
COMPUTATIONAL SPEED ON THE

MULTIPROCESSOR ARCHITECTURE AND GPU

Peter Kvasnica
1
, Igor Kvasnica

2

1
Alexander Dubcek University of Trencin, Faculty of Mechatronics,

Department of Informatics,

Študentská 2, 911 50 Trenčín, Slovak Republic
2
Regional Department for Environment Issues of Trencin

 Hviezdoslavova č. 3, 911 00 Trenčín, Slovak Republic

kvasnica@tnuni.sk (Peter Kvasnica)

Abstract

The article deals with the design of parallel computing in computer’s systems of a simulator.

The concept is based on computers that create a distributed computer system in the network

and on the other side computer with support GPU. In both cases this information system is

created by computers and the program applications of the mathematical models. The

important part of this article describes time scheduling of simulation. The first time is

scheduling time of the simulation processes running on the computer. The second time is

interrupt latency for control signals in computer. The third time is latency over the network

that means transfer n-bytes from one computer to the other one computer. It explains the

benefits GPU computing with tasks, scheduling and parallel execution mathematical models

of simulator. Mathematical modeling is the art that is able to transform a point from original

application into theoretic area to mathematical formulations for numerical analysis. The

significant part of this article describes the implementation of distributed mathematical model

with computation implemented by single-processor architecture in network, the cluster

computing and single-processor architecture with support GPU. Modeling processes of

simulator computer with GPU in opposition to cluster’s computers, create a time benefit.

Keywords: Computation resources, Parallel computing, Processor - CPU, Graphic

processor unit – GPU, Mathematical model.

Presenting Author’s biography

Peter Kvasnica. Is the deputy director of the Centre of Information

Technologies at Alexander Dubček University of Trenčín. He has been

involved in research on mathematical models and programming virtual

reality applications. He graduated from University of Technology in

Brno (VUT Brno), in the field of study: digital computers. He was

awarded the degree of Doctor of Philosophy (PhD.) at M. R. Štefánik

Military Academy of Aviation in Košice, in the specialization in

computer science application. He has been involved in the development

of special adapted mathematical models of objects from the point of view

of programming and use of distributed computer system in flight

simulators for real-time applications. He is interested in software tools

for parallel programming MPI, Open MP and information about Open

CL for creation GPU software application.

1 Introduction

These sophisticated models enable us to build systems

that simulate complicated models. These systems

require an enormous amount of computational

resources. We typically satisfy these needs by

parallelizing our computations across high

performance computing. Definition parallel means

that not only can they take advantage of the multiple

cores on a CPU but that they can also take advantage

of the tenths of cores on a GPU.

The GPU application runs in background and is able

to start several threads with low priority to handle

incoming requests. The user volunteering his

computer is not bothered too much [1].

At its core parallel computing is using multiple

computational resources in parallel to solve a

computational problem. The goal of solving

computational problems in parallel is to save time.

Parallel computing is used in the areas such as

mathematical simulation, graphics processing, and

computation in the field of finance, data mining,

seismology, mathematics and physics just to name a

few [3].

A CPU (Central Processing Unit) functions via

executing a sequence of instructions. These

instructions reside in some sort of main memory.

Typically go through four distinct phases during their

CPU lifecycle: fetch, decode, execute, and writeback.

During the fetch phase the instruction is retrieved from

main memory and loaded onto the CPU. Once the

instruction is fetched it is decoded or broken down

into an opcode (operation to be performed). Once it is

determined what operation needs to be performed the

operation is executed. This may involve copying

memory to locations specified in the instructions

operands or having the ALU (arithmetic logic unit)

perform a mathematical operation. The final phase is

the writeback of the result to either main memory or a

CPU register. When the writeback is completed, the

entire process repeats. These four phases have some

important impact on the computation speed.

To make their CPUs faster chip manufacturers started

to create parallel execution paths in their CPUs by

pipelining their instructions. Pipelining allows more

than one step in the CPU lifecycle to be performed at

any given time by breaking down the pathway into

discrete stages. This separation can be compared to an

assembly line, in which an instruction is made more

complete at each stage until it exits the execution

pipeline and it is returned [2].

The simulation of decomposited mathematical models

can be created using parallel computer architecture.

