexists (or images of their elements, existing Ir?see the dashed arrows) and even both the models ca

communicate (see the full arrow).

S> XM

™M y>Y(C) @ There is a small number of programming languages

that satisfy some principles leading from OOP to

SOOP. For example MODSIM [13] and NEDIS [14]
are object-oriented and process-oriented simulation
languages, i.e. languages satisfying — among ether
(C) and (D), but not (Q) — (U). JAVA is block-orien
ed but its tools that should draw near principl¢ &@
rather wooden.

Only SIMULA 67 [15] and Beta [16] appear to satisfy
all the mentioned principles. The syntax rules efaB
are rather strange and separate it from current use
When SIMULA 67 became an ISO standard in the
eighties of the XX century [17], the increment 6&sw
refused, as the old simulation language SIMULA fell
into oblivion, being replaced by SIMULA 67 at its
hitherto users. The syntax rules of SIMULA (67) dav
followed usual customs and therefore it is suitatda
base for starting with SOOP; another advantage of

(e N

Fig. 1 Nesting of models
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SIMULA is that a lot of experiences were obtained class the name of that “superclass” is to beiput
with it, which allows solving many obstacles rethte front of wordclass

to the fact that the synthesis of block structuiithw
object orientation leads to something like nesfimg
mal theories (or like formal theories, the elemédras-
dled by which can be carriers of other theoriegpte Assignment statement is like a:=b for assigning value
that some discoveries how to make something whatto variablea, or like a:-b for assigning referendeto

had been considered as unfeasible, came afteiofensa. At the right part of such statements, expressuams
years of the language analysis [18]. Another prigperoccur. Common usages for arithmetic expressions are
of SIMULA, which appears especially suitable forrespected, Boolean operations are expressed by key
programming models, is its complete separation fromords likenot, and, or,... relations serve for comput-
what could happen inside the used computer: althou¢ng Boolean values from numerical, character amel te
that makes problems when one would wish to applyial ones, and conditional expressidnb(then x else
SIMULA for programming of some software deeplyy) serves for the opposite conversion. Constants and
concerning the computer run (e.g. an operatiofunction calls are permitted, too. A lot of stardiar
system), that allows this language to be safelyi@pp functions exist likesin, In or log10, and among them
able for knowledge representation on such models athere are those for generating pseudorandom values.
for model portability. Last but not least, SIMULA
serves well because there are real applicationis of
highest principles.

The life of a block is described as a sequence of
statements. Examples of statements:

Procedure statement has a usual forrk(a,b,c) where
an expression of formR.F can occur in place d¥, tel-
ling that proceduré should be performed by the ob-
ject pointed byR (R can a more or less complex refer-
ence expression, possibly in brackets).

5.1 Common rules Branching is expressed by a statement likb then S

The fundamental concept of SIMULA iblock Orif b then S else,Twhere b is a Boolean expression
instance. It is a Component of Computing proceSS,and after instantaneous evaluation of |t, staterBast
which has itdocal entities and itslife. It is described Performed in case the evaluation gives (logical I).
astextual block, which is closed in “bracketdiegin In the opposite case (if the evaluationbajivesfalse
andend and composed of two parts, which describeke- logical O), the second form of the statemestt p
the local entities and the life. The first part as Mits performing the statement followiefse

sequence ofdeclarations. The following sorts of yeytyal block (see above) is a sort of statemedt an
declaration are important: variable declaratiomcgfr  ~5n occur among the life rules. A text that is Emi
dure declaration and class declaration. but contains no declaration afteegin is calledcom-
Variable declaration has form likereal x, a, ww Pound statement and serves for gathering statements

which tells that variableg, a andww can be viewed to figure as one statement.

as carrying real values; in place wfal, other key jumpsin the sequence of the life rules is allowed by
words can occur likéenteger, Boolean characterand performing a statement of forgo to L, wherelL de-
text Reference declaration is another sort of variable oies the target of the jump; the place of theetaig)
declaration; its form is likeef(C) q, s whereC is a  given py “label” of formL followed by a colon. It is

class and the declaration tells tiggands either may o; possible to jump inward a statement, therefore
point to an instance of clags (or its subclass) or t0 aither inward a block.

