
STABILITY AND CONVERGENCE OF THE
MODERN TAYLOR SERIES METHOD
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Brno University of Technology, Faculty of Information Technology
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Abstract

The paper deals with extremely exact, stable and fast numerical solutions of sys-
tems of differential equations. In a natural way, it also involves solutions of prob-
lems that can be transformed to solving a system of differential equations.
The project is based on an original mathematical method which uses the Taylor
series method for solving differential equations.
The Taylor Series Method is based on a recurrent calculation of the Taylor series
terms for each time interval. Thus the complicated calculation of higher order
derivatives (much criticized in the literature) need not be performed but rather
the value of each Taylor series term is numerically calculated. Another typical
algorithm is the convolution operation. Stability and convergence of the numer-
ical integration methods when the Dahlquist problem is solved, Taylorian initial
problems with automatic transformation, stability and convergence of a system
of linear algebraic equations and stability and convergence when algebraic and
transcendental equations are solved will be discussed in the paper.
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Jiřı́ Kunovský graduated at Brno University of Technology, in 1967. Dur-
ing most of his time at BUT he has taught and directed research in Com-
puter Science, specially in simulations of “Security-Oriented Research in
Information Technology”. He has created the simulation language TKSL.
He has presented the work on the Modern Taylor Series Method and the
simulation language TKSL at many occasions at home and abroad.



1 Introduction - Taylorian Initial Prob-
lem

An important part of the newly developed Taylor Se-
ries Method (Modern Taylor Series Method) is an auto-
matic integration order setting, i.e. using as many Tay-
lor series terms as the defined accuracy requires. Thus
it is usual that the computation uses different numbers
of Taylor series terms for different steps of constant
length. On the other hand, for a pre-set integration or-
der, the integration step length may be selected. This
fact positively affects the stability and speed of the com-
putation.

An automatic transformation of the original problem
(when stability and convergence are computed) is a nec-
essary part of the Modern Taylor Series Method. The
original system of differential equations is automati-
cally transformed to a polynomial form, i.e. to a form
suitable for easily calculating the Taylor series forms
using recurrent formulae.
As an example, a transformation into polynomial form
the following initial problem

x′1 =
1

sinx1
, x1(0) =

π

2
(1)

is presented. Putting

1

sinx1
= x2

we can construct

x′1 = x2 x1(0) =
π

2
(2)

x′2 = −x32 cos(x1) x2(0) = 1

Putting x3 = cos(x1), x4 = sin(x1) we obtain a Tay-
lorian initial problem

x′1 = x2 x1(0) =
π

2

x′2 = −x32·x3 x2(0) = 1 (3)
x′3 = −x2·x4 x3(0) = 0

x′4 = x2·x3 x4(0) = 1

We can see that all the expressions on the right-hand
sides of (3) are polynomials.

The idea of the automatic transformation requires the
software capable of automatic performing the decom-
position of the right-hand sides of ordinary differential
equations. This new approach has been implemented in
a simulation language TKSL (an implementation of the
Modern Taylor Series Method on a personal computer).
In fact, the well-known rules of differential and integral
calculus have been used.

2 Stability and Convergence
Both attributes, the stability and convergence have been
analyzed for well-known Dahlquist problem [1]

y′ = λy, y0 = 1, λ < 0 (4)

with well-known exact solution

y = y0e
λt (5)

Numerical solution using explicit Taylor series is in the
form

yn+1 = yn + hy′n +
h2

2
y′′n + · · ·+ hk

k!
y(k)n

yn+1 = yn + hλyn +
h2

2
λ2yn + · · ·+ hk

k!
λkyn

yn+1 =

k∑
i=0

(λh)i

i!
yn (6)

where h is an integration step.

Similarly implicit Taylor series is in the form

yn+1 = yn + hy′n+1 +
h2

2
y′′n+1 + · · ·+ hk

k!
y
(k)
n+1

yn+1 = yn + hλyn+1 +
h2

2
λ2yn+1 + · · ·+ hk

k!
λkyn+1

yn+1 = (

k∑
i=0

(−λh)i

i!
yn)
−1 (7)

Let z = λh, then the stability function is R(z) = yn+1

yn
.