This parallel computer architecture can be based on

the multiprocessors and nowadays especially on the

multi core processors, resp. computing with support

GPU and CUDA standard.

2 Distributed Mathematical Model

We get linear, manageable, dynamic system connected

to the model [4]:

),()()(ttt BuAxx

 ,tt Cxy

 ,0xx t (1)

where: A is an n x n matrix, B is an n x m matrix, D is

an r x n matrix, x is an n x l matrix, u is an m x l

matrix, y is an r x l matrix (columns).

When we try and make the task easier in the way that

we will focus on the object of the control, the equation

(1) can have a general shape:

 .ui BAxx i (2)

According to the given facts the equation (2) can be

expressed [3]:

 .

4

3

2

1

4

3

2

1

44434241

34333231

24232221

14131211

4

3

2

1

u

b

b

b

b

x

x

x

x

aaaa

aaaa

aaaa

aaaa

x

x

x

x

(3)

Let us decompose the given system into four

subsystems. The first one shall be the subsystem of

state variable ẋ1, the second ẋ2 and the third ẋ3 ones

shall be a subsystem of performing items, noise and

failures of the apparatus shall be measured by the

fourth one ẋ4.

The state space is divided into 4 parts :

 ,,.,,,,, 443322114321

TT
xxxxxxxx xx

 (4)

where xij represent the items of a state vector

derivation. The value i represents order in state vector,

then j stands for sequential number of the item in the

given subsystem. The architecture of the system

matrix A in the state space after carrying out

multiplication the following shape can be formed [5]:

,41431321211111 xaxaxaxax

 ,42432322212122 xaxaxaxax

 (5)

.44434324214144 xaxaxaxax

3 Computational speedup factor

To achieve speeds higher than scalar chip

manufacturers started to embed multiple execution

units in increasing their degree of parallelism. In a

superscalar pipeline, multiple instructions are read and

passed to a dispatcher, which decides whether or not

the instructions can be executed in parallel. If they

are dispatched to available execution units, resulting

in the ability for several instructions to be executed

simultaneously. In general, the more instructions a

javascript:void(0)

superscalar CPU is able to dispatch simultaneously to

waiting execution units, the more instructions will be

completed in a given clock cycle. By using

techniques like instruction pipelining and adding

multiple execution units nowadays CPUs have

significantly increased their degree of instruction

parallelism, however, they still lag far behind GPUs as

discussed below [2].

To compare heterogeneous CPU/GPU architectures in

their speed, we need to use a different metric than

their clock speed. The industry accepted measure is

FLOPS (FLoating point Operations Per Second).

From the Fig 1 above we can see that Intel’s

Harpertown chips have about an 80 GFLOP rating

while Nvidia’s most powerful card shipping today

offers just of a Terra FLOP worth of computational

capacity. According to this chart the GPU is 10 times

faster than the CPU [1].

Fig 1. Power response to Intel Core2 Duo and

Harpertown versus Nvidia cards

A GPU is a special purpose processor, known as a

stream processor, specifically designed to perform a

very large number of floating point operations in

parallel. These processors may be integrated on the

motherboard or attached via a PCIExpress card.

Modern GPUs typically contain several multi

processors each containing many processing cores.

Today’s high end cards typically have gigabytes of

dedicated memory and several hundred processors

running thousands of threads all dedicated to

performing floating point math [2].

As an example of power we compare the CPU model

running on 2.4 GHz Intel Core2 Duo E6600 to a GPU

model running on an Radeon X1950Pro card. As the

chart clearly shows the GPU can perform this

particular algorithm close to more 10x faster than the

CPU. We’re using a double precision algorithm for

this comparison and the Radeon GPU is not very fast

at double precision Math right now.

4 Potential Increased Computational

Speed

With the advent of multi-core chips – from the

traditional AMD and Intel multi-core to the more

exotic hybrid multi-core of IBM Cell and many-core

of AMD/ATi and NVIDIA graphics processing units

(GPUs) – parallel computing across multiple cores on

a single chip has become a necessity. However,

parallel computing on a large-scale supercomputer is a

challenging endeavor from the perspectives of ease of

access, ease of programming, and cost.

A significantly more cost-effective solution is general-

purpose computation on graphics processing units

(GPU), also known as video cards. With the peak

floating-point performance of a GPU now exceeding a

teraflop (tera floating-point operations per second),

the GPU delivers supercomputing in a small and

economical package [6].