nothing (identified asong

5 SIMULA

o ) . Other SIMULA sorts of statements (like cycles) éxis
Procedure declaration is composed of its heading andy, ;i their explaining is omitted in this paper. L

body. Theheading has a form Iikeproceglure Gor express the general rudders.

procedure F(u,w); real w; text untroducing proce-

dures calleds andF, G being without parameters and The users give names to the entities they introduce
F with two parameters, specified as text and reakon using identifiers that begin with a letter that can be
Other components can be in the heading, concernif@jlowed by any letters, digits and sign of undeeli

the style of calling. A procedure can be a funciioa The identifiers have to differ from the key wordsl
gives a result and can be called in expressiohs)) t hames of variables, procedures, classes and labels
the type of the result is defined in front of kepry  should follow these rules.

procedureby using the same key words as in thg ot ¢ pe 4 class declaration. In the statements occur-
variable declarations. Thieody of a procedure is any g in it (i.e. in the life rules of the class aimdthose
statement (see further), nevertheless it is ofteloek. any textual block nesting in this declaratiorg(én

Class declaration is similar, only in place oproce- procedure declarations), the expresdiois C (called
dure a key wordclassoccurs and some other possibilocal reference) points to the instance @&, which is
lities are offered for the heading (e.g. specifarag of just performing the statement where the local refer
virtual entities). If the introduced class is a glags of €NCE OCCUrs.
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If we introduce a common concept phrase for cogerin(9) Let T1 and T2 be two different textual blocks so
the statements and the declarations, then it isilples that in each of them an entity with a certain commo
to state that the phrases should be separated tgmeXis declared. IAi (i=1,2) are block instances of
semicolons. Note that the statements that arediss  Ti, thenX of Al is quite different fromX of A2, even
of a textual block should follow the declaratiorigtee  in caseTlis a part off2.

same textual block. Let X(i) (i=1,..., k) be a sequences of block instances

5.2 Block orientation so thatX(i+1) is attached tX(i) for i=1,...k—1 Then

Every block instance has isogram sequence cont- th(el)sequence is calledperation chain with head
rol (PSC), which points to the life rule that is to be

performed. PSC is important when another block in®.3 Detach and call statements

tance arises or disappears. The dynamics of ride
disparition of block instances respect the follogvin
rules.

a"Phere is a are statement calléetach looking like a
standard procedure, which any class instance can
perform. LetX be such a class instance, attached to a

(1) The program has a form a textual block and thielock instanceZ, and let it be the last element of an

corresponding block instance exists during the wholoperation chaif®1. During performing its life rules

existence of the corresponding program rum. can enter blocks, call procedures and generatetsbje
and so a more or less long operation crathwith
headX can developO2 develops as a continuation of

O1. Suppose that during performing its life ruldws t

last elementY of O2 meets statemendetach and

determines that it iX that should perform it. Than the
whole operation chai®2 is really detached fror®1

(3) When the life rules belonging to block instardce and exists as an isolated operation chain. The &fSC

enter a procedure call, a block instakteorrespond- Y is set after theletachstatement and the computing

ing to the body of the called procedure arises iand returns to the PSC df (see Fig. 3, left). AlthouglX
attached toJ. More exactly:H is called procedure  might perform its life rules it becomes “dormant”.
instance. PSC of] is set to the step that should follow
the procedure call.

(2) When the life rules belonging to a block instd
enter a textual blocB a block instanc& correspond-
ing to B arises and iattached to J. More exactlyK is
called subblock instance. PSC ofJ is set to the
statement that followB.

Let V be the head of operating ch&3 — in general
different from O1l. Suppose sometimes later the last

(4) When the life rules belonging to block instadce
enter an expression likeew G whereC is a name of a

class, a block instand® corresponding to the body of (®‘X.detach @
the declaration of clasS arises and is attached Jo N
More exactly,G is calledclass instance. PSC ofJ is
set to the step that should follow the genera@gh \
custom exists to speak ambject in place of class
instance, orattributes in place of local variables and 02<
on methods in place of procedures.

-
I

l

(5) When a block instanc¥ arises, the computing
switches to the necessary administrating of it tuech
it goes on according to the life rulesXf SupposeX
is attached t&. When the “life” ofX is exhausted the
computing switches to place of the life rules Yf
pointed by PSC of. call(X) !