The stability domain is defined as R(z) < 1. Stability
domain for some well-known numerical methods are in
Tab. 1.

Tab. 1 Stability functions

method R(z)

explicit Euler method 1 + z

implicit Euler method 1
1−z

Trapezoidal method 1+z/2
1−z/2

explicit Taylor method 1 + z + z2

2! + · · ·+
zk

k!

implicit Taylor method 1

1−z− z2

2 −···−
zk

k!

Eq. (4) becomes stiff if λ << 0. In all computations,
the constant λ = −100. The general approach to the so-
lution of stiff differential equations is to use implicit nu-
merical methods. Numerical methods and their stability
and convergence will be a part of this section. Typical
results of our analysis are in Fig. 1 - 9. Functions of
time of numerical solutions of the Dahlquist problem
for exact solution, implicit Taylor method (ORD = 9),
implicit Euler method (ORD = 1) and Trapezoidal
method are presented in Fig. 1. An abbreviation ORD
is used for the method order (for example ORD = 9
means that nine terms of the Taylor series are used for
computation). As expected, there are some oscillation
when Trapezoidal method is used. Implicit Taylor of
ORD = 9 has nearly the same quality of computation
as the exact solution of the Dahlquist problem (5).
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Fig. 1 Numerical solution of Dahlquist problem (λ =
−100, h = 0.1)

Well-known stability domain of the implicit Euler
method is presented in Fig. 2.

Fig. 2 Stability domain for implicit Euler

Similarly, expected stability domains of the Trapezoidal
method and the implicit Taylor method (ORD = 9) are
in Fig. 3 and Fig. 4.

On the contrary, the well-known results of the explicit
integration methods are presented in Fig. 5 (explicit
Euler), in Fig. 6 (explicit Taylor of ORD = 2) and in
Fig. 7 (explicit Taylor of ORD = 3).

The comparison of stability domains of the explicit Tay-
lor method of ORD = 63 and implicit Taylor method
of ORD = 63 can be seen in Fig. 8 and Fig. 9. Details
will be discussed during the presentation.

3 Systems of Linear Algebraic Equations
In the previous section the stability domains of chosen
methods have been presented. In this section the sta-
bility and the idea of solving the system of linear alge-
braic equations will be discussed. Again the stability
and convergence of the system are closely connected.

Fig. 3 Stability domain for Trapezoidal method

Fig. 4 Stability domain for implicit Taylor ofORD = 9

Systems of linear algebraic equations (SLAE) can be
also solved by the Modern Taylor Series Method. In
this case the system of linear algebraic equations

Ax− b = 0 (8)

must be transformed to a system of differential equa-
tions (SDE)

Ax− b = −x′. (9)

Supposing that the real parts of roots of the characteris-
tic equation

| A− λI |= 0, (10)

where I is the unit matrix, are negative, the derivatives
on the right-hand side of the system (9) will be equal
to zero in a stable state and the solution of the SLAE
will be identical with the solution of the system of dif-
ferential equations (SDE). It has been shown that the
solution of the regular matrix A of the system of lin-
ear algebraic equations is stable and it converges to the
expected (exact) solution.



Fig. 5 Stability domain for explicit Euler

Fig. 6 Stability domain for explicit Taylor ofORD = 2

Since not every matrix A satisfies the condition (10),
the system of differential equations (8) has to be trans-
formed to a stable system. One of the ways to do this
is to multiply the whole system of algebraic equations
by transposed matrix AT from left, so that the actual
system to be solved is

ATAx−ATb = −x′. (11)

If the matrix A is non-singular, which is a general con-
dition for a SLAE to have a solution, the resulting ma-
trix ATA is positively definite.

The matrix A is real, thus ATA is positively stable and
so is the system (11). A transformation performed by
multiplying A by the transposed matrix AT has a spe-
cial property - the resulting functions resemble a strong
attenuation.

The source code of the TKSL solution of 10 algebraic

Fig. 7 Stability domain for explicit Taylor ofORD = 3

equations is in 3.1 Example. An easy strategy of multi-
plication by transposed matrix can also be seen.

