
COMMUNICATION EFFICIENCY AND PATTERN
OPTIMIZATION IN FPGA ACCELERATED RTL

SIMULATION
Steffen Köhler, Jan Schirok, Rainer G. Spallek

Institute of Computer Engineering
Technische Universität Dresden

D-01062 Dresden, Germany

stk@ite.inf.tu-dresden.de(Steffen Köhler)

Abstract

For verification of complex RTL circuit models, simulation efficiency can be in-
creased through the application of FPGA accelerators and their integration into
software-based environments. However, this integration requires both RTL model
partitioning and data exchange between these partitions mapped either to fast
FPGA hardware or to traditional software based RTL simulators. Beside the hard-
ware execution benefits, the acceleration degree of the entire simulation process
heavily depends on the organization of the inter-partitioncommunication scheme,
which is strongly related to the particular transfer patterns. In this paper, a novel,
highly efficient communication scheme named interaction-based modeling is in-
troduced and evaluated against widely used non-overlapping and transaction level
modeling (TLM [1]) methods. Applying the new model to typical communication
patterns mainly found in stream processing applications, we could decrease the
number of transfered events, thus gaining an overall simulation speedup over the
simple communication model. In terms of simulation parallelization and acceler-
ation, the interaction-based modeling can compete with TLMmethods, without
requiring a high modeling effort. In contrast to TLM, the interaction-based com-
munication provides a versatile and less abstract interface model, which allows
more flexible partitioning and requires significantly less FPGA resources. Real-
world simulation results have been obtained from a RTL simulation prototype
platform, which is also described in this paper.

Keywords: RTL Simulation, FPGA Accelerator, Communication, Partitioning

Presenting Author’s Biography

Steffen Köhler is a research and teaching staff member of the Department
of Computer Science at the Technische Universität Dresden. He received
his Diploma (Dipl.-Inform.) in Computer Science and his Doctoral degree
(Dr.-Ing.) in Computer Engineering in 1992 and 2009 respectively. His
research interests include the analysis and optimization of data and instruc-
tion streams in embedded processors as well as trace data reconstruction
and simulation.



1 Introduction

The ever growing complexity of VLSI systems raises
the demand to accelerate RTL-based simulations. Be-
side the concept of complete FPGA-based emulation,
the migration of partitions of a RTL model to FPGA
hardware can be considered a promising alternative. In
contrast to expensive emulation platforms, less sophis-
ticated FPGA-based systems and prototyping platforms
are a cost effective solution for simulation accelera-
tion in small to medium scale VLSI designs. These
systems are easily integrated into commercially avail-
able RTL simulators, thus improving simulation speeds
within a familiar working environment. As a result, the
design cycle will be shortened significantly, allowing a
faster achievement of design goals and time-to-market
requirements.

The partitioning of the hardware design, however, in-
troduces an additional step to the design process, which
may complicate the FPGA-based acceleration of RTL
simulations. The suitability and flexibility of the com-
munication interface for a sufficiently large class of par-
titioning tasks is essential for an efficient mapping of
RTL design partitions to FPGA hardware. The achieve-
ment of a highly-parallel operation of all partitions can
be considered a main goal of our coupling approach.
Thus, it is essential to keep the communication latency
low, while trying to maximally overlap transfers to hide
latencies. To reduce the amount of inter-partition data
to be transfered, the communication protocol has to be
kept as simple as possible. Complex transaction ori-
ented communication (TLM) significantly limits parti-
tioning possibilities and requires an explicit design of
an abstract communication model.

Besides timing information, our proposed interaction-
based method does not further encapsulate transfered
data, so as to require a less complex signal coding and
decoding scheme within the FPGA hardware and sim-
ulation software. Since it provides a less abstract inter-
face, the interaction based method shows a reduced par-
titioning and generalization effort as compared to TLM
approaches, while achieving an almost equal simulation
efficiency, but without requiring costly coding and de-
coding blocks.

Possible disadvantages of inefficient partition coupling
should be especially avoided when high data-rate, flow-
oriented RTL components have to be verified by using
off-the-shelf simulation tools. This can be considered a
typical case of media and telecommunication process-
ing applications. In our paper, we therefore extract rel-
evant communication patterns that can be adapted to
particular partitioning and simulation tasks. Through
a formalization of directional initiations and reactions
of a simple, non-overlapping communication channel,
a new parametrizable communication model is created
and evaluated.

2 Related Work

Improving the performance of RTL simulations using
tailored hardware is established both in commercially

available emulator devices as well as in smaller pro-
totyping platforms. Emulators are for example Men-
tor Graphics Veloce [2] and Cadence Incisive Palla-
dium [3]. These devices have a broad range of applica-
tions and have great speedups compared to completely
software-based simulators. Apparently, the mentioned
emulators are high-end and also cost-intense.

