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Abstract: This paper presents a strategy for modeling and simulation of the 
hydro-energetic dam dynamics. The useful information for the evaluation of 
the mathematical models is represented by a data  set  collected for twenty 
years from one of the hydro-energetic systems in Romania. The results of our 
work allow the evaluation of the present state of this system and offer some 
important  information  for  the  computer  aided  design  of  similar  systems. 
These  results  have  been obtained  using software  tools  dedicated  to  data 
acquisition, modeling, identification and simulation.  
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1. INTRODUCTION

Two procedures of evaluating the mathematical 
models  of  the  dynamics  of  a  hydro-energetic 
dam  have  been  proposed.  These  procedures 
were used in order to study the hydro-energetic 
systems  in  Romania  (Tarnita  dam)  and  they 
consist of:

1)  A  global  evaluation  of  a  non-linear 
multivariable  stationary  model  for  slows 
variations  in  the  evolution  of  the  whole 
observation interval (data measurement between 
1989 and 2009).  The solution of this problem 
was  given by the  off-line identification  Least-
Squares  method  (LS).  The  structure  of  the 
global model, which describes the deviation of 
the dam, is constructed based on three important 
factors:  time-evolution  of  the  phenomenon 
(consolidation  or  degradation  trends), 
hydrostatic  and  thermal  effects,  respectively 
(Gentil S. and Popescu D. 1998).

2) A partial evaluation of the dynamical models 
on  five  observation  intervals.  The  input  data 
measurement (u (k) -  the hydrostatic pressure) 
and  the  output  of  the  system  (y  (k) -  the 
deviation of the dam) is divided in five partitions 
in order to  apply a usual identification method, 
Recursive Least-Squares (RLS). The parametric 
estimation  for  a  partition  is  used  for  the 
initialization of the next one. According to  this 
method,  the  final  estimation  gives  out  the 
dynamics of the system for the whole period of 
time  (Isermann,  1986;  Bittanti  and  Lovera, 
1997, Soderstrom and Stoica, 1989; Astrom and 
Nilsson, 1994).

2. ANALYSIS OF THE MULTIVARIABLE 
MODEL

We consider the superposition of the main three 
states:
- An irreversible state for the time-evolution of 
the  phenomenon;  this  evolution  can  be 
redeemable (a  consolidation  trend)  or  become 
accelerated (degradation);
- A reversible state according to the hydro-static 
pressure at the level h of the water in the dam;

-  A  reversible  state  in  order  to  consider  the 
effect  of  the  temperature  repartition  θ in  the 
dam.

The definition of the model is based on the sum 
of these three independent effects. We define 3 
functions: f1 (t), f2 (h), f3 (θ), so that the value of 
the deviation Y is:

               Y = f1 (t) + f2 (h) + f3 (θ) +ε           (1)
With  t,  h,  θ  the  values in the  corresponding 
measurement  day  and  ε includes  the 
experimental errors and all the other side effects.

2.1 Mathematical structure of the model

The  experience  on  the  dam  deviation 
phenomenon leads to the following structures of 
the functions:

1) f1(t) function
The  formula  includes  a  negative  exponential 
term for modeling of the redeemable evolution 
and a positive exponential term representing the 
accelerated evolution:

                   f1(t)=b1exp (-t)+b2exp(t)            (2) 

2) f2 (h) function
The modeling of the hydro-static pressure in the 
dam is obtained by using a 4-degree polynomial 
function with the flood-level variable  Z defined 
by  Z=  (RN-h)/H,  where  h is  the  level of  the 
water in the dam, RN is the normal level and H is 
the altitude of the dam.

            F2(Z)=b3Z+b4Z2+b5Z3+b6Z4 (3)

This flood-level variable counts values between 
0 and 1 and sets the full-state of the dam as the 
reference hydrostatic state (f2 (Z) =0 for  Z=0 it 
means h=RN).