3.1 Example

var
q1, q2, q3, q4, q5, q6, q7, q8, q9, qA,
x1, x2, x3, x4, x5, x6, x7, x8, x9, xA;

const
dt=0.1, eps=1e-20, tmax=29,

a11=1, a12= 1, a13= 1, a14= 1, a15= 1, a16= 1,
a17= 1, a18= 1, a19= 2, a1A=3, b1=-5,
a21=1, a22=-2, a23= 1, a24= 4, a25= 1, a26=-5,
a27= 1, a28= 3, a29= 1, a2A=1, b2= 7,
a31=2, a32= 1, a33= 3, a34= 1, a35=-1, a36= 1,
a37=-3, a38= 1, a39= 4, a3A=1, b3=-2,
a41=1, a42=-1, a43= 1, a44=-1, a45= 1, a46=-3,
a47= 1, a48= 1, a49=-1, a4A=1, b4= 8,
a51=1, a52= 2, a53= 3, a54=-3, a55=-2, a56=-1,
a57= 1, a58= 2, a59= 3, a5A=4, b5=-1,
a61=5, a62= 3, a63= 1, a64= 1, a65= 3, a66= 2,
a67= 1, a68= 1, a69= 1, a6A=1, b6= 5,
a71=3, a72= 1, a73= 1, a74= 2, a75= 3, a76= 3,
a77= 2, a78= 1, a79= 1, a7A=2, b7=-1,
a81=4, a82= 5, a83=-2, a84=-2, a85= 2, a86= 6,
a87= 3, a88=-1, a89= 1, a8A=1, b8= 3,
a91=1, a92= 1, a93= 7, a94=-3, a95= 2, a96= 1,
a97= 2, a98=-3, a99=-5, a9A=2, b9= 8,
aA1=7, aA2=-2, aA3=-2, aA4=-3, aA5=-4, aA6=-3,
aA7=-1, aA8= 1, aA9= 2, aAA=1, bA= 5;

system
q1 = a11*x1+a12*x2+a13*x3+a14*x4+a15*x5+a16*x6

+a17*x7+a18*x8+a19*x9+a1A*xA-b1;
q2 = a21*x1+a22*x2+a23*x3+a24*x4+a25*x5+a26*x6

+a27*x7+a28*x8+a29*x9+a2A*xA-b2;
q3 = a31*x1+a32*x2+a33*x3+a34*x4+a35*x5+a36*x6

+a37*x7+a38*x8+a39*x9+a3A*xA-b3;
q4 = a41*x1+a42*x2+a43*x3+a44*x4+a45*x5+a46*x6

+a47*x7+a48*x8+a49*x9+a4A*xA-b4;
q5 = a51*x1+a52*x2+a53*x3+a54*x4+a55*x5+a56*x6

+a57*x7+a58*x8+a59*x9+a5A*xA-b5;
q6 = a61*x1+a62*x2+a63*x3+a64*x4+a65*x5+a66*x6

+a67*x7+a68*x8+a69*x9+a6A*xA-b6;



Fig. 8 Stability domain for explicit Taylor ORD = 63

q7 = a71*x1+a72*x2+a73*x3+a74*x4+a75*x5+a76*x6
+a77*x7+a78*x8+a79*x9+a7A*xA-b7;

q8 = a81*x1+a82*x2+a83*x3+a84*x4+a85*x5+a86*x6
+a87*x7+a88*x8+a89*x9+a8A*xA-b8;

q9 = a91*x1+a92*x2+a93*x3+a94*x4+a95*x5+a96*x6
+a97*x7+a98*x8+a99*x9+a9A*xA-b9;

qA = aA1*x1+aA2*x2+aA3*x3+aA4*x4+aA5*x5+aA6*x6
+aA7*x7+aA8*x8+aA9*x9+aAA*xA-bA;

x1’= -(a11*q1+a21*q2+a31*q3+a41*q4+a51*q5+
a61*q6+a71*q7+a81*q8+a91*q9+aA1*qA) &0;

x2’= -(a12*q1+a22*q2+a32*q3+a42*q4+a52*q5+
a62*q6+a72*q7+a82*q8+a92*q9+aA2*qA) &0;

x3’= -(a13*q1+a23*q2+a33*q3+a43*q4+a53*q5+
a63*q6+a73*q7+a83*q8+a93*q9+aA3*qA) &0;

