
SUPER-OBJECT-ORIENTED PROGRAMMING AND
MODEL NESTING

Eugene Kindler

University of Ostrava, Faculty of Science,
701 03 Ostrava, 30. dubna 22, Czech Republic

ekindler@centrum.cz

Abstract

While the term object-oriented programming (OOP) settled down the paradigm of classes as
encapsulations of data and methods (procedures), specialization of classes (subclasses) and
virtuality of the methods (late bindings), there are further offers related to OOP but enhancing
it in essential way; they are sometimes called super-object-oriented programming (SOOP).
Curiously, SOOP arose with OOP and rooted more tightly in simulation than OOP itself.
Nowadays, after 40 years of existence of both paradigms, one can observe essential contribut-
ions of SOOP, among which there is simulation of intelligent systems having elements (com-
puters, persons) that create and use their “private” (simulation) models for decision support;
that allows deciding with respect to possible future consequences. The properties that enrich
SOOP above OOP will be in detail explained (namely: life rules, block structure, classes local
in other classes and in blocks, and quasi-parallel control), their relation to general aspects of
computer simulation (namely to the process paradigm) will be exposed and existing applicat-
ions will be presented. The participants will get a free and efficient PC implementation of
SIMULA programming language, in which particular examples will be formulated.

Keywords: Object-oriented programming, Super-object-oriented programming, Simula,
Intelligent systems simulation.

Presenting Author’s biography

Eugene Kindler studied mathematics at Charles University in Prague, concluding
with grades of Doctor of philosophy (in logic), Doctor of sciences (in
theory of programming) and (from Czechoslovak academy of sciences)
Candidate of sciences in physics/ mathematics. At Prague Research Insti-
tute of Mathematical Machines (1958-1966), he participated at the design
of the first Czechoslovak electronic computers and designed and imple-
mented the first Czechoslovak ALGOL compiler for it. At Biophysical In-
stitute at the Faculty of General Medicine of Charles University (1967-
1973), he designed and implemented the first Czechoslovak simulation
language and then introduced the object-oriented programming into Cze-
choslovakia. Nowadays, as professor emeritus of applied mathematics, he
teams up with Ostrava University. As visiting or invited professor, he
worked at the University in Italian Pisa, at West Virginia University in
Morgantown, at the University of South Brittany in French Lorient and at
University of Blaise Pascal in French Clermont-Ferrand. His main interest
is simulation of systems containing elements that use simulation models.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 1 Copyright © 2007 EUROSIM / SLOSIM

1 Prehistory of OOP

1.1 Process-oriented simulation languages

The is a common understanding that programming
simulation models can be made easy so that instead of
description what should happen in the simulating
computer one describes what should happen in the
simulated system such a description in a suitable si-
mulation language can be automatically converted into
an executable program. And it was not later than in
1961, when the author of simulation language GPSS
[1] realized that the dynamics of simulated discrete
event systems can be described as a result of parallel
processes, each of them having some data (attributes)
and being subjected to its life rules that can be expres-
sed by tools for controlling algorithms; processes with
similar attributes and life rules belong to common
classes. The life rules function in time flow common
for all processes; therefore, at a mono-processor pro-
grammed computer, they are interpreted as switching
one to another according to scheduling statements.

The rather primitive programming tools of GPSS were
elevated up to the common state of the 60 years algo-
rithmization practice in 1964 in SOL [2] and especial-
ly in 1965 in SIMULA [3]. They can be characterized
by means of the following principles:

(A) the classes are formulated as encapsulation of
attributes and life rules;

(B) similarly as variables local in blocks on ALGOL
60 [4] or in procedures and in program modules, the
attributes have names and types;

(C) in the life rules, the sorts of the statements, which
exist in common algorithmic languages (assignments,
branchings, cycles, …), are feasible;

(D) scheduling statements can be among the life rules,
where they can mean e.g. “hold until the simulated
time accesses a given value” or “hold until a signal for
continuing comes”;

(E) procedures (subroutines, functions) can be declare-
ed in classes so that the life rules of a class can call
them;

(F) a class is a source for generating instances; their
number is a priori unlimited.

Let a class satisfying (A)-(F) be called p-class in the
present paper.

Let us illustrate the life rules of a p-class cell of cells,
which passes through three states S, G and M, in each
of them remains during a time, the duration of which
is a random value of normal distribution with mean
value A and sigma B, and – after leaving state M – dies
(with a probability P) or multiplies (otherwise):

L: into(S); hold(normal(A,B,U)); into(G); hold(normal
(A,B,U)); into(M); hold(normal(A,B,U)); if draw(P,U)
then begin activate new cell; go to L end;

Note that multiplying of a cell is considered in a form
that the multiplying cell generates and activates
another cell and repeats its life rules from the start.
The states are interpreted as sets and it allows e.g. int-
roducing a model of an appliance tracing the numbers
of the cells in various states any time divisible by K:

while true do begin hold(K); outint(cardinal(S),5);
outint(cardinal(G),5); outint(cardinal(M),5); nextline
end;

The languages following the principles (A)-(F) are
called process-oriented simulation languages. They
differ from the event-oriented simulation languages.
If one wishes, he can use a process-oriented language
as an event-oriented one, but in the opposite way that
is not possible.