Less expensive hardware solutions incorporate a FPGA
based hardware accelerator which is coupled to a PC
running the software-based simulator. A common way
to integrate the FPGA hardware is the use of standard
system interfaces such as PCI. Simple interface con-
cepts [4] do not pay much attention to the communi-
cation scheme. As the output pattern of the design
under verification (DUV) highly influenced the simu-
lation acceleration, a proper partitioning was critical
for improvements of simulation speed. Data exchange
between the two partitions was only done on changes
of the signals, effectively limiting the amount of data
transferred.

Other FPGA-based solutions exist, which provide a
special clock acceleration mode [5]. Through this tech-
nique, the data exchange between DUV and host PC
can be skipped during certain simulation periods. A
significant speeding up of the simulation process can be
achieved in most cases, provided the fact that the peri-
ods to skip are known to the developer. No formalism is
provided to automatically find those periods which ef-
fectively limits the use for this method to special cases
where a lot of knowledge about the simulated compo-
nents must be provided for large speedups with accurate
simulation results.

When debugging hardware designs, short turn-around-
times, e.g. times for one test-run with changed HDL
sources including test-time and synthesis, are vital for a
productive working environment. This would imply the
avoidance of hardware re-compilation in as many cases
as possible [6]. Using generic interfaces between the
designed entities, most modules can be left in hardware
while some modules, for which the HDL source has
changed, may be simulated in software. The generic in-
terfaces provide a possibility to change the actual loca-
tion of each module, whether simulated in hardware or
software while not changing the overall working model.
The more modules will be run in software, the less
speedup for a test-run can be accomplished, but no ad-
ditional synthesis times are needed in this case. The
use of the generic interfaces is essential for this kind of
simulation, either by using them in the first place or by
their later automated addition.

A further interesting way of debugging hardware de-
signs is the replication of a simulated design entity in
an FPGA [7]. The original design is directly verified
against a simulation testbench, while for the replicated
design the inputs are delayed by N clock cycles. If an
error occurs in the design, which can be triggered by
the original design, its cause can be traced back in the
replicated design. The solution highly depends on the
knowledge of the FPGA internals in order to read out
the state of the replicated design. Especially for long



Fig. 1 Interaction-based Communication Scheme

simulation times, the described method can be applied,
giving a high simulation speed during the initial phase
until the error occurs.

3 Interaction-Based Communication
For a problem outline, assume a partitioning into two
design parts each containing circuit components to be
verified and a simulation flow on register transfer level
(RTL). This exchanges data between the partitions us-
ing simple binary logic levels (ones and zeros), which
might be a limitation for handling multi-value represen-
tations including uncertain or tri-state values. As ex-
plained later, this is not a significant limitation of our
concept because only binary logic levels will represent
meaningful data.

For the interaction based communication, the data ex-
changed between design partitions remains unchanged.
In particular, the transferred bits will not be collected,
encapsulated or emitted by applying a special model.
Using TLM would be an example for the opposite ap-
proach, where a communication model is used on both
sides, which requires transforming the low-level inter-
face data into a high-level transaction. An overview of
our proposed system is given in figure 1.

An efficient way of communication between the parti-
tions during simulation would be the identification and
the removal of any unnecessary transfers. Additional
optimization potential can be utilized by bundling ad-
jacent transmissions. For both approaches, a declara-
tion of unnecessity is required. A good approach for
the unnecessity can be obtained when considering both
partitions as finite state machines (FSMs). A data ex-
change has to be performed in the current simulation
clock cycle only when a state transition inside the re-
acting partition is sensitive to the input of the initiating
partition. On the other hand, if the state transitions in-
side the reacting partition does not depend on interface
data, the related transferred data can be omitted in this
cycle, thus already ignoring the available interface data
inside the initiating partition.

Since partitioning is mainly driven by already existing
component boundaries, the extraction of input sensitiv-
ity has to be obtained from a predefined interface struc-
ture. This is usually possible in data flow applications

where existing data flow control signals can be identi-
fied and re-used as transfer indicators.

A common example for neglecting unknown or unde-
fined data value in transmissions is a simple FIFO com-
munication scheme, which implements buffering of the
applied data when indicated by a special handshake sig-
nal. If this signal is not asserted, the data transmission
can be omitted by the initiating partition. As a result,
unknown inter-partition transfer values can be ignored
if there is enough certainty that the handshake signal is
de-asserted so that all data including unknown or unde-
fined values would not be propagated. In all other cases,
e.g. RTL interface model errors, simulation accuracy
is reduced and a warning message will be issued dur-
ing simulation. For FIFO interfaces, data propagation
flag signals can be automatically detected by netlist de-
composition methods (Shannon Expansion), which are
however not subject of this paper.