As mentioned in the section above, real-time

Windows/Linux extensions are a convenient way to

apply quick and deterministic response for interrupts

on standard thread kernels. We decide for real-time

application interface, which inserts an additional

scheduler between the already existing one and the

hardware layer.

General MPI program structure consists of three

steps: initializing of MPI environment, scientific work

with message passing calls and terminating MPI

environment (see pseudo-code in Fig 2.).

MPI_Init()

...

MPI_Barrier()

//central node is 0

if (processor == 0){

 // data collect. + visualis.

} else {

 switch (processor)

 {

 case 1:

ModellingEquation1(); break;

 case 2: ModellingEquation2();

break;

 case 3: ModellingEquation3();

break;

 case 4: ModellingEquation4();

break;

 }

}

MPI_Finalize()

Fig 2. Parallel through network

The application program resides in the normal user

space and calls MPI_Init() to start a message transfer

over the synchronisation network. The application is

then registered at real-time application interface and

can further use Inter-Process-Communication (IPC)

functionality. A signal is released for either a Sending-

Thread (SndThread) in case of data transfer or a

Trigger-Thread (TrigThread) in case of Trigger data.

Receiving a message from the NIC works in the

opposite way, whereby a signal is omitted by the

Receiving Thread (RcvThread) each time a

communication is completed [4].

javascript:void(0)

4.1 Multi-core processor

The multi-core processor is a processing system

composed of two or more independent cores. One can

describe it as an integrated circuit to which two or

more individual processors (called cores in this sense)

have been attached. The cores are typically integrated

into a single integrated circuit die (known as a chip

multiprocessor or CMP), or they may be integrated

onto multiple dies in a single chip package. A many-

core processor is one in which the number of cores is

large enough that traditional multi-processor

techniques are no longer efficient — this threshold is

somewhere in the range of several tens of cores — and

probably requires a network on chip[10].

PC users are running multiple, intense software

applications simultaneously and demanding more on

hardware resources. In office, computer usage has

changed from data entry and word processing to e-

Commerce, online collaboration and an ever-

increasing need for continual security and virus

protection. In the home, interests have shifted from

low-bandwidth photos and Internet surfing to

downloading and viewing high definition videos as

well as advanced photo and video editing. In science

computers are used for parallel applications and

simulation mathematical models.

4.2 Graphic processor unit

Our initial exploration of mapping Graphics

Environment Manger (GEM) to the GPU was

conducted through the high level abstraction of MS

Visual 2008 SDK, also known as OpenCL, on a

machine with a Radeon X1950Pro GPU running

Windows XP with SP3. The OpenCL (Open Compute

Language) is an open standard for parallel

programming of heterogeneous systems, managed by

the Khronos Group. OpenCL supports a wide range of

applications, from embedded and consumer software

to HPC solutions, through a low-level, high-

performance, portable abstraction. By creating an

efficient, close-to-the-metal programming interface,

OpenCL will form the foundation layer of a parallel

computing ecosystem of platform-independent tools,

middleware and applications.

The calculation of mathematical models (e.g. aircraft)

via an analytical approach implemented in source

code described above has a very useful property of

parallel across all the points of reference are

calculated. In addition to this, each thread can be

computed as a reduction, a sum to be specific, of a set

of completely independent calculations on each model

allowing for multiple dimensions of parallelism [6].

Such manner has efforts to exploit the thread for non-

graphical applications such simulation of

mathematical models. By using high-level shading

languages such as DirectX, OpenGL, OpenCL and

Brook+, various data parallel algorithms have been

ported to such systems. Problems such as protein

folding, stock options pricing, SQL queries, and MRI

reconstruction achieved remarkable performance

speedups on the computation system.

5 Speedup Factor in Concurent

processes

An important influence on the simulation speed of

mathematical models has interrupt and scheduling

latency, and network latency in network simulaltion.

All computers run a Windows operating system with a

SystemResponsiveness extension that allows for

smallest possible interrupt latencies. This key contains

a REG_DWORD value named SystemResponsiveness

that determines the percentage of CPU resources that

should be guaranteed to low-priority tasks. For

example, if this value is 20, then 20% of CPU

resources are reserved for low-priority tasks. The

framework designed provides functions for sending

and receiving data packages as well as a user interface

to program the trigger behaviour of the simulation.