1.2 Hoare’s Data Structures

One of the authors of SIMULA, O.-J. Dahl, was invit-
ed to take a lecture [5] at the NATO Summer School
on Programming languages [6]. There he met another
lecturer, C. A. R. Hoare who spoke [7] on hierarchical
data structures, introducing the following principles:

(G) a data structure is composed of data, identifiable
according to their names; any component of such a
structure has its type, either a conventional one (real,
integer, Boolean, text etc.) or reference one;

(H) the data structures are instances of classes, which
serve as definitions of the names and types of their
components; in a class, any reference component gets
its qualification, i.e. a class Q; the values of that
component have to be either “none” or instances of Q;

(I) if X is a name of a data structure which has compo-
nent Y, then the dot notation allows to express “com-
ponent Y of data structure X”; dot notation can be iter-
ated; e.g. if Y is a reference component qualified into
class that has a component Z, then X.Y.Z is meaning-
ful;

(J) a subclass C of a class D can be introduced by
explicit formulating that all components of D figure as
those of C, too; while C can have other components
that have no origins at D; an instance of C is also an
instance of D; D is called prefix or superclass of C
forming a subclass of D is called specialization of D;

(K) any class is open for any number of its instances
and for any number of its specializations.

Let a class satisfying (G)-(K) be called d-class.

2 Step to object-oriented programming

The sets (A)-(F) and (G)-(K).of the principles offer to
be included in a certain synthesis of them.

(L) reference attributes can occur among the attributes
of p-classes;

(M) the attributes of an instance of a p-class can be
identified by means of the dot notation;

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM

(N) the p-classes can be specialized similarly as the d-
classes; beside adding new attributes, new life rules
can be subjoined to those of the prefix, either after its
last life rule or at a place explicitly marked in it.

According to Dahl’s oral statements (and some printed
ones, as e.g. in [8-9]), he was due to Hoare and his
paper for discovering the principles of OOP. Nowa-
days, such Dahl’s statements reflect more his modesty
than the historical development. In fact, the synthesis
mentioned above does not lead to what was accepted
as an essential component of OOP and what was later
called methods.

Note that the character of dot in the don notation does
not need to be dot, but e.g. – like in Smalltalk – space.

3 Object-orientation

A new step to OOP was performed by introducing the
following two principles:

(O) Procedures mentioned in (E) can be called by
using dot notation. Later, such procedures were called
methods and the statements for calls of them were
called messages. New methods can be added to sub-
classes.

It was an essential step to OOP, logically independent
on the synthesis mentioned above, but not yet suffi-
cient. The next step concerned late bindings:

(P) The contents of a certain procedure introduced for
a class can be (re)formulated in any subclass; such a
procedure is called virtual.

Virtuality became the last principle for characterizing
what is called object-oriented programming. Summa-
rized, this programming paradigm is based on classes
as encapsulations of attributes and methods.

4 Super-object-oriented programming

4.1 Simula 67

The new language, i.e. the old SIMULA enriched by
aspects mentioned under (G)-(P) (and by other tools
described further as (Q)-(U)) was called SIMULA 67.
Although it was the first OOP language, since its first
international presentation in [10] SIMULA 67 has
offered more than that covered by term OOP; namely
life rules and their mutual switching (see principles
(C) and (D)) enriched the supply of the OOP tools.
Note that they offer SIMULA 67 as an excellent pro-
cess-oriented simulation language, or – more precisely
– as a base to define many more or less independent
process-oriented languages. The simulationists who
use it do not suffer similarly as those applying stan-
dard OOP languages, i.e. they do not need to forma-
lize their models under a paradigm of event-oriented
programming (see the end of part 1.2), i.e. to destroy
the processes into heaps of events.

The first presentation of SIMULA 67 appeared at a
conference on the simulation programming languages

[10], but at the same meeting an idea arose that what
this language offers was applicable outside simulation,
too. After some years, OOP was really accepted as an
excellent paradigm of programming in a general
sense. Already since 1967, SIMULA independence of
simulation has been reflected also in its principle that
eliminated the “absolute” importance of the schedul-
ing statements for the switching (i.e. the owning of
switching to the simulated time):

(Q) For switching among the life rules, general tools
called sequencing statements are offered, while any
scheduling statement can be understood as a procedure
defined with use of them; some of such procedures are
offered as standard procedures but any SIMULA 67
user can define his own procedures for such a purpose.

Another principle introduced in SIMULA 67 relates to
life rules, too:

(R) The goal of a transfer inside the life rules can be
virtual: among the life rules of a class, statements can
occur that transfer the continuing of the instance “life”
to a statement that is not just yet among the life rules
of the class but is expected to occur in some subclass.