(6) Only class instances can get names (for example
by means of assignmeRt-new §. The subblock in- | o1
stances and those of procedures become inaccessiple

~

1
I
I
I
I
I
I
1
L}
|

—

as soon as they exhaust their “lives”.

(7) In a textual bloclA that is among the life rules of a o3<
textual blockB, the entities accessible Bhare acces- \
sible. The same holds whénis a body of a procedure
or of a class declared B

(8) If A and B are two block instances generated
according to the same textual bloEkhe sets of their
local entities are quite different. In other wordsX is
declared inT thenX of A andX of B are entities as
different as if they would get different names. Fig. 3
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elementW of O3 should perform statemergll(X). P.run— activateP immediately,

This statement has also a form of standard proeedur P.run_at(T)- activateP at (simulated) timé&,

with one argument that can point to any class int&a P.run_after(Q)— scheduleP after Q performs its
ThenO3is joined withO1 so thatX becomes attached scheduled phase,

to W and the “life” ofV continues from the PSC of P.run_before(Q)- schedule? beforeQ performs
(see Fig. 3, right). its scheduled phase,

Statementgletach and call allow to declare a main etc.

class calledSIMULAT that makes SIMULA a simula- The scheduling develops dynamically — during the in
tion language, without neglecting its SOOP toolsterval between scheduling a process and the perform
SIMULAT contains functiortime that gives the value ing of its life rules the scheduling can be modifie.g.

of simulated time, and clagsocessthat allows every by

instance of its subclasses to manage its life rinles-
lation to simulated time. Namely, the following pes
dures like those in table 1 are for disposal.

cancel(P)- P it is passivated even if it has been
scheduled for some future (simulated) time,

P.rerun_at(T)— P is scheduled for (simulated)
5.4 Simulation tools time T, even in case it was scheduled for some other

An integral component of SIMULA is a standard clas€¢cas1on-

SIMULATION although it is very suitable for conven-A consequence of the fact that detaching and cgllin
tional simulation it makes great difficulties foesting manipulate with the whole operation chain, is it
simulation. The obstacles root in the fact thahgshe scheduling statement related to an instaRe# class
mentioned class prohibits models to get names.eFhelC can occur in any procedure, subblock and evers clas
fore serious obstacles arise when one should exprewsted inside the declaration ©f (SIMULA allows
that a state of simulation mod&lshould be copied as more but its description would overpass this tatri

initial state of another mod@, namely ifB is nested

nside an clement of mode. Alhough - lter 25 L% 0% & oSS SLLAT Thennew Ccouses

years of working with SIMULA — technique to sur- . : : y i ;
gglonglng to a certain process caltedin scheduling

mount the obstacles was discovered [18], it deman tements can be amond them and other Drocesses
the users to do rather sophisticated steps. A thetfg 9 P

implement thanSIMULATION was discovered (note rcanreas,(g:]\gt:ta{trt tc?fl auz:nmglﬂzlt?c;:\ug(' eertifr.\;t- réz\g n(i:
that that happened not sooner than in 2005). ThigP P e

implement is a main class call&MULAT, it is com- :Za(\:/cég((:jlu(%?t%nwtr:er;c;[?ssgiﬂwngfo;htﬁehfo(;ul%?c?f
pletely based on the pair @lll/detach statements y 8 y '

mentioned in the preceding subsection. gl:gltieergheless, the attributes and method® @bn be
In classSIMULAT, the switching among the life rules
is overviewed by a hidden objekt that elaborates a
“calendar of events”, i.e. a list of all elemenkatt Suppose a systeBis to be modeled and suppddds
demand to work when the simulated time accessest® main class of the models ®fSuppose that in case
certain valueH scans the calendar and according tthe models are simulation onég,is formulated as a
the items read at its beginning assigns simuladted t subclass oBIMULAT. Then it is possible to introduce
and stepwise calls the elements that just caméte s a nameR of the model by a declaratimef(M)R A

of influencing the computation by continuing to percreation of the model can be expressed by statement
form their life rules. When the life rules of suah like R:-new M (Note that if SIMULA standard class
element lead to a decision to wait, the elementsenSIMULATIONwere used in place GIMULAT, such

the corresponding information tél and performs a statement would lead to errors).