Three different types of latencies can be distinguished

in a computer simulation:

 Network latency: Time difference between

sending a single byte and receiving it.

 Interrupt latency: Amount of time that

elapses between the physical interrupt signal

being asserted and the interrupt service

routine running.

 Scheduler latency: Interval between a

wakeup signaling that an event has occured

and the operating system scheduler getting the

opportunity to schedule the application that is

waiting for the wakeup to occur.

Time scheduling latency on processor in network

0

0,00005

0,0001

0,00015

0,0002

0,00025

0,0003

0,00035

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Time of one processor instruction in [ns]

C
o

m
p

u
ti

n
g

 I
n

te
g

ra
ti

o
n

 t
im

e
 i

n
 [

s
]

800 inst

1000 inst

1200 inst

1400 inst

Fig 3. Time dependence scheduler latency, interrupt

latency and network latency

5.1 Processes running at the Network (cluster)

Three different types of latencies can be distinguished

in a computer simulation network:

 Network latency.

 Interrupt latency.

http://en.wikipedia.org/wiki/Processor
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Die_(integrated_circuit)
http://en.wikipedia.org/wiki/Chip_carrier
http://en.wikipedia.org/wiki/Network_On_Chip

 Scheduler latency.

The interrupt latency component is much smaller than

latencies caused by operating system schedulers.

Therefore, the interrupt service routine, which reads

data from the computer network and stores them into a

buffer. Upon completion of a transmission of several

bytes, the written buffer is read out by the user

application. The amount of latency for a n-byte long

message from one computer to another over the

network is given by

 ,* ,,, NetwSIntSSchedSS TnTTT (6)

TS,Sched is the scheduler latency, TS,Int is the interrupt

latency, and TS,Netw is the latency over the network for

receiving n-byte [5].

The picture shows scheduling time of simulation

process. The simulation process means scheduler

latency consist from the different number of

instruction, 800, 1000 and etc. These instructions

represent numeric methods for solving differential

equations. The equations describe the distributed

mathematical model, rewriting in part 2.

5.2 Processes running at the multi-core processor

Two different types of latencies can be distinguished

in a computer simulation:

 Interrupt latency.

 Scheduler latency.

The interrupt latency component is much smaller than

latencies caused by operating system schedulers.

Upon completion of a transmission of several bytes,

the written buffer is read out by the user application.

The amount of latency is given by

IntSSchedSS TTT ,, (7)

TS,Sched is the scheduler latency, TS,Int is the interrupt

latency, see Fig 4.

Time scheduling latency on multi-core processor

0

0,00005

0,0001

0,00015

0,0002

0,00025

0,0003

0,00035

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Time of one processor instruction in [ns]

C
o

m
p

u
ti

n
g

 I
n

te
g

ra
ti

o
n

 t
im

e
 i

n
 [

s
]

800 inst

1000 inst

1200 inst

1400 inst

Fig 4. Time dependence scheduler and interrupt

latency

The picture shows scheduling time of simulation

process. The simulation process consists of the

different number of instruction, 800, 1000 and etc.,

that define instruction of mathematical model. These

instructions represent numeric methods of solving the

distributed mathematical model.

5.3 Processes running at the GPU

The ―processor‖ used in the X1950 Pro is based on an

8-vertex 36-pixel shader configuration. The pipeline

configuration the X1950 Pro is based on the RV570

core is built with the X1950 Pro in mind. With the

introduction of the X1950 Pro will be phased out. We

would like to say that the X1950 Pro has the same

core clock speed as the X1900 GT, but the issue is a

little more complicated.

We are using the same Intel Core 2 E 6600 setup for

this article that has been used for over past months.

Driver revisions haven't changed since our X1950 Pro

article, and we will be looking at the same resolution:

1280x1024 in our application. Here's the breakdown

of the hardware used.

Tab. 1 Hardware parameters graphic cards [11]

 ATI
X1900 GT

ATI
X1950 Pro

Interface PCI-E 16x PCI-E 16x

RAMDAC 2 X.400 MHz 2 X.400 MHz

T&L DirectX 9.0c DirectX 9.0c

Pixels Pipelines 36 36

Vertex Pipelines 8 8

Embarked memory 256 Mo 256 Mo

Interface memory 256 bits 256 bits

Band-width 35,8 Go/S 44,1 Go/S

Frequency GPU 575 MHz 575 MHz

Frequency memory 600 MHz 690 MHz

Two different types of latencies can be distinguished

in a computer simulation:

 Interrupt latency.