4.2 Block structure and local classes

Like the old SIMULA, also SIMULA 67 based its al-
gorithmic tools upon those of ALGOL 60 [4], which
was a perfect block-oriented language. Soon after
1967, block orientation was condemned by the gurus
of programming theory, because it seemed being in
contradiction with the paradigm of modular program-
ming, which was modish in the seventies and eighties
of the last century. Even after omitting that paradigm,
the ignorance of the importance of blocks remained
and therefore it was not sooner than in the present cen-
tury when this importance is slowly penetrating into
the programmers’ and simulationists’ minds, discover-
ing a fascinating synthesis with the object orientation.
The synthesis roots in the fact that a declaration of a
class has the same context as any other declaration; it
can be characterized by the following principles:

(S) similarly as variables and subroutines local in
blocks occurring in the former block-oriented langua-
ges, SIMULA 67 admit classes to be local in blocks;
the true block orientation views entities with the same
names but local to different blocks as different entities
(their homonymy has no importance);

(T) classes can be declared like attributes for a class;
then it is called main class and the mentioned classes
are called nested classes; the instances of a main class
represent world viewings, formal theories, models or
formal languages, while the nested classes represent
concepts or knowledge applied in that world viewings,
theories, models and languages; two instances of the
same main class can represent two different vies at the
same “world”, two different models of the same
object, judgments pronounced by different observers
of the same object, or two theories differing by their
parameters;

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 3 Copyright © 2007 EUROSIM / SLOSIM

(U) the contents of a class can be introduced into a
block by prefixing it by the class; such a block is cal-
led prefixed block; if the “life” of an instance of C en-
ters a block prefixed by a main class the instance be-
comes a model of something that enters its life phase
enriched by an ability of a world viewing (thinking,
expressing, modeling) using the contents of the main
class; if the lives of more instances of C are in such a
phase they can apply their own attributes when using
the contents of the prefixing class.

Rational synthesis of block orientation and object
orientation needs the process orientation. The fruits of
this synthesis form a programming paradigm called
super-object-oriented programming (SOOP) [11-12].

Suppose a block B occurs among the life rules of class
C nested inside main class M; suppose further a main
class µ is local in B; an instance X of M can be viewed
as a model of a system S described by M, and an
instance Y of C can be viewed as an image of a
component γ of S. When Y enters B it reflects that γ
has got an ability to model (or “think on”) system σ,
expressed by means of µ. If Y generates an instance ξ
of µ it reflects that γ manipulates with a model ξ of a
certain system σ.

Such a situation is outlined in Fig. 1, where squares
represent instances of a main class, circles represent
instances of the other classes, a horizontal incise
represents the “life” (flow of performing life rules) of
the instance represented by the surrounding circles, a
rectangle with rounded edges represents a block and
the relation of nesting a graphical construct z inside
another one w represents that the object represented
by z is local to that represented by w (in other words:
that the object represented by z has access to that re-
presented by w). A > D(E) represents that A is model-
ed by an instance D of class E. The circles with digits
represent elements existing in the same system S
where γ exists (or images of their elements, existing in

the same model X of which Y is a component) and the
small circles represent elements of system σ or their
images, i.e. components of model ξ.

 In such a case, one says that model ξ is nested inside
X and one speaks on nested modeling or – if M and m
serve for simulation – on nested simulation. If M is
similar to m an instance like y can be an image of an
element that has ability to observe its environment (i.
e. system S) in that it is being, to reflect the observed
pieces of knowledge in model of the environment of γ,
and to apply it e.g. for generating information on the
future of S. In such a case (i.e. in this special case of
nested modeling), one speaks on reflective modeling
or reflective simulation

Fig. 2 is a symbolic illustration of such a reflective si-
mulation – when model ξ exists its elements can
communicate with corresponding elements of model X
(see the dashed arrows) and even both the models can
communicate (see the full arrow).

There is a small number of programming languages
that satisfy some principles leading from OOP to
SOOP. For example MODSIM [13] and NEDIS [14]
are object-oriented and process-oriented simulation
languages, i.e. languages satisfying – among other –
(C) and (D), but not (Q) – (U). JAVA is block-orient-
ed but its tools that should draw near principle (O) are
rather wooden.

Only SIMULA 67 [15] and Beta [16] appear to satisfy
all the mentioned principles. The syntax rules of Beta
are rather strange and separate it from current use.
When SIMULA 67 became an ISO standard in the
eighties of the XX century [17], the increment 67 was
refused, as the old simulation language SIMULA fell
into oblivion, being replaced by SIMULA 67 at its
hitherto users. The syntax rules of SIMULA (67) have
followed usual customs and therefore it is suitable as a
base for starting with SOOP; another advantage of

S > X(M)

Fig. 2 Reflective modeling

γ > Y(C)

B σ > ξ(µ)

1

3 2

1

2 3

S > X(M)

Fig. 1 Nesting of models

γ > Y(C)

B σ > ξ(µ)

1

3 2

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 4 Copyright © 2007 EUROSIM / SLOSIM

SIMULA is that a lot of experiences were obtained
with it, which allows solving many obstacles related
to the fact that the synthesis of block structure with
object orientation leads to something like nesting for-
mal theories (or like formal theories, the elements han-
dled by which can be carriers of other theories) – note
that some discoveries how to make something what
had been considered as unfeasible, came after tens of
years of the language analysis [18]. Another property
of SIMULA, which appears especially suitable for
programming models, is its complete separation from
what could happen inside the used computer: although
that makes problems when one would wish to apply
SIMULA for programming of some software deeply
concerning the computer run (e.g. an operation
system), that allows this language to be safely applic-
able for knowledge representation on such models and
for model portability. Last but not least, SIMULA
serves well because there are real applications of its
highest principles.

