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Abstract  

This paper provides background information for a tutorial which introduces the concepts of 
inverse simulation. Conventional simulation methods involve finding the response of a system 
to a particular form of input or disturbance for a given set of initial conditions. Inverse 
simulation methods reverse this process and attempt to find the control inputs required to 
achieve a particular response. This inverse approach has been applied with success in a 
number of fields but it is in aeronautical applications that it has found most favour so far, 
particularly in the context of helicopter flight mechanics. The piloting strategy required for an 
aircraft to perform a defined manoeuvre is predicted and can be used to analyse handling 
qualities, pilot workload, agility and control system performance. Recently the methods have 
also been applied to problems of ship manoeuvring and navigation and to underwater 
vehicles. The methods are particularly well suited to investigation of actuator performance 
and the effects of actuator limiting in control system design. The paper outlines the algorithms 
most widely used for inverse simulation and introduces some relatively novel approaches 
which are believed to have some advantages for applications involving control system 
performance investigations. The paper includes discussion of possible numerical problems 
encountered when using these algorithms and more fundamental issues associated with the 
dynamic properties of inverse models. The impact of inverse simulation in providing 
enhanced understanding about the dynamic properties of the system under investigation is 
emphasized. Although aeronautical applications are dominant in published work in this field 
the approach is of general applicability and any dynamic system may be treated in the same 
way. 
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1 Introduction 
The conventional process of forward modelling and 
simulation is not the only approach possible for 
gaining an understanding of the behaviour of complex 
dynamic systems. The idea of inverting a system to 
determine the inputs that are necessary to give a 
specified set of system output variables can be traced 
back to the 1930s when Jones [1] investigated the 
effects of gusts on an aircraft by inverting a linearised 
aircraft model.  

Linear single-input single-output models in transfer 
function form, with the same order of numerator and 
denominator, can be inverted directly so that the 
numerator of the original model becomes the 
denominator of the inverted model. For other classes 
of system the situation is more complicated but, when 
inversion is possible, new insight can often be 
obtained which is important both for system design 
and for control.  

In the 1960s and 1970s a class of methods, generally 
termed dynamic inversion, was developed for 
multivariable nonlinear minimum-phase (MP) systems 
by some pioneers (e.g. by Brockett [2]; Dorato [3] and 
Hirschorn [4]). The procedure of dynamic inversion 
involves the transformation of the original nonlinear 
system into a linear and controllable system by means 
of a nonlinear change of state space coordinates and a 
nonlinear state feedback control law with the 
application of differential geometry concepts. 
Subsequently, further efforts were made to develop 
approaches for nonminimum-phase (NMP) systems 
(e.g. by Isidori et al. [5], [6]) and in the mid 1990s, 
Devasia et al. [7] achieved further significant progress 
by developing a method based on noncausal Picard-
like iteration to obtain bounded inversions. In recent 
years, based on this earlier work, several approaches 
have been developed to achieve the causal inversion 
of NMP systems (e.g. [8-11] as well as methodology 
for the non-hyperbolic problem [12,13]. 

This group of approaches has attracted considerable 
attention since these techniques offer a potentially 
powerful methodology for control system design. In 
1995 Reiner et al. published an account [14] of the 
design of an outer-loop flight controller using 
structured singular value (µ) synthesis, based on the 
linearised model obtained by an inner-loop controller 
designed by dynamic inversion. In 2003 Hu et al. [15] 
followed a similar approach to design a controller for 
ship course keeping.  

However, all of the above approaches based on model 
inversion principles have some shortcomings that 
restrict their applications. Firstly, the available 
mathematical approaches are quite tedious and 
difficult to apply even for MP systems, especially in 
applications involving high-order models. Secondly, 
most available methods only achieve noncausal 
inversion and depend on the whole desired output 

trajectory. They also usually require specific 
properties of smoothness of the desired trajectories to 
provide the ideal input vector. Also, the valid domain 
of these methods is mainly restricted to tracking of 
trajectories involving small amplitudes due to the 
form of the algorithms [16] and these techniques may 
therefore be unsuitable for more severe types of 
manoeuvre. 

During the period when major developments were 
taking place in terms of the techniques for model 
inversion, a numerical process termed inverse 
simulation was being developed to allow inversion of 
linear and nonlinear dynamic models using numerical 
methods instead of an analytical approach. This idea 
attracted particular attention within the field of 
aerospace engineering and in some other application 
areas. It is an approach that generates the forward 
control inputs such that a mathematical model of a 
system can follow a prescribed trajectory in state 
space.  

 
Inverse simulation aims to determine, by numerical 
processes, the system inputs required to produce a 
given output response. Interest in inverse simulation 
methods has been particularly strong in the field of 
aircraft flight mechanics and this approach has 
received special attention in the case of helicopters 
and other forms of rotorcraft, which involve complex 
and highly nonlinear models. For such an application 
the input to the inverse simulation is the required 
flight path and the output information represents the 
piloting commands needed to achieve this trajectory. 

Many contributions have been made to the field of 
inverse simulation since the early 1990s. Much of the 
research has been concerned with the establishment of 
robust and numerically stable approaches to inverse 
simulation (e.g. through developments by Kato & 
Saguira [17] ; Thomson et al. [18-20];  Anderson [21]; 
Hess et al, [22,23]; de Matteis et al., [24]; Lee & Kim 
[25]; Avanzini et al. [26]; Celi [27]; Lu et al. [28]). 

 
The reasons for the popularity of inverse simulation 
methods arise from the practical usefulness of this 
approach in various fields. Thomson and Bradley [29, 
30] highlighted the value of inverse simulation 
techniques for the investigation of the handling 
qualities, manoeuvrability, and agility of a 
hypothetical battlefield utility helicopter at the 
conceptual design stage. The quantitative assessment 
of helicopter handling qualities and validation of the 
model was approached by analysing specific measures 
of aircraft response known, as attitude quickness 
criteria, using simulated flight in conjunction with 
standard Mission Task Elements (MTEs) which can 
be used to describe specific forms of aircraft trajectory 
(e.g. [31-33]). Secondly, inverse simulation has been 
shown to facilitate investigation of required actuator 
characteristics and control actions. A specific example 
of an investigation of this kind involved study of the 

Proc. EUROSIM 2007 (B. Zupančič, R. Karba, S. Blažič) 9-13 Sept. 2007, Ljubljana, Slovenia

ISBN 978-3-901608-32-2 2 Copyright © 2007 EUROSIM / SLOSIM



control actions required following engine failures 
during takeoff from offshore platforms [34]. In 
addition, inverse simulation has been investigated for 
output-tracking and inversion-based controllers (e.g. 
[26], [35-37]). 

As with dynamic inversion, traditional inverse 
simulation techniques suffer from some well known 
problems. Numerical issues, such as non-convergence, 
rounding errors and phenomena involving sustained 
high-frequency oscillations have been found in most 
of the techniques that are available (e.g. [22,23], [32], 
[38-40]). Secondly, redundancy issues when the 
number of inputs is greater than the number of outputs 
may also lead to non-convergence of inverse solutions 
(e.g. [24,25], [38], [40]). Thirdly, in some cases, 
oscillations of much lower frequency also appear in 
the results. This phenomenon, which has been termed 
“constraint oscillations”, often gives stable results but 
with gently damped oscillating components (e.g. [21], 
[29]). Fourthly, the numerical processes in traditional 
methods of inverse simulation involve use of 
derivative information, such as in the Jacobian matrix 
or the Hessian matrix. This limits their application 
only to smooth trajectories and models which have no 
input constraints.  