detach The elements that can be governedhin the
mentioned manner are called processes and ar@-inst

ces of class calleprocesgmore perfectly, of subclas- :je_ﬂ%ctgo_l ?S <t:Iasses neste(:\m_w aITh? elemtents car|1 _be
ses of clasproces}. It is to note that the life rules of ivided into two groupsinaterial elements (usual in

the simulation model itself behave in the manner fses of a conventional simulation) ahhking ones.
pl

5.5 Nesting models

gupposes contains elements. Their sorts would be

the model would one of the processes (a princi he last sort of elements can cover e.g. a comsater

realized already in clasiIMULATIONand in the best that (it has certain phases of its "life” duringattit

discrete-event simulation languages of the history) processes data obtalned.at Its enwronmen_tS_mo
that the results of computing can be applied itrircs

The switching among the life rules of the processes tions given to the elements & The computing can
programmed by means of scheduling statements, likase a mode¥ of something that could be described by

hold(T)— interrupt until (simulated) time grows up & certain main clagg Especially,& could be a simula-

of T tion model, possibly influenced by the instantarseou
passivate— interrupt until a signal of activation Stat¢ OfS. In a special cas; could be a model d§
comes, itself, but a bit different fronX. One of the differences
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can be tha¥ does not reflect the thinking element(s)u contain the identical declarations (namely of <las
of S. Let us concentrate to such a case. ses) there is no relation between classes of thee sa

. names — they figur having different names..
Instead of a computer, a human can represent k-thin ames ey figure as having different names

ing element. Human is able to think and to use corfhat protects SIMULA against an error callezdns-
cepts (i.e. something like classes) when it thiks:  plantation, the substance of which consists in assign-
man is able to imagine the future and accordingly ting a name reserved inside a main class, to aanost
decide. WherS is automated, such a human can bef the class existing in another main class. Also a
replaced by a computer, the human's thoughts couluplicit assigning of a name can be of this sorg.(e
be mapped as a modeling phase of the computer anéhserting an element of a certain model into a gueu
especially — if the thinking consists in imaginibgan belonging to another model) and is automatically re
be replaced by simulation performed at the same cofected in SIMULA programs.

puter. SIMULA allows separate compilation of classes. If

A similar process comes when such a sysBgover- such a class is needed in a certain textual blook,
ned by person(s) should be simulated. In this casputs there itexternal declaration (like external class
such a person is represented by an image of a model). The compiled program behaves in the same
ing computer, which becomes simulating when refleananner like if the detailed declaration of the slas
ting that the person is imagining; note that sueteyz would be copied at the place of the external datlar
can be also a test whether (and how) the diffembitt  ion. But SIMULA linker is so organized that when
ities of computing technique could replace humans. two or more external declarations of the same dkass
ceur at the same source text only one object file
Eelonging toG is processed and linked, although it
behaves like to be particularly linked to each foé t
declaration of a clags of thinking ones. The life rules rientioned places.  That essentially shortens the
) programs compiled from SIMULA (rather complex

of C may integrate the mstances(pﬁnto X, using all . models of “intelligent” systems do not need moranth
that is available in the declarations of the materi 200 KB)

classes and e.g. in the life rules of clisiself (there-
fore — among other — the scheduling statements that reflective simulationM and ¢ may differ only in
express a certain existence of the thinking elemenémall details (at least so thatdoes not introduce the
during the same time as the material ones, mayf beithage of the thinking elements). In such a case, a
use). common superclass can be declared and separately
compiled, then called by external declarationsvat t
block levels and at each of them specialized either

M or to i Note that the specialization gocan have
use of its textual environment that represents
specialization o5 to M.

Independently of whether the thinking elements al
computers or humans, clagsshould contain declara-
tions of the classes of the material elements and

The best way to reflect the phase of modeling ctaisi
in a blockB existing among the life rules @. That
block should contain a declaration of claS®f the
models and of a declaration of a name reservethéor
models, e.g. likeef(mu)xiand the statement like:-
new mu This statement generates the model and gives L
it namexi. Then the model runs and can detect th6 Examples of application
properties of the environment of its carrére.g. of
the images of the material elements) by means of O@r
notation whereX stands before — lik¥.car3.place(i.
e. place of element callezhr3 and existing in model
X), or — in a better way — with use of the locakref
encethis M.car3.placgsee the end of 5.1). So — under support of two projects of European com-
. . . mission [19,20] — the logistics of container yavass
Note thatthis mu.tlmecorr_esponds to th? (S'mu!at‘?d)simulated, where two tasks of anticipation for grdu
time of the model carried by the given thinkingyqing transport tools took place — establishing th
ele'ment, Wh'l,eth's M:t|mecorresp0nds to the tlme "?‘tshortest paths and testing its security againsflictm
which the given thinking element would exist inyny geadiocks in the labyrinth of passages suredind
by containers. The computing of the shortest paib w

large field for application is logistic, becaudere

e many systems where the transport is planned ac-
cording to the imagining how different variants ltbu
proceed.