5 SIMULA

5.1 Common rules

The fundamental concept of SIMULA is block
instance. It is a component of computing process,
which has its local entities and its life. It is described
as textual block, which is closed in “brackets” begin
and end and composed of two parts, which describes
the local entities and the life. The first part is a
sequence of declarations. The following sorts of
declaration are important: variable declaration, proce-
dure declaration and class declaration.

Variable declaration has form like real x, a, ww
which tells that variables x, a and ww can be viewed
as carrying real values; in place of real, other key
words can occur like integer, Boolean, character and
text. Reference declaration is another sort of variable
declaration; its form is like ref(C) q, s, where C is a
class and the declaration tells that q and s either may
point to an instance of class C (or its subclass) or to
nothing (identified as none)

Procedure declaration is composed of its heading and
body. The heading has a form like procedure G or
procedure F(u,w); real w; text u; introducing proce-
dures called G and F, G being without parameters and
F with two parameters, specified as text and real ones.
Other components can be in the heading, concerning
the style of calling. A procedure can be a function (i.e.
gives a result and can be called in expressions); then
the type of the result is defined in front of key word
procedure by using the same key words as in the
variable declarations. The body of a procedure is any
statement (see further), nevertheless it is often a block.

Class declaration is similar, only in place of proce-
dure a key word class occurs and some other possibi-
lities are offered for the heading (e.g. specifications of
virtual entities). If the introduced class is a subclass of

a class the name of that “superclass” is to be put in
front of word class.

The life of a block is described as a sequence of
statements. Examples of statements:

Assignment statement is like a:=b for assigning value
b to variable a, or like a:-b for assigning reference b to
a. At the right part of such statements, expressions can
occur. Common usages for arithmetic expressions are
respected, Boolean operations are expressed by key
words like not, and, or,... relations serve for comput-
ing Boolean values from numerical, character and tex-
tual ones, and conditional expression (if b then x else
y) serves for the opposite conversion. Constants and
function calls are permitted, too. A lot of standard
functions exist like sin, ln or log10, and among them
there are those for generating pseudorandom values.

Procedure statement has a usual form F(a,b,c) where
an expression of form R.F can occur in place of F, tel-
ling that procedure F should be performed by the ob-
ject pointed by R (R can a more or less complex refer-
ence expression, possibly in brackets).

Branching is expressed by a statement like if b then S
or if b then S else T, where b is a Boolean expression
and after instantaneous evaluation of it, statement S is
performed in case the evaluation gives true (logical I).
In the opposite case (if the evaluation of b gives false,
i.e. logical O), the second form of the statement per-
mits performing the statement following else.

Textual block (see above) is a sort of statement and
can occur among the life rules. A text that is similar
but contains no declaration after begin, is called com-
pound statement and serves for gathering statements
to figure as one statement.

Jumps in the sequence of the life rules is allowed by
performing a statement of form go to L, where L de-
notes the target of the jump; the place of the target is
given by “label” of form L followed by a colon. It is
not possible to jump inward a statement, therefore
neither inward a block.

Other SIMULA sorts of statements (like cycles) exist
but their explaining is omitted in this paper. Let us
express the general rudders.

The users give names to the entities they introduce,
using identifiers that begin with a letter that can be
followed by any letters, digits and sign of underline.
The identifiers have to differ from the key words. All
names of variables, procedures, classes and labels
should follow these rules.

Let C be a class declaration. In the statements occur-
ring in it (i.e. in the life rules of the class and in those
of any textual block nesting in this declaration (e.g. in
procedure declarations), the expression this C (called
local reference) points to the instance of C, which is
just performing the statement where the local refer-
ence occurs.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 5 Copyright © 2007 EUROSIM / SLOSIM

If we introduce a common concept phrase for covering
the statements and the declarations, then it is possible
to state that the phrases should be separated by
semicolons. Note that the statements that are life rules
of a textual block should follow the declarations of the
same textual block.

5.2 Block orientation

Every block instance has its program sequence cont-
rol (PSC), which points to the life rule that is to be
performed. PSC is important when another block ins-
tance arises or disappears. The dynamics of rise and
disparition of block instances respect the following
rules.

(1) The program has a form a textual block and the
corresponding block instance exists during the whole
existence of the corresponding program rum.