Another, more fundamental, issue is that the stability 
of inverse simulation methods for NMP systems has 
received relatively little attention. Also, rather 
surprisingly, little consideration has been given in 
most previously published work to the relationship 
between model inversion and inverse simulation 
techniques. 

2 Classification of Inverse Simulation 
Approaches 
Inverse simulation is commonly carried out either by a 
direct approach based on differentiation or iteratively 
using integration methods. The first significant 
published accounts of the problems of inverse 
simulation for aircraft applications were those of Kato 
and Saguira [17] and Thomson [18]. Their methods 
involved numerical differentiation of the vehicle state 
variables, with respect to time. The main advantage of 
this approach is fast convergence speed. However, it 
may suffer from problems of numerical rounding error 
and involves ad-hoc approaches for specific 
applications for different types of vehicles. Sentoh and 
Bryson [35] defined the inverse process, in the context 
of an aircraft application, as a LQ optimal problem 
that minimises the integral of a weighted square sum 
of the deviations from a straight flight-path and 
control surface deflections. They demonstrated the 
approach by an application to feed-forward control. 
However, this method was found to suffer from 
significant practical limitations and involved a 
relatively cumbersome procedure. Moreover, this 
method is not suitable for the redundancy problems 

that can arise where the number of control inputs is 
greater than the number of path constraints [26]. 

In the early 1990s members of a research group at the 
University of California, Davis [22,23] proposed what 
is now the most commonly used approach that 
formulates the inverse problem as an iterative 
procedure involving repeated forward simulation 
involving a conventional integration process. This 
approach does not require time differentiation of the 
specified path constraints. Instead, it involves a 
procedure that calculates the partial derivative of the 
output vector with respect to the input vector through 
a numerical algorithm. In addition, redundancy 
problems can be overcome by use of the Moore-
Penrose inverse. Unlike the earlier approaches based 
on differentiation, the structure of the algorithm in this 
case means that the integration-based method is less 
model-specific. Thus it can accommodate different 
models without restructuring the algorithm itself. One 
of the drawbacks of this technique is that it is an order 
of magnitude slower than the approach involving 
differentiation with respect to time. 

In an approach similar to the integration-based 
algorithm, de Matteis et al. [24] presented an 
alternative local optimisation concept to eliminate the 
control redundancy problem. This involved adding 
new path constraints at the cost of evaluating the 
Hessian matrix numerically. The implementation by 
de Matteis et al. involved a modified Broyden, 
Fletcher, Goldfarb and Shannon (BFGS) quasi-
Newton method. It should be noted that, in practice, it 
is not always feasible to construct new path 
constraints for a special performance requirement as 
this approach may not always lead to a solution due to 
the searching region being restricted. By incorporating 
a two timescale approach to simplify the complexity 
of aircraft models, this method has been successfully 
demonstrated on a F-16 fighter aircraft model [26] and 
a Bell aH-1G single rotor helicopter model [40]. 

Lee and Kim [25] formulated the inverse simulation 
problem as a general optimisation problem by 
defining a performance index constrained by equality 
conditions that are a function of state variables. Then 
the performance index is discretized by the finite 
element method and the final governing equation is 
solved by the Levenberg-Marquardt (LM) algorithm. 
This can avoid the control redundancy problem by 
appropriate selection of the performance index and 
constraint condition. Therefore, the procedure does 
not involve numerical differentiation or integration 
processes. As a result, it overcomes the problem of ill 
conditioning and sensitivity issues associated with 
initial guessed values. However, the performance 
improvement is achieved at the cost of enormously 
increased complexity of the inverse simulation 
process. 

Celi [27] solved the inverse problem by borrowing 
some ideas from the optimisation field. In fact, unlike 
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the approaches based on local optimisation, his 
method considers pilot inputs as design variables in 
the global space. Celi’s approach (which has been 
applied to helicopter problems) can generate pilot 
inputs that differ from those expected from the 
application of other techniques due to the existence of 
a family of valid trajectories. There may also be 
difficulty with this approach if it is required to 
calculate the whole trajectory at one time. If this is the 
case, the results may show poor consistency between 
the converged solution and the desired trajectory. This 
problem can be solved by performing the optimisation 
over overlapping consecutive segments of the 
trajectory rather than over the entire time history. In 
addition, problems of multiple solutions may appear. 
Multiple solutions may actually assist the investigator 
in aircraft handling-qualities studies but creates 
difficulties if the inverse solution is being used for 
some other purposes, such as simulation model 
validation. As a consequence, additional constraints 
are required to achieve a unique solution. 

Finally, a number of other researchers also have made 
contributions to the inverse simulation field. Anderson 
[21] proposed an enhanced NR method by combining 
Hess’s approach with a bisection method through 
which each change of controls is multiplied by an 
additional scale factor. He stated that the numerical 
stability of the inverse simulation can be significantly 
improved and an order of magnitude reduction can be 
achieved in both the tracking error and the control 
deflections This is shown from results obtained from 
an application to a helicopter model with an individual 
blade representation. In fact, his method can be 
considered as another modification of the calculation 
of the Jacobian matrix and is quite similar to the 
inverse Broyden method [41], but simpler. However 
the bisection method has some drawbacks. One 
disadvantage is that when the searching interval for a 
real root is decreased, the speed of convergence 
becomes very slow due to the computational load. It is 
also difficult to achieve high accuracy using this 
approach. 

Lu et al. [28] have recently proposed an approach 
based on sensitivity-analysis (SA) to solve some 
numerical problems existing in the traditional 
integration method. In addition, Lu et al [42] have 
developed a derivative-free approach which leads to 
improved numerical stability. This approach also 
allows the inclusion of actuator saturation and other 
limits in the model being investigated as well as 
discontinuous manoeuvres.  

One approach that has generated interest for some 
specific applications is based on principles that were 
used very successfully in analogue computers to 
produce divider elements from analogue multipliers 
and inverse functions from simple function generators. 
The idea is to embed a forward simulation of the 
system under investigation within a high gain 
feedback system. Then, in the simple linear case at 

least, it is clear from feedback theory that it is possible 
to generate an inverse simulation in a very simple and 
straightforward fashion. This involves using the 
required output time history as reference. The 
necessary input may then be found automatically by 
monitoring the input signal that is applied to the 
forward simulation within the high-gain feedback 
loop. Although this may appear very straightforward, 
it does require considerable effort to design an 
appropriate feedback system, especially for situations 
involving multi-input multi-output simulation models, 
NMP systems or nonlinear simulation models. Further 
details may be found in the work of von Grünhagen et 
al. (e.g. [36],[43]) where these ideas have been used 
successfully for inverse simulation for helicopter 
applications.  

Techniques based on the properties and methods for 
solution of differential-algebraic equations (DAE) 
provide another interesting avenue of approach which 
has been successfully explored by a number of 
researchers (e.g. [44]). These DAE methods have 
attracted most attention within communities that make 
use of software tools such as Modelica and Dymola 
that provide facilities involving the use of algorithms 
for the solution of DAEs.   

2.1  Methods in which derivative information is 
used 

Based on the above literature review, the various 
techniques in which derivative information is used 
may be categorised as follows: 

2.1.1  Optimisation methods involving local 
optimisation  

Approaches that fall within this category include: The 
LQ problem [35]; the local optimisation approach 
with the BFGS algorithm [25]; the two timescale 
approach [26]; the method based on sensitivity 
analysis [28]. 