Because data is transferred from one partition to an-
other in a bidirectionally overlapping manner, we will
introduce two simple termsactio and reactio, just to
distinguish the two ways of communication.actio
should stand for output sets of an initiating partition,
whose transmission is required because it triggers a
state transition inside the reacting partition. While the
reacting partition is responsive to the initiating parti-
tion, it may also act as an initiating partition for a back-
ward communication with a resulting state transition,
which is calledreactio in this paper.

A further requisite for the communication between the
partitions is required in order to achieve high simu-
lation efficiency. In our proposed simulation frame-
work it is assumed that no unexpectedreactio is sent.
An unexpectedreactio is for example an (unexpected)
interrupt from the reacting partition. For everyreac-
tio, the exact timing relation to all correspondingac-
tio has to be known exactly. If this cannot be granted,
the interaction-based communication scheme will tem-
porarily fall back to a simple, non-overlapping, inter-
partition transfer. This problem, which slightly narrows
the possible application range, for which a high simu-
lation efficiency is obtainable, is also present in TLM
approaches.



Huffman

Decoder

Deblocking

Loop Filter
YCrCb => RGB

IDCTDequantisation

Prediction

Reference

Frame

Header

Decoder

Theora

Datastream

RGB Data

Fig. 2 Theora dataflow

Typical applications, where no unexpectedreactiohas
to be sent can be found in the area of media stream
processing and telecommunication algorithms. A di-
rectional data flow allows simple partitioning along the
data flow path. A second example for the absence of
an unexpectedreactioare basic bus devices like RAM
or coupled peripherals, which only send areactio(read
out data) for a certainactio (data access). Directional
debug communication, e.g. printf-debugging or the be-
havior of logic analyzers, is another example, for which
the simulation efficiency can be improved because of no
unexpectedreactio.

Through the application of the described techniques, a
simulation speed improvement can be obtained. The
speedup can be further increased by bundling theac-
tio associated data of consecutive clock cycles, pro-
vided that there is noreactioduring these cycles. The
maximum number of cycles, for which data is trans-
ferred continuously between partitions of the simula-
tion framework, is callednreadin our proposed flow. A
second possibility for speed improvements is the pre-
vention of any data transmissions during phases, for
which noactio is emitted. When the nextactio is about
to be sent, a special indication message is inserted into
the transmitted stream. This message encodes the cy-
cle, at which theactio has been issued. The maximum
number of cycles, which are skipped by the simulation
process, is callednskipin our framework.

4 Demonstration Platform

A prototype for demonstrating our simulation flow
has been created using a PCI-express FPGA add-on
card [8], which comprises the hardware partition, and
Mentor Graphics ModelSim for the software parti-
tion. Low level interfacing on the software side was
achieved through a custom kernel device driver provid-
ing board access through the underlying Linux OS and
the ModelSim FLI interface [9]. The already mentioned
parametersnskipandnreadcan be determined and ad-
justed at simulation runtime within the software-based
partition, thus providing direct and interactive control
of the communication interface. However, in our shown
example the parameters were kept constant during a
simulation run.

The model chosen for simulation was a hardware accel-
erated video decoding application described in [10], in-

cluding both an embedded LEON3 processor core and
a connected dedicated video decoder component. De-
coding is performed according to the Open Theora stan-
dard [11]. The described system uses a publically avail-
able hardware/software build environment [12], that in-
cludes all required components. The model was chosen
because of its relevance to audio/video media process-
ing and its open source nature. A simplified dataflow
for the video decoder can be found in figure 2.

A major block of the video decoder accelerator is the
inverse discrete cosine transform (IDCT), which was
chosen to demonstrate the hardware-accelerated com-
ponent verification process at RTL level. To achieve
a partitioned simulation, we isolated this block at RTL
level to fully analyze it using ModelSim, while leaving
the remaining SoC component’s RTL description inside
the FPGA partition. The idea behind this methodol-
ogy is to evaluate whether the IDCT works as expected
within the entire system context. By keeping the system
components unchanged in the FPGA partition, changes
to the IDCT can be made more easily, as the modifica-
tions to the IDCT do not require a re-run of the FPGA
design-flow. A re-compilation within the ModelSim
RTL partition is sufficient to restart the simulation pro-
cess. An overview for the prototype system partitioning
is shown in figure 3.