3) f3 (θ) function
The thermal state  of the dam is practically the 
same, each year, at the same date and depends 
only on  the  season  variable S.  The  seasoning 
function  used  instead  of  the  thermal  function 
f3(S) is a periodic function of time. The variable 



S is an angle starting at 0 degrees for the 1st of 
January and ending at 360 degrees for the 31st of 
December.  A  cosine  function  in  S with  an 
unknown  phase  φ is  used  in  addition  with  a 
cosine function in 2S with an unknown phase φ 
for modeling the possible dissymmetry.

       f3(S) =α cos (S+φ) +β cos (2S+φ)
(4)

2.2 Global model representation

For obtaining a stochastic consistent set of data 
we used:
-  Exponential  filtering  for  excluding 
measurement errors;
- Filtering noise measurement;
-  A  reduction  for  the  time  variable  in  the 
function  f1 (t) based on the arbitrariness of the 
time-origin for  the  accelerated  and redeemable 
evolutions in this function. The reduced function 
has the form:

f1 (t) =b1exp (-t)/exp (-t1) +b2exp (t)/exp (t2), (5)

With  t1 -  a  data  in the  proximity of  the  first 
measurement and  t2 -  a data  at  the end of the 
year corresponding to the last measurement;
- The developing of the function f3(S) in terms of 
the seasoning variable S:

f3(S)=b7cos(S)+b8sin(S)+b9sin2(S)+b10sin(S)cos(S) (6)

We consider  the  hydro-energetic  system as  an 
input-output system with the inputs z (z1, z2, z3), 
where  z1 is  the  time,  z2 is  the  hydrostatic 
pressure at the level h and z3 is the temperature. 
The output  y is the deviation of the dam. With 
these considerations the non-linear structure of 
the multivariable model of the dam deviation is:

( ) ( ) ( ) ( )332211ˆ zfzfzfzy nnn ++= (7)

or, using the following substitutions:

x e z
1

1= − x z6 1
4=

x ez
2

1= x z7 3= cos

x z3 1= x z8 3= sin
(8)

x z4 1
2= x z9

2
3= sin

x z5 1
3= x z z10 3 3= sin cos ,

We obtain a linear model ( )xŷ .

2.3 Identification of the model parameters

The  method  used  here  is  the  Least-Squares 
method.  We show the linear case by using the 
inputs of the model.

Let us consider a process with  n inputs,  x=(x1,  
x2... xn) and the output  y. After the synchronous 
acquisition of measurements we have the data in 
a matrix form:
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Where:
Xm is the matrix of the inputs
Y is the output vector.
xij is the value of the component j (j=1, n) for 

the measurement i (i=1,N),
yi is  the  value  of  the  output  for  the 

measurement i (i=1,N).

We associate to this process the linear model of 
parameters b̂ :

            ( ) xbxbxy T
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After  computing  the  estimation  b  it  is 
necessary  to  validate  the  model.  In  the  case 
when the model cannot be validated we have to 
use  an  adaptive  procedure  in  order  to  re-
estimate  the  parameters.  We  introduce  the 
significant  index  R2 in  order  to  measure  the 
precision degree of modeling:
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In this relation we have:
yi  - The output value computed for the model 

(10) with yi the value of the process output for 
the measurement i,
y  -  The  mean  value  of  the  outputs  of  the 

process:
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If the value of R2 is in the interval (0.7, 1) then 
the model can be validated. The validation of the 
results given by the parameters estimation b  is 
made using the index R2.

The results shown in the Appendix 1 (for n=10 
inputs and M=1200 measures) were obtained in 
simulation with our software package (SISCON) 
using the LS method for the multivariable non-
linear case.

3. DISCRETE TIME MODELS 
EVALUATION

In this section first we will consider the hydro-
energetic  system in a  continuous  input-output 
form given by: the input  u(t) (the level of the 
water in the dam), the output  y(t) (the deviation 
of the dam) and p(t) the disturbance (a random 
process for modeling the effect  of the exterior 
temperature and the other seasoning phenomena 
with thermal and hydro-dynamic effects).