2.1.2  Optimisation methods involving global 
optimisation 

Approaches in this category include the general 
optimisation problem involving equality conditions 
[25] and also the optimisation approach of Celi [27]. 

2.1.3  Differentiation methods 

This approach involves numerical differentiation of 
the vehicle constrained variables, with respect to time, 
until the control variables can be solved explicitly 
(e.g. [17,18]). More discussion of this approach may 
be found in an earlier review paper by Murray-Smith 
[45] and in a very recent and extensive review by 
Thomson and Bradley [46]. 

2.1.4  Integration methods 

In integration-based methods the value of the control 
variables that satisfy the constraints are found 
iteratively within a sampling interval using a form of 
Newton-Raphson algorithm or a variation thereof (e.g. 
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[21-23]).  Integration-based algorithms are the most 
widely used techniques at the present time and provide 
a benchmark against which other methods are 
commonly compared. 

2.2  Optimisation methods that do not involve 
derivative information 

Methods for inverse simulation that do not use 
derivative information are essentially optimisation 
methods that are search based. One approach of this 
kind that has been used successfully is a derivative 
free method based on the Nelder-Mead (NM) 
algorithm [42]. 

2.3  Methods based on the principles of high-gain 
feedback systems.  

The application of high-gain feedback principles for 
inverse simulation has, so far, involved applications 
that have specific requirements for high-speed (often 
real-time) inverse simulation (e.g. [36]). Particular 
attention has been given to linear models using this 
approach (e.g. [43]).  

2.4   Methods based on the solution of differential 
algebraic equations (DAEs) 

Methods based on differential algebraic equations 
(DAEs) have attracted particular attention within 
research groups that make extensive use of Modelica 
and the associated simulation tool Dymola (e.g. [44]). 
A continuous Modelica model is mapped to a DAE 
model of the form: 

                0 ( , , , )f= &x x y u                                      (1) 

where x(t) are variables that appear differentiated in 
the model, y(t) are algebraic variables and u(t) are 
known input functions of time. An inverse model of 
the DAE is constructed by simply exchanging the 
meaning of variables. Previously unknown variables 
from the vectors x and y in this DAE model are 
treated as known inputs and an appropriate subset of 
the vector u is treated as involving unknowns. The 
resulting equation remains a DAE and this can be 
handled using standard methods for such a 
mathematical description. 

3 Outline descriptions of some selected 
inverse simulation methods 
3.1 The differentiation-based approach 

Consider a nonlinear system described by equations of 
the form: 

                     ( , )=&x f x u                                        (2) 

                     ( , )=y g x u                                           (3) 

where f∈ mR is the set of nonlinear ordinary 
differential equations describing the system, g∈ pR is 
the set of algebraic equations that construct the 
expected outputs, and u∈ qR is the input vector. The 

vector x∈ mR is the state-variable vector and y∈ pR is 
the vector of output variables. This form follows the 
traditional definition used in most inverse simulation 
investigations [22]. In addition, Eqs. (2) and (3) can be 
discretized as: 

 

      1

1

( ) ( ) [ ( ) ( )]k k
k k

k k

t t t , t
t t

−

−

−
=

−
x x f x  u           (4) 

    ( ) [ ( ) ( )]k k kt t , t=y g x  u                                 (5) 
                   both for   k = 1, 2, 3,…… N −1 
 

where N is the total number of discretized intervals 
and tk is the kth discretization point in the time period. 
Now define two functions F1 and F2 to calculate the 
values of the unknown variables ( )ktx  and ( )ktu . 

1
1

1

( ) ( )[ ( ) ( )] [ ( ) ( )] k k
k k k k

k k

t tt , t t , t
t t

−

−

−
= −

−
x xF x  u f x  u      (6) 

2[ ( ) ( )] [ ( ) ( )] ( )k k k k d kt , t t , t t= −F x  u g x  u y                    (7) 
 

where the term on the left-hand side of Eq. (5) is 
replaced by ideal output values yd(tk+1), and where the 
subscript d is used to represent the desired value. The 
Newton-Raphson (NR) method is applied to solve 
these last two equations so that the values ( )ktx  

and ( )ktu make the right hand sides of these equations 
approximately equal to zero. The updated equations 
(Eq. (8)) are shown as follows:  

1
1 1

( ) ( 1) ( 1) ( 1)
1

( ) ( 1) ( 1) ( 1)
2 2 2

( ) ( ) [ ( ), ( )]

( ) ( ) [ ( ), ( )]

n n- n- n-
k k k k

n n- n- n-
k k k k

t t t t

t t t t

−∂ ∂⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤∂ ∂
⎢ ⎥= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥∂ ∂⎣ ⎦

F F
x x F x ux u

F Fu u F x u
x x

  

                                                                                   (8) 

where the quantity n is the current step within the 
iterative process. After the values ( )ktx  

and ( )ktu that make F1 and F2 zero are found, the 
inverse simulation will move to the next time step tk+1. 
By similar sequential steps, the complete time 
histories of ( )ktx  and ( )ktu can eventually be 
obtained. 

3.2 The integration-based approach 

This section provides a summary of the integration-
based method of Hess et al. [22]. By discretization of 
Eqs. (2) and (3), the input-output relationship of the 
nonlinear system can be defined as follows: 

1

1( ) ( ) ( )
 t

k k t
t t dt tk

k
x x x+

+ = +∫ &                       (9) 

1 1( ) [ ( ), ( )]k k kt t ty g x u+ +=                            (10) 
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The term on the left-hand side of Eq. (10) is now 
replaced by the ideal output values 1( )d k+ty , where 
the subscript d is used to represent the desired value. 
Thus, Eq. (10) can be rewritten as: 

 
1 1[ ( ), ( )] ( ) 0k+ k d k+t t tg x u y− =                   (11) 

 
In the traditional algorithm, the NR-based method is 
used to find u(tk) using the following iterative 
relationship: 

 
u (n+1)(tk) = u (n)(tk) – J -1fE[x(n)(tk+1), u (n)(tk)]    (12) 
 

where 
 

( ) ( ) ( ) ( )
1 1 1[ ( ), ( )] [ ( ), ( )] ( ).n n n n

E k k k k d kt t t t tf x u g x u y+ + += −
  
In Eq. (12) the term J represents the Jacobian matrix 
of system outputs at the end of the time interval ∆t 
(from tk to tk+1) with respect to input variables.  
 
If, in Eq. (3), there is a direct analytical relationship 
between input and output the Jacobian matrix may be 
obtained directly. Otherwise an approximation 
technique must be used as follows: 

1 11 ( ) | ( ) |( )
( )

k ki j j t i j ti k
ij

j k j

t
t

+ ++
∂ + Δ −∂∂

= ≈
∂ Δ

y u u y uy
J

u u
 (13) 

for  i = 1, 2, 3, …, p and j = 1, 2, 3, …, q 
 

where uj and yi are the jth and ith elements of the input 
and output vectors, respectively. Δuj is the 
perturbation in uj at time tk. In Eq. (13), the superscript 
n is omitted. Rutherford and Thomson [20] have also 
presented a modified approach for calculation of the 
Jacobian matrix by perturbing Δuj in the negative and 
positive directions. 