 Scheduler latency.

The interrupt latency component is much smaller than

latencies caused by operating system schedulers. The

simulation speed is 8x faster than the simulation on

the CPU. Upon completion of a transmission of

several bytes, the written buffer is read out by the user

application. The amount of latency for a n-byte

message from one machine to another over the

network is given by

OutSInSSchedSS TTTT ,,, (8)

TL,Sched is the scheduler latency, TL,In is the date

interrupt latency for writing data to the GPU, and

TL,Out is the date interrupt latency for reading data

from the GPU. Time dependences are in next picture.

The picture shows scheduling time of simulation

process. The simulation process consists of the

different number of instruction, 800, 1000 and etc.,

that define instruction of mathematical model.

Time scheduling latency on GPU processor

0

0,000005

0,00001

0,000015

0,00002

0,000025

0,00003

0,000035

0,00004

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Time of one processor instruction in [ns]

C
o

m
p

u
ti

n
g

 I
n

te
g

ra
ti

o
n

 t
im

e
 i

n
 [

s
]

800 inst

1000 inst

1200 inst

1400 inst

Fig 5. Time dependence scheduler and interrupt

latency

Our results prove that there is no difference between

simulation mathematical models by computers in

network and simulation by multi-core processor. It’s

due to the fact that small data range are transferred

between computers in network. The amount of data

reaches the number of more than hundred bytes and

time need for transfer in network 100 Mb/s is

neglectable. Speed-up in simulation mathematical

models by graphics processing unit is approximately

by 8x higher than the one in two previous methods. It

is due to the architecture of the scalar computing.

We will also be testing the same three simulation

methods that have been employed for the past few

projects. In future we will see an exciting change in

our benchmarking lineup as we are preparing new

applications or computing to be benchmarked. Expect

to see the latest self on the art and their way into our

test suite in the near future. For now, sit back, relax,

and enjoy the soothing experience that is benchmark

analysis.

Acknowledgement: This work has been supported

by the grant VEGA 1/0330/09.

6 References

[1] Mengotti, T. : GPU, a framework for distributed

computing over Gnutella, Master Thesis in

Computer Science, ETH Zűrich, Switzerland,

March 29, 2004.

[2] CUDA / OpenCL Computing: [online]

http://www.openclcomputing.com/GPGPU101.m

ht.

[3] Confessions of a Speed Junkie [online]

http://openclcomputing.com/index.php/componen

t/content/article/5-general/2-confessions-of-a-

speed-junkie.

[4] Clark, R., N.: Control System Dynamics, First

Published, Cambirdge University Press, New

York, USA, 1996.

[5] Driels, M.: Linear Control Systems Engineering,

McGraw-Hill Inc., San Francisco, USA, 1996.

[6] Anandakrishnan, R.: Accelerating Electrostatic

Surface Potential Calculation with Multiscale

Approximation on Graphics Processing Units.

Department of Computer Science, Virginia Tech

2050 Torgersen Hall (0106), Blacksburg, VA

24061 USA.

[7] Griesser, A, Luc Van Gool1: RTSyncNet - A

_exible Real-Time Synchronisation Network for

Cluster based Vision- and Graphics-Architectures.

ftp://ftp.vision.ee.ethz.ch/publications/proceeding

s/eth_biwi_00336.pdf.

[8] NVIDIA’s Next Generation CUDATM Compute

Architecture:[online]

http://www.nvidia.com/content/PDF/fermi_white

_papers/NVIDIA_Fermi_Compute_Architecture_

Whitepaper.pdf.

[9] Huges, C., Huges, T.: Parallel and Distributed

Programming Using C++. The Safari Press:

Addison-Wesley Professional, 2003, ISBN 978-

0-13-101376-6.

[10] Programming Strategies for Multicore Processing:

Data Parallelism : [online]

http://zone.ni.com/devzone/cda/tut/p/id/6421.

[11] ATI Radeon X1950 Pro full specification :

[online]. http://xtreview.com/review154.htm.

http://openclcomputing.com/