3.1 The structure of the discrete time models

We associate with the above mentioned process 
a dynamical discrete-time model:

( ) ( ) ( ) ( ) ( ) ( )B q y k A q u k C q e k− − −= +1 1 1 , (13)

 Where:

u(k) -  the  set  of  the  discrete  values of  the 
input u(t),

y(k) -  the  set  of  the  discrete  values of  the 
output y(t),

e(k)  -  a  white-noise  signal  generating  the 
discrete values for the disturbance p(t).

The input  u (k) is a measurable perturbation for 
the  open-loop  system.  For  this  structure  we 
propose an efficient procedure for estimating the 
parameters  of  the  discrete-time  model  (the 
evaluation of the polynomial coefficients of A (q-

1), B (q-1), C (q-1)), using the RLS method.

3.2 RLS parameter estimation

The  strategy  of  parametric  evaluation  uses 
recursive adaptive estimation techniques. If we 
denote by ( )θ k +1  the vector of the estimation, 
by ( )φ k the vector of data and by ( )ε k +1  the 
prediction error, the recurrent relation is:

( ) ( ) ( ) ( ) ( ) θ θ φ εk k F k k k+ = + + +1 1 1 .(14)

F(k+1) is the matrix of the adaptive gains at each 
step  of  modifying  the  parameters  ( )θ k .  The 
recurrent relation for F(k) is:

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )F k F k
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1
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with the  initialization  ( )F I0 =α ,  α > 0  and  I 
the  unit  matrix.  The  algorithm  of  adaptive 
parameterization may be initialized by ( )θ 0 0= , 
when we don’t  have any information about  θ 
(Dauphin-Tanguy, et al., 2004).

Concluding, the identification of the dynamical 
model’s parameters by the RLS method uses the 
following equations:

( ) ( ) ( ) ( ) ( ) θ θ φ εk k F k k k+ = + + +1 1 1

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )F k F k

F k k k F k

k F k k

T

T+ = −
+

1
1

φ φ
φ φ

(16)

( )F I0 =α , α > 0



3.3 Validation of the discrete time models

Considering the random disturbance as a white 
noise, we can perform the validation test, based 
on  the  whiteness  of  the  prediction  error,  by 
controlling  the  values  of  the  auto-correlation 
function given by:

( ) ( ) ( )[ ] ( ) ( )[ ]R i M e k e k i
N

e k e k i
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i
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=
∑lim

1

1

 

(17)

Where  R (i)  is the  covariance  function  (auto-
correlation)  for  a  deviation  of  sequence  e (k) 
with i steps. The covariance is:

( ) ( )
( )RN i

R i

R
=

0
          (18)

For  a  Gaussian  white-noise  the  sequence  of 
these  variables is independent,  and due  to  the 
ergodic  character  of  the  random process,  the 
validation test is:

RN (0) =1 and RN (i) =0, 1,i k= .

In practice, the test conditions are: 

RN (0) =1 and ( ) iiRN γ≤  withγ i ≤ 01. .

In the study case of Tarnita dam we proposed a 
2nd order discrete-time model with:

( )A q a q a q− − −= + +1
1

1
2

21 ;

( )B q b q b q− − −= +1
1

1
2

2 ;
(19)

( )C q c q c q− − −= +1
1

1
2

2

The  initialization for  ( )θ0  was  chosen  in the 
origin of the parameter space, with ( )F I0 =α  (
α = 1000 ). The simulated results were obtained 
by  PIM  software  for  experimental  recursive 
identification and they are presented in Appendix 
2 (Landau, 1995).

4. CONCLUSIONS

A global model describing the evolution of the 
deviation of the hydro-energetic dam has been 
evaluated from data measured between 1989 and 
2009. The evolution has a stabilization tendency.