 
When a redundant situation exists, the Jacobian matrix 
is not square and it is not possible to use standard 
methods of matrix inversion in the NR iteration 
scheme, as shown in Eq. (12). Hess et al. [22] 
proposed the use of the pseudo-inverse matrix as a 
solution for finding the roots of Eq. (11) when J is 
rectangular. 
3.3 The constrained Nelder-Mead method 

Both the differentiation and integration-based methods 
introduce additional derivative calculations, such as 
those associated with the Jacobian matrix or Hessian 
matrix. However, the direct gradient information is 
not always available from the model. Direct search 
methods, being derivative free and thus avoiding 
issues associated with discontinuity and input 
saturation that cause problems with the differentiation 
and integration-based methods, provide an alternative 
approach that has been shown to have advantages for 
some types of application. This approach is presented 
here in more detail than the other methods because 

there are fewer published sources of information 
currently available about this approach.  

Lewis et al. [47] have reviewed the history and 
development of direct search methods of optimisation 
and point out that they remain popular because of their 
simplicity, flexibility, and reliability. Among direct 
search methods, the most widely used is the downhill 
simplex method of Nelder and Mead [48]. The Nelder-
Mead (NM) approach is a popular method for 
minimizing a scalar-valued nonlinear function of q 
real variables using only function values, without any 
derivative information (explicit or implicit). The latest 
developments of this method (e.g. [49-51]) have 
expanded its functions so that it can be used to tackle 
multimodal, discontinuous, and constrained 
optimization problems. However, these developments 
inevitably make the algorithm more complex. The 
algorithm outlined in this section is based on the 
version of Lagarias et al., [52] with an additional 
input-constrained function [53]. 

As with the NR method, the NM approach is 
developed in the interval [tk, tk+1]. One of the distinct 
differences between the NR and NM methods is that 
the former updates the input values by means of Eq. 
(12), but the latter relies exclusively on values of the 
cost function to find the optimal solution [47]. Hence, 
it is important for the NM method to define a good 
form of the cost function, which may be described by 
equations of the form: 

2
1 1

1

min [ ( )] ,   where

[ ( )] = { [ ( ), ( )] ( )}

q

i

k

p

k i k k d k
i

L t

L t t t t

u
u

u g u x y

∈

+ +
=

⎧
⎪
⎨

−⎪
⎩

∑
s R       (14)                

subject to 

( )          1,2, ,

[ ( ), ( )]

min, j j k max, j

k k

t j = q

t t

u u u

x f x u

≤ ≤ …⎧⎪
⎨

=⎪⎩ &
           (15) 

where L[·] is the cost function. If the NM algorithm 
fails for the quadratic cost-function form of Eq. (14), 
the following equation based on the absolute value can 
provide an alternative: 

  

1 1
1

min [ ( )] ,   where

[ ( )] = [ ( ), ( )] ( )

q k

k k k d k

L t

L t t t t
i

u
p

i
i

u

u g u x y

∈

+ +
=

⎧
⎪
⎨

−⎪
⎩

∑
s R            (16)  

It has been found that the problem can best be 
approached by using the structure of the integration-
based approach so that the process to find solutions is 
divided into two sub-processes: one-forward 
simulation to obtain x(tk+1) and then calculation of the 
solution u(tk) from Eq. (14) or Eq. (16) with the 
available values x(tk+1). In the case of the inverse 
simulation application it is assumed that only the input 
saturation conditions are of interest. Hence, for the 
method outlined here, the inequalities in Eq. (15) are 
solved by two-step transformations before the solution 
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process of Eqs. (14-16), as shown in the following 
[53]: 

Step 1- transformation of input constraints:  

The purpose of this step is to transform the original 
domain of the input variables into a new space before 
searching for the solution. The unconstrained input 
variables will be left alone. If an input variable is 
constrained by only a lower or an upper bound, a 
quadratic transformation will be performed by means 
of the following equations: 

if ( ) or ( )

0, otherwise

( ) or ( )

j k min,j j k max,j

a, j

a, j j k min,j a, j max,j j k

 t   t

 

t  t  

u u u u

u

u u u u u u

⎧ ≤ ≥
⎪⎪ =⎨
⎪

= − = −⎪⎩

       (17) 

where ua is the transformed input vector. If both the 
lower and upper bounds are required, a sin 
transformation can be defined as follows: 

if ( ) or ( )

/ 2 or / 2, respectively, otherwise

( )2 arcsin[ 1,(1,2 1) ]

j k min,j j k max,j

a, j a, j

j k min,j
a, j min max

max,j min,j

 t   t

    

t

u u u u

u u

u uu u u

≤ ≥⎧
⎪

= − =⎪
⎨
⎪ −

= ⋅ + − ⋅ −⎪ −⎩

π π

π

 (18) 

where the added term 2π is introduced to avoid 
problems at zero in the NM algorithm. If this is not 
done the initial simplex is vanishingly small. 

 
Step 2- solution finding by means of the NM 
algorithm: 

This step is used to transform the new input domain 
back into the original domain. However, this domain 
has been constrained before the each evaluation of the 
cost function or after the solution is finally found. 
Thus, based on the values transformed from Eq. (17) 
and Eq. (18), the actual input values for the NM 
algorithm have to be obtained by application of a 
second transformation. 

 
In the approach adopted [53], the unconstrained input 
variables remain unchanged. For the input variables 
that are constrained by only a lower or an upper 
bound, the transformation is applied as follows: 

For the lower bound : ( )

For the upper bound : ( )

2
b, j min,j a, j k

2
b, j max,j a, j k

t

t

u u u

u u u

= +⎧⎪
⎨

= −⎪⎩

          (19)                      

where ua is the transformed or finally calculated input 
values. If both the lower and upper bounds are 
required, a sin transformation can be defined as 
follows: 

For the lower and upper bounds :

1 {sin[ ( )] 1} ( )2b, j a, j k max,j min,j min,jtu u u u u

⎧
⎪
⎨

= ⋅ + ⋅ − +⎪⎩

  (20)                    

Thus the constrained conditions in the cost function 
may be been handled successfully by the above two 
steps. As a result, the transformed values ub,j are 
bounded for the NM algorithm. The final solutions 
from the NM algorithm have to be transformed back 
to the original domain by the second step. The above 
whole process can be illustrated by the following flow 
chart: 

 

 
Fig. 1 Flow chart for the constrained NM algorithm 
for the kth interval of the inverse simulation.  

The operation of the modified NM algorithm [52] 
which forms the basis of this approach can be 
summarised in the following way. This algorithm first 
characterises a simplex in q-dimensional space by q+1 
distinct vertices. Then, based on four rules that 
involve processes of reflection (ρ), expansion (χ), 
contraction (γ) and shrinkage (σ), a new point in or 
near the current simplex is generated at each step of 
the search. Afterwards, a new simplex can be 
constructed by replacing a vertex in the old simplex, 
after the function value at the new point is compared 
with the function's values at the vertices of the old 
simplex. This process is repeated until the diameter of 
the simplex is less than the specified tolerance. The 
solutions are thus found for the step under 
consideration. If each step converges successfully, the 
complete input time histories u(t) will be formed from 
the solutions obtained at each step.  

The values of the four important coefficients: ρ, х, γ, 
and σ used are those recommended by Lagarias et al. 
[52]. These are also almost universal choices for the 
standard NM algorithm and are 
            1 2 0 .5 0 .5ρ χ γ σ= = = =  

The initial guess values for uk+1,0 are the calculated 
values uk from the previous step. Thus, if the 
manoeuvre is smooth and continuous, this could be a 
good starting point. Even if discontinuous points are 
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included in this interval, the probability is still high 
that the NM algorithm can find a global solution 
because of the reduced vector space involved in the 
search (from uk to uk+1) instead of the whole space 
u(t). Hence, the problem of discontinuous points in the 
manoeuvre may be avoided.   