x4’= -(a14*q1+a24*q2+a34*q3+a44*q4+a54*q5+
a64*q6+a74*q7+a84*q8+a94*q9+aA4*qA) &0;

x5’= -(a15*q1+a25*q2+a35*q3+a45*q4+a55*q5+
a65*q6+a75*q7+a85*q8+a95*q9+aA5*qA) &0;

x6’= -(a16*q1+a26*q2+a36*q3+a46*q4+a56*q5+
a66*q6+a76*q7+a86*q8+a96*q9+aA6*qA) &0;

x7’= -(a17*q1+a27*q2+a37*q3+a47*q4+a57*q5+
a67*q6+a77*q7+a87*q8+a97*q9+aA7*qA) &0;

x8’= -(a18*q1+a28*q2+a38*q3+a48*q4+a58*q5+
a68*q6+a78*q7+a88*q8+a98*q9+aA8*qA) &0;

x9’= -(a19*q1+a29*q2+a39*q3+a49*q4+a59*q5+
a69*q6+a79*q7+a89*q8+a99*q9+aA9*qA) &0;

xA’= -(a1A*q1+a2A*q2+a3A*q3+a4A*q4+a5A*q5+
a6A*q6+a7A*q7+a8A*q8+a9A*q9+aAA*qA) &0;

sysend.

Results of solutions of the 3.1 Example are in Fig. 10.
A nice property of the method can be specified, the sta-
ble state for regular matrix does not depend on initial
conditions. Thus it is very easy to confirm the same sta-
ble state result for any change of initial conditions. This
might be useful for large systems of algebraic equa-
tions. For the completeness, the case of singular matrix
A of the system of linear algebraic equations is also
presented.

Fig. 9 Stability domain for implicit Taylor ORD = 63

Fig. 10 Regular matrix

The result of solution of system of algebraic equations
with singular matrix can be seen in Fig. 11. All vari-
ables are the same as in 3.1 Example, only new coef-
ficients are set to a11 = 1, aA2 = a12, · · · , aAA =
a1A, bA = b1. Solutions for zero initial conditions are
at the upper part of Fig. 11. Solutions for all initials
conditions set to -10 are at the bottom part of Fig. 11.
There are reasonable changes in stable states and thus
singular system is detected.

4 Algebraic and Transcendental Equa-
tions

In this chapter a special method to find the real roots of
an explicit set of algebraic (or transcendental) equations
is described.

When applicable, the simplest method to obtain solu-
tions f(x) = 0 is to draw a graph of f(x) and read the
roots.



Fig. 11 Singular matrix

As an example the Chebyshev polynom

f(x) = 256x9 − 576x7 + 432x5 − 120x3 + 9x

is analyzed for xε < 0, 1 >.

The first root of the equation is obviously x1=0.

Computation with an automatic stop at finding roots can
be used with advantage. The following nonlinear equa-
tion of movement pertaining to the solution x is defined
as

dx

dt
= λf(x), (12)

when λ is a suitable positive or negative number. The
root is found when dx

dt = 0.

The following computation scheme is used:

• λ is set at λ = + 1. The system (12) is displaced
from the initial stable state (from the first equa-
tion root x1 = 0) to a new “non-stable” state such
as x(0)=0.005. Fig. 12 plots the substitute so-
lution x (for x(0)=0.005). The new stable state
x2 = 0.342020143325669 is found.
• λ is set at λ = - 1. The system (12) is dis-

placed from the previous stable state (from the

equation root x2 = 0.342020143325669) to a new
“non-stable” state such as x(0)=0.36 and x3 =
0.642787609686539 is found.

Similarly x4 = 0.866025403784439 and x5 =
0.984807753012208 have been obtained.

Fig. 12 An automatic stop

5 Summary
Stability and convergence of the numerical integration
methods for the Dahlquist problem, Taylorian initial
problems with automatic transformation, the system of
linear algebraic equations and algebraic and transcen-
dental equations have been discussed in the paper. The
“Modern Taylor Series Method” also has some proper-
ties very favourable for parallel processing. Many cal-
culation operations are independent making it possible
to perform the calculations independently using sepa-
rate processors of parallel computing systems.
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