(2) When the life rules belonging to a block instance J
enter a textual block B a block instance K correspond-
ing to B arises and is attached to J. More exactly, K is
called subblock instance. PSC of J is set to the
statement that follows B.

(3) When the life rules belonging to block instance J
enter a procedure call, a block instance H correspond-
ing to the body of the called procedure arises and is
attached to J. More exactly: H is called procedure
instance. PSC of J is set to the step that should follow
the procedure call.

(4) When the life rules belonging to block instance J
enter an expression like new C, where C is a name of a
class, a block instance G corresponding to the body of
the declaration of class C arises and is attached to J.
More exactly, G is called class instance. PSC of J is
set to the step that should follow the generating G. A
custom exists to speak on object in place of class
instance, on attributes in place of local variables and
on methods in place of procedures.

(5) When a block instance X arises, the computing
switches to the necessary administrating of it and then
it goes on according to the life rules of X. Suppose X
is attached to Y. When the “life” of X is exhausted the
computing switches to place of the life rules of Y,
pointed by PSC of Y.

(6) Only class instances can get names (for example
by means of assignment R:-new C). The subblock in-
stances and those of procedures become inaccessible
as soon as they exhaust their “lives”.

(7) In a textual block A that is among the life rules of a
textual block B, the entities accessible in B are acces-
sible. The same holds when A is a body of a procedure
or of a class declared in B.

(8) If A and B are two block instances generated
according to the same textual block T the sets of their
local entities are quite different. In other words, if X is
declared in T then X of A and X of B are entities as
different as if they would get different names.

(9) Let T1 and T2 be two different textual blocks so
that in each of them an entity with a certain common
name X is declared. If Ai (i=1,2) are block instances of
Ti, then X of A1 is quite different from X of A2, even
in case T1 is a part of T2.

Let X(i) (i=1,…, k) be a sequences of block instances
so that X(i+1) is attached to X(i) for i=1,…k–1. Then
the sequence is called operation chain with head
X(1).

5.3 Detach and call statements

There is a are statement called detach, looking like a
standard procedure, which any class instance can
perform. Let X be such a class instance, attached to a
block instance Z, and let it be the last element of an
operation chain O1. During performing its life rules, X
can enter blocks, call procedures and generate objects
and so a more or less long operation chain O2 with
head X can develop. O2 develops as a continuation of
O1. Suppose that during performing its life rules, the
last element Y of O2 meets statement detach and
determines that it is X that should perform it. Than the
whole operation chain O2 is really detached from O1
and exists as an isolated operation chain. The PSC of
Y is set after the detach statement and the computing
returns to the PSC of Z (see Fig. 3, left). Although X
might perform its life rules it becomes “dormant”.

Let V be the head of operating chain O3 – in general
different from O1. Suppose sometimes later the last

Z

X

Y

O1

O2

Z

X

Y X.detach

W

V

call(X)

W

V

X

Y

O3

Fig. 3

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 6 Copyright © 2007 EUROSIM / SLOSIM

element W of O3 should perform statement call(X).
This statement has also a form of standard procedure
with one argument that can point to any class instance.
Then O3 is joined with O1 so that X becomes attached
to W and the “life” of V continues from the PSC of Y
(see Fig. 3, right).

Statements detach and call allow to declare a main
class called SIMULAT that makes SIMULA a simula-
tion language, without neglecting its SOOP tools.
SIMULAT contains function time that gives the value
of simulated time, and class process that allows every
instance of its subclasses to manage its life rules in re-
lation to simulated time. Namely, the following proce-
dures like those in table 1 are for disposal.

5.4 Simulation tools

An integral component of SIMULA is a standard class
SIMULATION; although it is very suitable for conven-
tional simulation it makes great difficulties for nesting
simulation. The obstacles root in the fact that using the
mentioned class prohibits models to get names. There-
fore serious obstacles arise when one should express
that a state of simulation model A should be copied as
initial state of another model B, namely if B is nested
inside an element of model A. Although – after 25
years of working with SIMULA – technique to sur-
mount the obstacles was discovered [18], it demands
the users to do rather sophisticated steps. A better
implement than SIMULATION was discovered (note
that that happened not sooner than in 2005). This
implement is a main class called SIMULAT; it is com-
pletely based on the pair of call/detach statements,
mentioned in the preceding subsection.

In class SIMULAT, the switching among the life rules
is overviewed by a hidden object H that elaborates a
“calendar of events”, i.e. a list of all elements that
demand to work when the simulated time accesses a
certain value. H scans the calendar and according to
the items read at its beginning assigns simulated time
and stepwise calls the elements that just came to state
of influencing the computation by continuing to per-
form their life rules. When the life rules of such an
element lead to a decision to wait, the element sends
the corresponding information to H and performs
detach. The elements that can be governed by H in the
mentioned manner are called processes and are instan-
ces of class called process (more perfectly, of subclas-
ses of class process). It is to note that the life rules of
the simulation model itself behave in the manner as
the model would one of the processes (a principle
realized already in class SIMULATION and in the best
discrete-event simulation languages of the history).