4 Discretization processes in inverse 
simulation 
Analysis of the inverse simulation process for the case 
of a nonlinear system of the type shown in Eqs. (2) 
and (3) is difficult. Therefore, it is more appropriate to 
first consider a linear system having the form shown 
in Eq. (21).  

x Ax Bu

y Cx Du

= +

= +

&
                                                       (21) 

where x is the vector of system state variables, u is the 
input vector, y is the output vector, and the matrices A, 
B, C, and D are the system matrices with the 
appropriate dimensions. 

The inverse simulation procedure based on the 
integration process may be divided into two stages: 
first the discretisation process and then the solution by 
means of the appropriate numerical algorithms. This 
division is useful because many other inverse 
simulation methodologies also involve a two-stage 
approach, using other numerical algorithms instead of 
the NR approach (e.g. [24-26], [28], [39]). The 
stability of the second stage usually relates to the 
numerical stability and convergence properties of the 
chosen algorithm itself. This involves numerical 
issues more than questions of dynamical stability. As 
a result, only the discussion of the first stage is 
presented and for the second stage convergence is 
assumed to be achievable. 

After discretizing Eq. (21), the following formulae can 
be obtained: 

1( ) ( ) ( )

( ) ( ) ( )

k k k

k k k

t t t

t t t

x Px Hu

y Cx Du

+ = +

= +
                              (22) 

where the terms P and H are: 

                  

0
( )

t

 t
t

 

e

e t

Δ

Δ

=

= ∫

A

A

P

H d B
                            (23) 

For the integration-based method the state variables 
are first updated using the fourth-order Runge-Kutta 
(RK) algorithm. If the RK algorithm is applied for the 
integration process of the right side of Eq. (23), Eq. 
(9) can be expressed by the following equation after 
transformation and simplification: 

1( ) ( , , ) ( ) ( , , , ) ( )k k kt M t t M t t+ = Δ + Δx Q A x W A B u     (24) 

where the variable M is the number of iterative RK 
steps for one integration step from tk to tk+1. The 
function Q is dependent on the algebraic relationship 
of the three variables A, M, and Δt. The function W 
also depends on the matrix B in addition to the three 
other quantities shown. When the value M is 
increased, the accuracy of the results from Eq. (24) 
will be improved at the cost of greatly increased 
complexity. If M tends to infinity, Eq. (24) will be 
identical to Eq. (22). It can thus be concluded that the 
inverse simulation approximates to the process of 
discretization and the accuracy of this approximation 
depends on the value of M. In addition, the zeros of 
the system in Eq. (22) can be relocated in the z-plane 
by varying the sampling rate Δt. In the practical 
inverse simulation process, the values A, B, and M in 
Eq. (24) are usually fixed. Hence, by changing the 
value Δt in Eq. (24), it may be possible to redistribute 
the zeros in the z-plane in Eq. (22) and to avoid the 
NMP problem.  

The application of the new method to the NMP 
problem can be explained as follows. Assume first 
that the system shown in Eq. (22) is a NMP system 
and has right half plane (RHP) zeros, regardless of the 
distribution of poles. This process of disregarding the 
poles is possible because only the RHP zeros will 
affect the dynamic stability of the inverse system. As 
mentioned above, by changing the value of Δt it is 
possible to move zeros originally in the RHP into the 
left-half plane (LHP). This can guarantee the stability 
of the inverse simulation process in terms of the 
system structure at the first stage. Hence, there may 
exist some sampling-rate intervals or critical Δtc 
values where the magnitudes of all the zeros are less 
than one. 

Moreover, even if some magnitudes are greater than 
unity, inverse simulation may still provide good 
convergence because of the fact that it approximates 
to but is not exactly the same as a traditional 
discretization process. However, it is difficult to 
obtain Δtc directly from Eq. (24) due to the 
complicated structures of the two functions Q and W. 
Furthermore, this complexity is greatly increased 
when the value of M is increased. In practical terms, 
Δtc can be obtained from Eq. (22) by plotting a 
diagram showing the distribution of magnitudes of 
zeros versus the sampling-rate variation. These values 
of Δtc can then be taken as the reference Δt values for 
Eq. (24). As M tends to infinity, values obtained from 
Eq. (22) should be quite close to those obtained from 
Eq. (24). 

The analysis presented in this section is different from 
that given by Yip and Leng [40]. They addressed the 
stability analysis using an assumption of fast 
convergence of the NR method instead of the two-
stage division. This assumption of fast convergence 
may not be appropriate for cases where the inverse 
simulation does converge but at a relatively slow rate. 
Moreover, their assumption is made for the case of 
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small Δt values. However, it is well known that small 
Δt values will lead to some numerical instabilities 
such as the high-frequency oscillations discussed 
previously [38]. Secondly, in practice, the assumption 
of the constant Jacobian matrix, or the existence of the 
direct analytic relationship between input and out, 
may not be satisfied for many situations [22, 23]. This 
assumption of small Δt values can be avoided entirely 
in the new approach described here. Thirdly, the two 
methods are based on different standpoints in terms of 
investigation of the stability of the inverse simulation 
process. The Yip and Leng approach [40] mainly 
focuses on the approximation of the NR algorithm. In 
contrast, the approach presented in this section is 
concerned more with the first stage- the discretization 
process.  

5 Applications 
The inverse simulation approach is illustrated here 
through a number of different applications to allow a 
more detailed description and demonstration of the 
methodology. 

5.1 A nonlinear minimum-phase system 

The simulation study selected here relates to a 
nonlinear longitudinal mathematical model of a fixed-
wing aircraft, the HS125 (Hawker 800) business jet 
[54]. It can be shown that the linearised model for this 
aircraft around the chosen equilibrium point is a 
minimum phase (MP) system since there are no right-
half-plane (RHP) zeros for this model. The thrust T 
(N) and the elevator angle δe (deg) act as the inputs for 
implementation of the algorithm for inverse 
simulation involving the NR approach. The 
manoeuvre conducted is a constant forward-speed 
hurdle-hop manoeuvre [20] in the z-x plane (altitude 
versus distance travelled). It may be characterised by 
the following polynomials: 

                         
3 2 3

1

( ) 64 ( ) 3( ) 3( ) 1 ( ) m

( ) 61.87m sd

d
m m m m

f

t t t tZ t h t t t t

V t −

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

= ⋅

         (25)  

where tm is the time to complete the manoeuvre and h 
is the height. This equation also shows that the total 
flight speed Vf remains constant during the 
manoeuvre. 

In this application the first priority is to define the 
calculated manoeuvre based on the vector relative 
degree, if it exists. Calculations show that the model 
has a vector relative degree [2, 1]. This means that the 
manoeuvre must be defined in terms of acceleration 
for application of the model inversion approach. To 
guarantee a fair comparison, the ideal manoeuvre is 
also defined as the acceleration in the inverse 
simulation, although it is not essential in this case. 
This is one of the advantages of implementation of 
inverse simulation to derive the require inputs. 

The simulation results are generated for the conditions 
defined below and are shown in Figs. 2 and 3. 

                        150 m; 500 mh  s  = =   
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a.) b.)  
Fig. 2: Inputs from inverse simulation (NR) and model 
inversion (MI) for the HS125 model for different Δt 
values. 