The  analysis  of  the  results  obtained  from the 
global  model  proves  that  the  studied  hydro-
energetic system has a slow evolution with the 
trend to a stationary position. A dynamic model 
for each of the five intervals of interest has been 
obtained  by  using  experimental  recursive 
techniques (RLS).

The evaluation of the behavior of the dam using 
dynamical models for these intervals shows some 
non-periodical  evolutions  characterized  by 
inertia  in  addition  to  an  effect  of  inverse 
response model. The effect of inverse response 
model denotes that a good consolidation system 
can be realized not  on the back, bat  on lateral 
sides of the dam.

All  this  information  has  been  used  for  the 
evaluation of the dam dynamic phenomena and 
for  the  present  design and exploitation  of  the 
hydro-energetic systems in Romania.

Appendix 1. The results of the evaluation of the  
global model using the LS off-line method

The evolution interval for the data measurement 
is  11/11/1989-12/29/2009.  For  modeling  the 
irreversible evolution of the dam in the reduced 
form (the function f1 (t)) we use:
• t1 -  the  data  of  the  first  measurement 

(11/12/1985);
• t2 -  the  data  of  the  last  measurement 

(12/29/2005).

The  polynomial function  f2 (Z)  was  computed 
using the formula:

                 Z= (RN-h)/H, with RN=521.5, H=97.

The results of the global model parameters are 
illustrated in Table 1.

Table   1   Parameters ‘values  
Estimated 
parameter

Value

b0 -41.445
b1 12.818
b2 -5.142
b3 -37.740



b4 414.231
b5 -1279.173
b6 994.583
b7 -1.395
b8 -7.060
b9 -1.245
b10 -0.206

Index R2 0.916
The  output  evolutions  of  the  dam deviation  y 
and its identified model are presented in Fig. 1.

Fig. 1. Output for the dam ( y ) and its model ( ŷ
).

Appendix 2. The results of the evaluation of the  
discrete time models using the RLS method

For five intervals of time, we have computed the 
coefficients of the polynomials A (q-1), B (q-1), C 
(q-1),  it means the discrete-time model on each 
interval and the values for the normalized auto-
correlation  functions  associated  with  these 
models.

• Interval 1: 11/12/1989 - 07/04/1993

A(q-1) B(q-1) C(q-1)
a1=-3.68 b1=-106.74 c1=-0.324
a2=2.688 b2=107.81 c2=0.088
RN(0
)

RN(
1)

RN(2) RN(
3)

RN(4)

1.00
0

0.03
3

-
0.026

0.06
8

-
0.002

• Interval 2: 07/13/1993 - 12/24/1996

A(q-1) B(q-1) C(q-1)
a1=-1.39 b1=-0.128 c1=-0.47
a2=0.40 b2=-7.588 c2=0.05

RN(0
)

RN(1) RN(2) RN(
3)

RN(4)

1.00
0

0.015
5

-
0.007

0.02 -0.07

• Interval 3: 12/27/1996 - 08/31/2000

A(q-1) B(q-1) C(q-1)
a1=-0.98 b1=1.31 c1=-0.03
a2=-0.006 b2=-11.44 c2=0.02

RN(0
)

RN(1) RN(2) RN(
3)

RN(4)

1.00
0

-
0.004

0.000
2

0.06 0.027

• Interval 4: 09/01/2001 - 05/02/2004

A(q-1) B(q-1) C(q-1)
a1=-0.819 b1=3.593 c1=0.172
a2=-0.169 b2=-12.659 c2=-0.002

RN(0
)

RN(1) RN(2) RN(
3)

RN(4)

1.00
0

-
0.001

-
0.007

0.02 0.045

• Interval 5: 05/16/2005 - 12/29/2009

A(q-1) B(q-1) C(q-1)
a1=-1.124 b1=3.342 c1=-0.108
a2=0.126 b2=-4.203 c2=0.021

RN(
0)

RN(1
)

RN(2) RN(3) RN(4
)

1.00
0

0.000
5

-
0.000
9

-
0.005
2

0.006
2
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