The switching among the life rules of the processes in
programmed by means of scheduling statements, like:

hold(T) – interrupt until (simulated) time grows up
of T,

passivate – interrupt until a signal of activation
comes,

P.run – activate P immediately,
P.run_at(T) – activate P at (simulated) time T,
P.run_after(Q) – schedule P after Q performs its

scheduled phase,
P.run_before(Q) – schedule P before Q performs

its scheduled phase,
etc.

The scheduling develops dynamically – during the in-
terval between scheduling a process and the perform-
ing of its life rules the scheduling can be modifies, e.g.
by

 cancel(P) – P it is passivated even if it has been
scheduled for some future (simulated) time,
 P.rerun_at(T) – P is scheduled for (simulated)
time T, even in case it was scheduled for some other
occasion.

A consequence of the fact that detaching and calling
manipulate with the whole operation chain, is that the
scheduling statement related to an instance R of class
C can occur in any procedure, subblock and even class
nested inside the declaration of C (SIMULA allows
more but its description would overpass this tutorial).

Let C be a subclass of SIMULAT. Then new C causes
the life rules of class C to run. They function like to
belonging to a certain process called main; scheduling
statements can be among them and other processes
can activate it by using main.run… etc. R:-new C
represents start of a simulation experiment called R; it
is concluded when the flow of the life rules of C
leaves C (often by accessing end of the body of C).
Nevertheless, the attributes and methods of R can be
applied.

5.5 Nesting models

Suppose a system S is to be modeled and suppose M is
the main class of the models of S. Suppose that in case
the models are simulation ones, M is formulated as a
subclass of SIMULAT. Then it is possible to introduce
a name R of the model by a declaration ref(M)R. A
creation of the model can be expressed by statement
like R:-new M. (Note that if SIMULA standard class
SIMULATION were used in place of SIMULAT, such
a statement would lead to errors).

Suppose S contains elements. Their sorts would be
reflected as classes nested in M. The elements can be
divided into two groups, material elements (usual in
cases of a conventional simulation) and thinking ones.
The last sort of elements can cover e.g. a computer so
that (it has certain phases of its “life” during that it
processes data obtained at its “environment” in S so
that the results of computing can be applied in instruc-
tions given to the elements of S. The computing can
be a model ξ of something that could be described by
a certain main class µ. Especially, ξ could be a simula-
tion model, possibly influenced by the instantaneous
state of S. In a special case, ξ could be a model of S
itself, but a bit different from X. One of the differences

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 7 Copyright © 2007 EUROSIM / SLOSIM

can be that ξ does not reflect the thinking element(s)
of S. Let us concentrate to such a case.

Instead of a computer, a human can represent a think-
ing element. Human is able to think and to use con-
cepts (i.e. something like classes) when it thinks. Hu-
man is able to imagine the future and accordingly to
decide. When S is automated, such a human can be
replaced by a computer, the human's thoughts could
be mapped as a modeling phase of the computer and –
especially – if the thinking consists in imagining it can
be replaced by simulation performed at the same com-
puter.

A similar process comes when such a system S gover-
ned by person(s) should be simulated. In this case,
such a person is represented by an image of a model-
ing computer, which becomes simulating when reflec-
ting that the person is imagining; note that such a way
can be also a test whether (and how) the different abil-
ities of computing technique could replace humans.

Independently of whether the thinking elements are
computers or humans, class M should contain declara-
tions of the classes of the material elements and a
declaration of a class C of thinking ones. The life rules
of C may integrate the instances of C into X, using all
that is available in the declarations of the material
classes and e.g. in the life rules of class M itself (there-
fore – among other – the scheduling statements that
express a certain existence of the thinking elements
during the same time as the material ones, may be of
use).

The best way to reflect the phase of modeling consists
in a block B existing among the life rules of C. That
block should contain a declaration of class ξ of the
models and of a declaration of a name reserved for the
models, e.g. like ref(mu)xi and the statement like xi:-
new mu. This statement generates the model and gives
it name xi. Then the model runs and can detect the
properties of the environment of its carrier Y (e.g. of
the images of the material elements) by means of dot
notation where X stands before – like X.car3.place (i.
e. place of element called car3 and existing in model
X), or – in a better way – with use of the local refer-
ence this M.car3.place (see the end of 5.1).

Note that this mu.time corresponds to the (simulated)
time of the model carried by the given thinking
element, while this M.time corresponds to the time at
which the given thinking element would exist in
system S.

5.6 Reflective simulation

What was explained in the preceding subsection corre-
sponds in a full way to Fig. 1, where the material ele-
ments are represented by circles enumerated by digits.
If we attempt to the reflective simulation we should
meet something like that presented in Fig. 2. In order
to understand the next explication it is suitable to take
into account what was expressed in statement (9) of
subsection 5.2. In other words, if the main class M and

µ contain the identical declarations (namely of clas-
ses) there is no relation between classes of the same
names – they figure as having different names..