Figs. 2 and 3 show that for this case inverse 
simulation shows more accurate results compared with 
model inversion for the larger Δt values such as 0.01s 
and 0.02s. In Fig. 2, both methods obtain the same 
thrust (T) for all Δt values being investigated. 
However, for the elevator angle (δe) channel (Fig. 2a), 
there are differences between the results for Δt =0.01s 
and Δt =0.02s. The results from the forward 
simulation with these calculated inputs, as shown in 
Fig. 3, further illustrates the poor consistency of the 
model inversion for Δt =0.01s and Δt =0.02s. This 
approach only achieves good results for Δt =0.001s. 
However, use of this smaller Δt value means increased 
computation time. 
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Fig. 3: Comparisons of outputs from forward 
simulation for the ideal manoeuvre for the HS125 
model 

In addition to the increased accuracy for this case, 
compared with the model inversion techniques, 
inverse simulation is easier and more feasible in terms 
of implementation. Properties of the algorithm mean 
that there are no demands on the system in terms of 
the vector relative degree. It is therefore suggested that 
for MP systems, particularly for applications where 
the model is quite complex, such as in a helicopter or 
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ship model, it would be more convenient to adopt 
inverse simulation, by selecting a suitable sampling 
interval, rather than apply model inversion. The 
chosen Δt value should satisfy two important 
conditions: a.) to guarantee the convergence of the 
inverse simulation process; and b.) to ensure that the 
zeros in Eq. (24) remain within the LHP in the 
discretization process. These two requirements follow 
the property of the two-stage-division analysis, as 
already mentioned. The latter requirement must be 
included because inverse simulation approximates to 
the discretization process. 

5.2 A linear SISO nonminimum-phase system 

Consider a linear SISO NMP system given by the 
following four system matrices: 

[ ]

0 1 0 1
0 0 1 7
6 11 6 81

1 0 0       [0]

A B

C D

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

= =

                           (26) 

This system has two RHP zeros: 0.5000 ± 7.0534i. 
Obviously, the method of Devasia et al. [7], can be 
applied to overcome this NMP problem but it quite 
tedious and is also a noncausal  process. Instead, for 
implementation of the method outlined in Section 4 
above, a plot of the magnitude of the zeros versus Δt 
values is created, as shown in Fig. 4.  
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Fig. 4 Variation of magnitude of the zeros with Δt 

The interval over which the magnitudes of the zeros 
are smaller than one, can be determined directly from 
examination of Fig. 4. In this case the interval is [0.2s, 
0.46s]. For the interval [0, 0.2s], there are clearly 
zeros with magnitude slightly larger than one and for 
the range above 0.46s magnitudes again become 
greater than unit as the interval increases. The range of 
intervals that should be considered first for Δt in the 
inverse simulation algorithm is therefore [0.2s, 0.46s]. 
However, it should be noted that the interval [0.0.2s] 
may not necessarily be invalid and a trial and error 
process may be used to check whether or not it is 

usable. According to the analysis presented above, the 
inverse simulation approximates to but is not exactly 
the same as a traditional discretization process and the 
interval [0, 0.46s] therefore may be considered for the 
process of Δt value selection. Simulation results 
support the fact that the point 0.46s is a critical limit 
for convergence of the inverse simulation. However, 
in addition to the reasons relating to Fig. 4, 
convergence problems may also be linked to 
numerical limitations of the NR method implemented 
in the inverse simulation algorithm. Therefore, the 
critical point value 0.46s is a combination of effects 
from the discretization process and from the NR 
algorithm. The results with Δt values in the selected 
interval are shown in Fig. 5 for the hurdle-hop 
manoeuvre. 
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Fig. 5 Comparisons of results from inverse simulation 

with the different Δt values 

Fig. 5a shows that for the sampling rates 0.4s and 0.3s, 
the inverse simulation achieved perfectly bounded 
inputs. However, for Δt =0.01s the calculated input is 
combined with slowly increasing oscillations. This is 
consistent with the above analysis that states that the 
results obtained for values outside the interval [0.2s, 
0.46s] are of lower quality and even invalid compared 
with Δt =0.4s and Δt =0.3s. Furthermore, the poorer 
results of this case conflict with the traditional idea 
that smaller Δt values in discretization will lead to 
more accurate results [22]. 

An interesting phenomenon shown in Fig. 5b is that 
the results from the forward simulation with the three 
different calculated inputs completely satisfy the 
requirements for the ideal trajectory. This actually 
shows a multi-solution phenomenon with regard to the 
selection of the different Δt values for a NMP system. 
Therefore, special attention should be paid to deal 
with the selection of a suitable Δt value for a NMP 
system since this is a special case. All in all, this 
example demonstrates the validity of earlier 
statements concerning the application of inverse 
simulation to NMP systems.  

5.3 A linear MIMO nonminimum-phase system 

In this example, a helicopter model is implemented in 
terms of an eighth-order description representative of 
a combat helicopter similar to the Westland Lynx, 
linearised around the hover situation. The model has 
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the standard state space form. Its state variable vector 
x contains the following system variables : 

 

State  

Variables 
Description Units 

θ Pitch attitude rad 

φ Roll attitude rad 

p Roll rate rad · s-1 

q Pitch rate rad · s-1 

r Yaw rate rad · s-1 

U Forward 
velocity ft · s-1 

V Lateral 
velocity ft · s-1 

W Vertical 
velocity ft · s-1 

 

Table 1:  State variables for the Westland Lynx 
linearised helicopter model 

The four channels of heave velocity ( H& ), roll rate 
(p), pitch rate (q), and heading rate (Ψ& ) are selected 
to be the outputs. The inputs are the four basic control 
channels (i.e. main rotor collective pitch (θ0), main 
rotor longitudinal cyclic pitch (θls), lateral cyclic pitch 
(θlc), and tail rotor collective pitch (θtr)). The desired 
manoeuvres of these four channels are taken from the 
standard heave axis response (e.g. [55]) and redefined 
based on the latest version of the US Army helicopter 
handling qualities requirements ADS-33E-PRF [56]. 
The desired vertical rate response is thus defined as 
having the qualitative appearance of a first-order lag 
with an additional pure delay, as shown in Eq. (27). 
The other three channels p, q, andΨ&  are set to be 
zero in terms of their desired responses.   

0.16210( )
0.8225 1

sH s e
s

− ⋅=
⋅ +

&                                 (27)                                   

It can be shown easily that this Lynx-like model, for 
the chosen flight condition, has vector relative 
degree [ ]1 1 1 1=r . Thus, the inverse 
simulation is carried out using the first-order 
derivative of the variables for each channel for the 
chosen manoeuvre to get a more accurate Jacobian 
matrix by avoiding the traditional approximation 
method. The calculation to determine the zeros of the 
model has shown that the system has two RHP zeros 
and therefore is a NMP system. 