systemS

5.6 Reflective simulation implemented according to the metaphor put down
) ) ) ) sometimes to Dijkstra and sometimes to Lee, and rea
What was explained in the preceding subsectioreeori;eq as a simulation model of the metaphor, ifea 0

sponds in a full way to Fig. 1, where the mateeiat gy stem of branching, propagating and emulous pulses
ments are represented by c!rcles. enumerated btys.d|g|[5]_ The test on the computed path security wadémp

If we attempt to the reflective simulation we stbul ented by means of the reflective simulation, ngmel
meet something like that presented in Fig. 2. i®or 1 gimylation of what could happen if applying the
to understand the next explication it is suitabléake ompyted path: in case the simulation discoveratl th

into account what was expressed in statement (9) gfo application of the path passed without obssacle
subsection 5.2. In other words, if the main clslsand
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12 11 22
21

TIME: 374.9221

Fig. 4
the path was accepted, in case the simulationiseo (iii) An object comes to the conveyor in order te b
ed that application of the path could lead to aflezin processed at some of the working areas; the conveyo
(with another transport tool or with a containerame is rather occupied and, therefore, if the objeanan
while put at a place belonging to the computed )patldiately enters the conveyor it no working area ptze
the place of the conflict was marked by a fictiou it, the object performs a full cycle and returnsthe
container and a model of the mentioned metaphor watace where it entered the conveyor; how long shoul
applied; it gave another version of the shortetit,ges  the object wait out of the conveyor?
security was tested by reflective simulation etntil
a secure path was determined. The model is descri
e.g. in [21,22] and a snapshot of its on-line arioma

b@:v) An object should be stepwise processed atreg¢ve

working areas related to the conveyor; having been

can be seen in Fig. 4 where the simulation of trel y processed at a certain work_ing area it should came

is animated on the left while the tests with thertdst another one but more working areas can perform the
next step of processing; what working area shoeld b

path is on the right, the columns of containersrare
presented by fields with digits (denoting the numbeChosen for the next step (note that the state of a

of containers) and the triangles represent grouod-m \(’)Vgreké??s ?rganas c;?egk;gri]tg)]g during the time when the
ing transport tools. ) P '
(v) A similar problem of choice exists for objetkst

Another application concerned simulation of cwculaﬁre waiting according to decision mentioned in.(ii

conveyor tending several working areas and their e
vironment (see Fig. 5). The questions like theofel The conveyor was simulated so that the questigns (i
ing ones arise during the container operation: (v) were solved by the help of simulation [23,24].

skl ssscmmn sl lsssnnanl i

Other simulation of logistic systems was oriented t
public personal transport in a district, with respt®
"'=Il passengers who combine the bus lines according to
—| their imagining of instantaneous possibilities [28g-
— lating to it, also demographic development was simu
'“'“|EL1|"“““““““'}§:;H1||r““““'= lated with respect to consulting centers equippét w
simulation models that allow the citizens to amptite
Ei the region development. In the last months, ata®atr
g.5 . . . .
University one approached to a project of recanfig
able information systems design (and therefore of
their simulation, too), where four levels exist:eoof
them introduces fuzzy mathematics, the next one
introduces control of simulation studies and relate
(ii) If the decision in case of (i) is “to go oniould it ~data files, the third one concerns the simulatiao+ m
be better to Change the present techn0|ogica| progr dels and the level of nested simulation models that
(assigning the work arrays to steps of e|abora1tion?nab|e automatically to anticipate the Consequeotes
and if so, what change to choose? the intended reconfiguration is at the bottom [26].

(i) A failure came to a certain working area; wigt
better, immediate stop of the system and repattieg
error, or going on with a limited number of the \wor
ing areas?
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