That protects SIMULA against an error called trans-
plantation, the substance of which consists in assign-
ing a name reserved inside a main class, to an instance
of the class existing in another main class. Also an
implicit assigning of a name can be of this sort (e.g.
inserting an element of a certain model into a queue
belonging to another model) and is automatically re-
jected in SIMULA programs.

SIMULA allows separate compilation of classes. If
such a class is needed in a certain textual block, one
puts there its external declaration (like external class
M). The compiled program behaves in the same
manner like if the detailed declaration of the class
would be copied at the place of the external declarat-
ion. But SIMULA linker is so organized that when
two or more external declarations of the same class G
occur at the same source text only one object file
belonging to G is processed and linked, although it
behaves like to be particularly linked to each of the
mentioned places. That essentially shortens the
programs compiled from SIMULA (rather complex
models of “intelligent” systems do not need more than
200 KB).

In reflective simulation, M and µ may differ only in
small details (at least so that µ does not introduce the
image of the thinking elements). In such a case, a
common superclass G can be declared and separately
compiled, then called by external declarations at two
block levels and at each of them specialized either to
M or to µ. Note that the specialization to µ can have
use of its textual environment that represents
specialization of G to M.

6 Examples of application

A large field for application is logistic, because there
are many systems where the transport is planned ac-
cording to the imagining how different variants could
proceed.

So – under support of two projects of European com-
mission [19,20] – the logistics of container yards was
simulated, where two tasks of anticipation for ground
moving transport tools took place – establishing the
shortest paths and testing its security against conflicts
and deadlocks in the labyrinth of passages surrounded
by containers. The computing of the shortest path was
implemented according to the metaphor put down
sometimes to Dijkstra and sometimes to Lee, and rea-
lized as a simulation model of the metaphor, i.e. of a
system of branching, propagating and emulous pulses
[5]. The test on the computed path security was imple-
mented by means of the reflective simulation, namely
by simulation of what could happen if applying the
computed path: in case the simulation discovered that
the application of the path passed without obstacles,

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 8 Copyright © 2007 EUROSIM / SLOSIM

the path was accepted, in case the simulation discover-
ed that application of the path could lead to a conflict
(with another transport tool or with a container mean-
while put at a place belonging to the computed path)
the place of the conflict was marked by a fictitious
container and a model of the mentioned metaphor was
applied; it gave another version of the shortest path, its
security was tested by reflective simulation etc., until
a secure path was determined. The model is described
e.g. in [21,22] and a snapshot of its on-line animation
can be seen in Fig. 4 where the simulation of the yard
is animated on the left while the tests with the shortest
path is on the right, the columns of containers are re-
presented by fields with digits (denoting the number
of containers) and the triangles represent ground-mov-
ing transport tools.

Another application concerned simulation of circular
conveyor tending several working areas and their en-
vironment (see Fig. 5). The questions like the follow-
ing ones arise during the container operation:

(i) A failure came to a certain working area; what is
better, immediate stop of the system and repairing the
error, or going on with a limited number of the work-
ing areas?

(ii) If the decision in case of (i) is “to go on”, would it
be better to change the present technological programs
(assigning the work arrays to steps of elaboration),
and if so, what change to choose?

(iii) An object comes to the conveyor in order to be
processed at some of the working areas; the conveyor
is rather occupied and, therefore, if the object imme-
diately enters the conveyor it no working area accepts
it, the object performs a full cycle and returns to the
place where it entered the conveyor; how long should
the object wait out of the conveyor?

(iv) An object should be stepwise processed at several
working areas related to the conveyor; having been
processed at a certain working area it should come to
another one but more working areas can perform the
next step of processing; what working area should be
chosen for the next step (note that the state of a
working area can change during the time when the
object is transported to it)?

(v) A similar problem of choice exists for objects that
are waiting according to decision mentioned in (iii).

The conveyor was simulated so that the questions (i)-
(v) were solved by the help of simulation [23,24].

Other simulation of logistic systems was oriented to
public personal transport in a district, with respect to
passengers who combine the bus lines according to
their imagining of instantaneous possibilities [25]. Re-
lating to it, also demographic development was simu-
lated with respect to consulting centers equipped with
simulation models that allow the citizens to anticipate
the region development. In the last months, at Ostrava
University one approached to a project of reconfigur-
able information systems design (and therefore of
their simulation, too), where four levels exist: one of
them introduces fuzzy mathematics, the next one
introduces control of simulation studies and related
data files, the third one concerns the simulation mo-
dels and the level of nested simulation models that
enable automatically to anticipate the consequences of
the intended reconfiguration is at the bottom [26].

Fig. 4

Fig. 5

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 9 Copyright © 2007 EUROSIM / SLOSIM

7 References

[1] G. Gordon. A general purpose systems simulation
program. In Proc. 1961 EJCC, MacMillan, New
York, 1961.

[2] D. E. Knuth and J. L. McNealey. SOL – a symbo-
lic language for general purpose systems simulat-
ion. IEEE Trans. Elec. Comp., 13:401-410, 1964.