As previously explained, the first step is to plot the 
magnitude of the zeros in the z-plane versus the 
sampling rate Δt. After being discretized, the system 

has more than two RHP zeros. The results in terms of 
the magnitude plot are shown in Fig. 6. 
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0.99
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Δt,s  
Fig. 6  Magnitude variation of zeros with respect to 

the sampling interval Δt  

Fig. 6 shows the distribution of the magnitudes of the 
eight zeros of the discretized system of the Westland 
Lynx-like linearised model. The figure of eight zeros 
is determined from a series of discretization processes 
within the interval [0, 0.1s]. In addition, it can be seen 
from Fig. 6 that there always exist zeros whose 
magnitudes are larger than unity. Moreover, when the 
sampling time is increased, the magnitudes of the 
RHP zeros become larger. According to the previous 
suggestion, this means that to assure the convergence 
of the inverse simulation, small sampling intervals are 
preferred. Besides, the convergence of the NR 
algorithm needs to be taken into consideration. The 
final simulations have shown that inverse simulation 
can achieve convergence only when the Δt value is 
less than 0.05s. Thus 0.01t sΔ = is selected to ensure 
satisfaction of the combined requirements of accuracy, 
numerical stability and good convergence. The results 
from the simulation experiments based on this choice 
of Δt are shown in Figures 7 and 8.  
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Fig. 7 The calculated inputs from inverse simulation 

(Δt = 0.01s) 
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Fig. 8 Comparisons of the calculated outputs with the 

ideal manoeuvres (Δt = 0.01s) 

Figure 7 shows the inputs obtained from the inverse 
simulation. The amplitudes of these inputs are quite 
large and may not have physical meaning for the 
linear system which is being used as a benchmark. 
The main rotor collective pitch (θ0) first initiates a step 
input to produce vertical acceleration and then 
decreases to a steady value after a while in order to 
maintain the required heave velocity. Meanwhile, a 
step input in the tail rotor collective pitch (θtr) is 
applied to balance the main rotor effect. Coupling 
effects can also be observed in the main rotor 
longitudinal (θls) channel and the lateral cyclic pitch 
(θlc) channel to make the roll and pitch angles as small 
as possible. Fig. 8 shows good consistency between 
the ideal manoeuvres and results obtained from the 
forward simulation using those calculated inputs. The 
heave velocity ( H& ) follows the required step 
response while the other three channels involving  roll 
rate (p), pitch rate (q), and heading rate (Ψ& ) are kept 
at zero.  

These figures show that the inverse simulation can 
obtain perfect results regardless of the fact that the 
original system (for Δt =0.01s) has three RHP zeros 
with magnitudes very close to one. This is consistent 
with that fact, mentioned previously, that the inverse 
simulation process can be linked to the traditional 
discretization process. The latter process provides an 
analytical method for selecting a sub-optimal 
sampling interval or a reference interval for the 
inverse simulation. Trial and error may be involved in 
this process. Other tests have also been done and the 
results show that the inverse simulation algorithm can 
converge well, in this example, for values of Δt below 
0.05s. Beyond this critical point, the inverse 
simulation algorithm cannot converge.  
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Fig. 9 Iterations required in inverse simulation for 
each discretized step 

 

The iterative steps required during the inverse 
simulation process for this example are plotted in Fig. 
9 and this shows that the inverse simulation process 
needs at least seven steps for the NR algorithm to 
achieve convergence in the interval [tk, tk+1].  

5.4 An application with input saturation and 
discontinuous manoeuvres 

To compare the new NM algorithm with the NR 
method, one case study has been selected. It relates to 
the nonlinear Norrbin type of ship model which has 
been used extensively for ship manoeuvring studies 
involving both deep and confined waters (e.g. [57]). 
The structure of the Norrbin ship model can be 
represented by the following equation: 

              ( )NT H KδΨ + Ψ =&& &                             (28)                             

where δ and Ψ represents the rudder and heading 
angles, respectively. K and T are constants and the 
nonlinear term ( )NH Ψ& is defined as: 

  3 2
3 2 1 0( )NH α α α αΨ = Ψ + Ψ + Ψ+& & & &                   (29)                            

where αi ( 0,1,2,3i = ) are called Norrbin’s 
coefficients. For most ships, α3 = α2 = 0. Therefore, 
Eqs. (28) and (29) can be simplified to form Eq. (30):  

              3
1 2m d dδ = Ψ + Ψ + Ψ&& & &                     (30)                            

where
Tm
K

= , 1
1d

K
α

= , and 3
3d

K
α

= . These 

coefficients will vary according to chosen operating 
point in terms of the steady forward speed U. The 
coefficient values correspond to the forward speeds 
from 1 m/s to 20 m/s can be found in Table 2. Now 
Eq. (30) can be transformed into a state-space form, as 
shown in Eq. (31), for facilitating the investigation of 
inverse simulation. 
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1 2
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1
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x x
d dx x x
m m m
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= − − +

= −

&

&

&

δ

δ δ δ
τ

                              (31)                         

where x1 = Ψ and τ is the time constant. The third 
equation in Eq. (31) is related to the steering machine 
structure, as described in Fig.10, where the rudder and 
rudder rate limiters are involved in the model. 

In this model input saturation is included through 
limits on the rudder position and the rudder rate is also 
constrained, as shown in Fig. 10.  

1
s

maxδ&

1
τ

 
Fig. 10:  Diagram illustrating rudder amplitude and 
rate limit [57]. 

 

The value for the time constant τ in Eq. (31) is 
selected to be 1 s. The three kinds of manoeuvres 
investigated are the turning circle, a zigzag, and a 
pullout.  

A third-order reference model, as shown in Eq. (32), is 
used to generate the desired heading response.  

3 2
d m

r m m m

c
s a s b s c

Ψ
=

Ψ + + +
                 (32) 

where am, bm, and cm are constants. In the current 
application, these values are selected as follows [58]: 

0.9341,  0.2040 and 0.0182m m ma b c= = =                              

This choice of reference model can guarantee 
sufficient smoothness of the heading acceleration. 

 

 

 

 

 

 

 

 

 

 

 

U 

(m/s) 
T K m  d1  d3/K 

1 155.0 0.1 1550.0 10.00 100.00 

2 77.5 0.2 387.5 5.00 12.50 

3 51.7 0.3 172.2 3.33 3.70 

4 38.8 0.4 96.9 2.50 1.56 

5 31.0 0.5 62.0 2.00 0.80 

6 25.8 0.6 43.1 1.67 0.46 

7 22.1 0.7 31.6 1.43 0.29 

8 19.4 0.8 24.2 1.25 0.19 

9 17.2 0.9 19.1 1.11 0.14 

10 15.5 1.0 15.5 1.00 0.10 

11 14.1 1.1 12.8 0.91 0.07 

12 12.9 1.2 10.8 0.83 0.06 

13 11.9 1.3 9.2 0.77 0.05 

14 11.1 1.4 7.9 0.71 0.04 

15 10.3 1.5 6.9 0.67 0.03 

16 9.7 1.6 6.1 0.63 0.02 

17 9.1 1.7 5.3 0.59 0.02 

18 8.6 1.8 4.8 0.56 0.0171 

19 8.2 1.9 4.3 0.53 0.0146 

20 7.8 2.0 3.9 0.50 0.0125 

 

Table 2: Values of parameters of Norrbin model of 
ROV Zeefakkel for variation of forward speed U [58] 

                                                         

Inverse simulation has been carried out for a Norrbin 
type model of the ROV Zeefakkel (RZ) ship [58] with 
the forward speed U = 10m/s and the set heading 
angles are 20 deg and 50 deg. The quality of the 
results from inverse simulation has been validated by 
the feedforward simulation (FFS) with the calculated 
inputs. This procedure can be described by the 
following diagram: 

  
Fig. 11: Validation of the inverse simulation process  
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Fig. 12: Inverse simulation of the RZ ship without 

saturation limits (Δt =0.2 s, NR) 
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Fig. 13: Inverse simulation of the RZ ship without 

saturation limits (Δt =0.2 s, NR) 

As shown in Fig. 12 and Fig. 13, the results from the 
inverse simulation and the FFS agree well with each 
other for both heading angles of 20 and 50 degrees. 
The right-hand parts of Fig. 12 and Fig. 13 also 
contain results from three forward speeds (U = 3, 5, 10 
m/s). These results demonstrate the successful 
application of inverse simulation to the nonlinear RZ 
ship model without saturation limits. From these 
figures, it may also be seen that the rudder angles are 
beyond their limits for part of the time history for the 
case where U = 3m/s and also for U = 5m/s for a 
heading angle of 50 degrees. In addition, a further 
series of tests of inverse simulation based on both the 
NR and NM algorithms have been successfully run on 
the RZ model with the forward speeds varying from 1 
m/s to 20 m/s. The results are not presented here since 
they are similar to those shown in Figs. 12 and 13. 

Inverse simulation also has been investigated on the 
models with the saturation limits included. The rudder 
limit in this case is 35 degrees and the rudder-rate 
limit is 7 deg/s. This situation is quite different from 
the one without the limiters. The inverse simulation 
based on the NR algorithm fails to converge for the set 
heading angle of 20 deg if the forward speed U is less 
than 9 m/s, or for the set heading angle of 50 deg if U 
is less than 15 m/s. This problem of convergence 
failure is a well-known feature of the NR algorithm 
when saturation limits are reached.  In this application 
it arises to a considerable extent from the fact that the 
inputs or the rate of change of inputs required to track 
the ideal manoeuvres become larger as the forward 
speed decreases, as is clearly shown in Fig. 12 and 

Fig. 13. In addition, the larger the required heading 
angle the larger will be the required control effort. 
Therefore, the case of the set heading angle of 50 deg 
will show problems of convergence failure at a larger 
value of speed compared with the case of the set 
heading angle 20 deg. 

However, the inverse simulation based the NM 
algorithm, which was developed to overcome the 
problem of input saturation, can be used to deal with 
this kind of situation. Two typical cases with forward 
speeds 3 m/s and 8 m/s have been investigated. As 
mentioned above, the NR algorithm failed for both 
cases. The results from simulations are shown in Fig. 
14 and Fig. 15. 
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Fig. 14: Inverse simulation of the RZ ship with 

saturation limits (Δt =0.2 s) using the NM algorithm 
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Fig. 15: Inverse simulation of the RZ ship with 

saturation limits (Δt =0.2 s) using the NM algorithm 

Fig. 14 shows that the NM-based approach achieves 
good convergence. For a heading angle of 20 deg and 
the forward speed 8 m/s, the required input is within 
the saturation limits, as shown in Fig. 14a and the 
trajectory from the FFS also complies well with the 
ideal manoeuvre in Fig. 14b. However, the rate limit 
value for the rudder on this vessel is 7 m/s and the 
rates encountered without the limiting reached 34 m/s. 
Therefore, it is not the rudder amplitude limiter but the 
rudder-rate limiter that leads the NR-based approach 
to fail to converge. For a heading angle 20 deg and the 
forward speed 3 m/s, the amplitude of the required 
input reaches the saturation level at two periods 
around the time points 8 and 20 seconds. These 
saturations further lead to the slight discrepancy 
between the results of the FFS and the ideal 
manoeuvre, as shown in Fig.14b. In addition, the input 
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result shows an oscillatory shape in this case, which is 
also shown in the results of the FFS. 

The situation becomes worse for the case where the 
heading angle of 50 deg is considered. Fig. 15a shows 
that the results are affected by high-frequency 
oscillations after the 22 second time point, although 
the case for U = 8m/s does converge. However, the 
smooth results from the FFS comply with the ideal 
manoeuvre, as shown in Fig. 15b. This may be due to 
the filtering effect of the model. The case of u = 3m/s 
is quite challenging since the required inputs are 
significantly larger. The inverse simulation process is 
in the saturation state during two long periods, shown 
in Fig. 15a and this naturally leads to a large 
discrepancy from the ideal manoeuvre shown in Fig. 
15b. 

 It can be concluded, from the evidence in this 
example and from other case studies, that the results 
show that the new method of inverse simulation 
provides better convergence and numerical stability 
for cases involving input saturation or discontinuous 
manoeuvres than traditional inverse simulation 
methods. However, for severe manoeuvres such as the 
zigzag and complex models such as the AUV, a multi-
solution phenomenon may appear in the results. 

It is suggested that the multi-solution phenomenon has 
potential advantages in dealing with control 
reallocation and may allow the optimal control effort 
to be found by modification of the cost-function 
definition. In addition, the NM method can form a 
useful reference method that can allow a better 
understanding of some numerical problems associated 
with the other commonly used methods.  

6 Discussion 
This paper has reviewed some aspects of inverse 
simulation, putting emphasis on a number of methods 
that have been applied successfully in the past to a 
range of practical applications, drawn mainly from the 
aeronautical engineering field. Particular emphasis has 
been placed on methods of inverse simulation that are 
based on use of an integration algorithm in 
conjunction with the Newton-Raphson (NR) technique 
for determination of the input needed to achieve a 
specified output. These techniques are widely used 
and have been applied successfully to a range of 
problems. Numerical and other limitations have been 
discussed and a number of different linear and 
nonlinear examples have been considered. 

It has been shown that for a suitable discretization 
interval, for the case of minimum phase (MP) systems, 
inverse simulation can provide results that are almost 
identical to those obtained by model inversion. This 
was illustrated by the application involving the 
nonlinear HS125 fixed-wing aircraft model. For linear 
non-minimum-phase (NMP) systems, the results 
shown that inverse simulation can be used 
successfully for causal calculation of inputs. In 

addition, compared with model inversion, the inverse 
simulation process is easier and more feasible in terms 
of practical implementation for such cases. 

Analysis has shown that the inverse simulation 
process can be viewed as depending upon zero 
redistribution and this provides a useful link between 
the linear inverse system and its discrete counterpart 
in a mathematical sense. This has been successfully 
demonstrated using the example of the eighth-order 
linear Lynx-like helicopter model. However, the 
investigation of inverse simulation for the case of 
nonlinear NMP systems requires further consideration. 

A two-stage approach to inverse simulation has been 
presented which is more general and less restricted 
than previously implemented methods. It does not 
require assumptions of a constant Jacobian matrix or 
fast convergence. While other methods (e.g. [40]) 
focus on the approximation of the NR algorithm the 
emphasis in this paper is on the approximation to the 
discretization process. As a result it can be concluded 
that the stability of the whole inverse simulation 
process is affected both by the discretization process 
and the NR algorithm. 

In the control field, it is well known that the 
performance of a controller may be degraded if the 
control system designer fails to take account of input 
saturation effects. These exist in real physical systems 
due to inevitable limitations of mechanical or 
electrical sub-systems. However, in the inverse 
simulation field, few previous investigations have 
given particular consideration to situations involving 
saturation constraints or discontinuities in the model 
and manoeuvres. 

In fact, limit effects present a challenge to traditionally 
established approaches, involving not only the 
integration-based approaches but also the 
differentiation-based methods and some optimisation 
approaches (e.g. [26], [27]). All these techniques 
involve derivative or gradient information since these 
approaches depend on continuous and smooth 
properties of the model and the manoeuvre for inverse 
simulation.  

To avoid the above problems and achieve increased 
numerical stability with additional physical insight, a 
new algorithm for inverse simulation based on the 
constrained Nelder-Mead (NM) method has been 
outlined. It is well known that the NM algorithm can 
handle discontinuities satisfactorily, particularly if 
they do not occur near the optimum solution. 
Furthermore, the derivative-free property can facilitate 
investigation of some of the numerical issues that exist 
in the more traditional inverse simulation methods.  
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