[3] O.-J. Dahl and K. Nygaard. SIMULA – A Lan-
guage for Programming and Description of Disc-
rete Event System: Introduction and User’s manu-
al. Norwegian Computing Center, Oslo, 1965 (1th
ed), 1967 (5th ed.).

[4] J. W. Backus et al. Report on the Algorithmic
Language ALGOL 60. Numerische Mathematik,
2:106-136, 1960.

[5] O.-J. Dahl. Discrete Event Simulation Languages.
Norwegian Computing Center, Oslo, 1968. Re-
printed in [6], 349-394.

[6] F. Genuys, editor. Programming Languages. Aca-
demic Press, London – New York, 1968.

[7] C. A. R. Hoare. Record Handling. In [6].

[8] O.-J. Dahl. The Birth of Object Orientation: the
Simula Languages. In M. Broy and E. Denert,
editors, Software Pioneers: Contribution to Soft-
ware Engineering. Springer, Berlin, 2002. Reprin-
ted in [9].

[9] O. Owe, S. Krogdahl and T. Lyche, editors. From
Object-Orientation to Formal Methods. Essays in
Memory of Ole-Johan Dahl. Lecture Notes in
Computer Science, 2635, Springer, Berlin, 2004.

[10] O.-J. Dahl and K. Nygaard. Class and Subclass
Declarations. In J. N. Buxton, editor, Simulation
Programming Languages. Proceedings of the IFIP
working conference on simulation programming
languages, Oslo, May 1967. North-Holland, Ams-
terdam 1968.

[11] H. E. Islo. SOOP Corner. ASU Newsletter, 22, no
2:22-26, 1994.

[12] E. Kindler. SIMULA and Super-Object-Oriented
Programming. In [9].

[13] C. Herring. ModSim: A new object-oriented
simulation language. SCS Multiconference on
Object-Oriented Simulation. The Society for
Computer Simulation, San Diego, 1990.

[14] V. M. Glushkov, V. V. Gusev, T. P. Maryanovich
and M. A. Sachnyuk: Programmnye sredstva
modelirovaniya nepreryvno-diskretnych sistem
(Programming tools for modeling continuous-
discrete systems – in Russian). Naukova Dumka,
Kiev, 1975.

[15] O.-J. Dahl, B. Myhrhaug and K. Nygaard. Com-
mon Base Language. Norsk Regnesentralen, Oslo,

1st edition 1968, 2nd edition 1972, 3rd edition
1982, 4th edition 1984.

[16] O. Madsen, B. Møller-Pedersen and K. Nygaard.
Object-Oriented Programming in the Beta Pro-
gramming Language. Addison Wesley, Harlow –
Reading – Menlo Park, 1993

[17] SIMULA Standard. SIMULA a.s., Oslo, 1989

[18] E. Kindler. Chance for Simula. In: Proceedings of
the 25th Conference of the ASU – System Model-
ling Using Object-Oriented Simulation and Analy-
sis, August 1999 ASU, Kisten, Sweden

[19] E.Blümel et al. Managing and Controlling Grow-
ing Harbour Terminals. The Society for Comput-
er Simulation International, San Diego, Erlangen,
Ghent, Budapest, 1997

[20] E. Blümel and L. Novitsky, editors. Simulation
and Information Systems Design: Applications in
Latvian Ports. JUMI Ltd., Riga, Latvia, 2000

[21] E. Kindler. Nesting Simulation of a Container
Terminal Operating With its own Simulation
Model. JORBEL (Belgian Journal of Operations
Research, Statistics and Computer Sciences), 40:
169-181, 2000.

[22] E. Kindler. Nested Simulation Models Inside
Simulation of Container Terminal. In A. G. Bruz-
zone and E. J. K. Kerkhoffs, editors, Simulation in
Industry, 8th European Simulation Symposium
(ESS 96), Genova, September 1996, Society for
Computer Simulation International, San Diego,
Volume I.

[23] P. Berruet, T. Coudert and E. Kindler. Conveyors
With Rollers as Anticipatory Systems: Their
Simulation Models. In D. M. Dubois, editor,
Computing Anticipatory Systems CASYS 2003.
Sixth International Conference, Liege, Belgium,
August 2003. American Institute of Physics,
Melville, New York, 2004.

[24] E. Kindler, T. Coudert and P. Berruet. Compon-
ent-Based Simulation for a Reconfiguration Study
of Transitic Systems, SIMULATION, 80:153-163,
2004.

[25] P. Bulava. Transport system in Havirov. In Proce-
edings of 28th ASU Conference, Brno, September
26 – October 1, 2002. FIT, University of Techno-
logy, Brno.

[26] E. Kindler, C. Klimeš and I. Křivý, Simulation
Study With Deep Block Structuring. In J. Štefan,
editor, MOSIS’07, Proceedings of 41th Spring
International Conference Modelling and Simulat-
ion of Systems, Rožnov Pod Radhoštěm, April
2007. MARQ,.Ostrava.

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 10 Copyright © 2007 EUROSIM / SLOSIM