For the communication between the IDCT compo-
nent and the remaining system, two unidirectional syn-
chronous stream interfaces (FIFOs) can be applied.
Inter-partition communication is performed fully syn-
chronous with fixed input, processing and output the
clocking schemes. For this type of a commonly used
stream interface, the calculation ofactio and reactio
timings can be directly derived from the static prede-
fined interface timings. The hardware partition initiates
a computation within the IDCT component by sending
data to it (actio initiated by a write enable signal). Af-
ter a fixed amount of clock cycles has elapsed, the result
(reactio) is read back. As this read back action is driven
by an enable signal as well, it is itself also considered
anactio. If the number of computation clock cycles is
unknown at interface design time or varying (variable
pipeline length), an estimate has to be used to select a
proper computation clock cycle range which does not
diminish the overall speedup of the simulation. A worst
case parameterization scenario would be an awaitedre-
actio in every cycle until all data has been transferred.



Fig. 3 Prototype System Overview

The speedup for this corner case using non-overlapping
cycle-based communication is examined within section
5.

After the simulation starts, the hardware platform cy-
cles the hardware partition, until eithernskipor aactio
is reached, which itself is transmitted to ModelSim. A
maximum ofnreaddata cycles are transferred at once in
order to reduce the overhead per cycle. The overall sim-
ulation control remains within the software-based sim-
ulator, with the hardware platform clocking ahead as
many cycles as possible while maintaining correctness.

An amount of less thannreaddata words is transferred
when areactio is awaited. This happens if calculation
results are expected from the IDCT. Subsequently, the
software partition transfers cycle-accurate data to the
hardware partition, e.g. the result data of the IDCT,
which is now available for further processing by the
SoC within the FPGA. The complete calculation of the
IDCT outputs is done within ModelSim and can eas-
ily be debugged and changed without the need of a re-
synthesis as long as changes are only made within the
software-based partition. If – within ModelSim – an un-
expectedreactio is detected, which itself is a violation
of the interface specification of the simulated module,
an error message will be issued stating that the correct-
ness of the simulation can no longer be maintained.

The described scenario is one representative example
partitioning for a single SoC. Other partitionings, with
more complex interface schemes are possible, but un-
known or unpredictable inter-partition communication
patterns complicate the prediction of achievable per-
formance of the software-based simulation partition.
Another limitation, which is known but not examined
within this paper, is the propagation of unknown (e.g.
X-)values over interface boundaries. Despite the fact,
that it should be generally avoided to apply any un-
known values to interface signals of modules or com-
ponents, the correctness of a partitioned simulation is
not maintained when transferring unknown values on
inter-partition I/O signal lines within our prototype en-
vironment. The determination, whether anactio is sent
or areactiois expected, cannot be made without a fully
known interface state.

5 FPGA Prototype Results

The proposed interaction-based communication
method was compared to non-overlapping cycle-based
communication and to a TLM approach in terms of
simulation speed, implementation effort and applica-
bility. The chosen scenario was the former described
verification of a signal processing block of the video
decoder within the software partition, while the rest of
the embedded platform was simulated in the hardware
partition. This partitioning was chosen, because the
evaluation of a certain building block within the
complex processing flow can be considered a common
verification case. Additionally, many other approaches
show enough flexibility to be adapted to this scenario,
with varying implementation effort needed.

Tab. 1 Simulation results

Approach Simulation
cycles · s−1

Cycle-based 42,000
Interaction-based (minimal) 43,000
Interaction-based (optimal) 178,000
TLM 200,000

The results for all approaches are summarized in table
1. As previously mentioned, an increase in simulation
speed was achieved, with the non-overlapping cycle-
based communication being the slowest approach. The
speedup for the interaction-based communication is be-
tween 1 and 4.2 depending on the used parameters de-
scribed above. Using optimal values for the parame-
ters the interaction-based communication has a speedup
which is only slightly smaller than for the TLM ap-
proach (4.8). As already said, TLM is considered less
flexible and requires additional implementation effort
for the bus functional model (BFM). The cycle-based
approach in contrast, is the most flexible by means of
communication. It does not demand any additional
implementation effort but shows the lowest simulation
speeds. The interaction-based method positions itself
in between the former named approaches for both speed
and implementation effort needed. Through its parame-
terization, it can bridge the gap between the existing ap-
proaches and can be flexibly adapted to a larger number
of RTL model interface classes.



The implementation effort for setting up a partitioned
simulation is not quantified within table 1, because
these values highly depend on already implemented
testcases, experience of the simulation engineer and the
degree of automation within the simulation environ-
ment. In the explained example, the implementation
and parameterization of the interface took about 4 to
5 times less design effort when using the interaction-
based communication model compared to a TLM ap-
proach, while achieving the same level of simulation
performance. This effort does not include the partition-
ing itself and the design of the underlying communi-
cation components, which can be considered an inher-
ently re-usable template for other projects utilizing the
proposed simulation platform.

6 Conclusions

Interaction-based communication has been shown a
promising way for partitioning hardware accelerated
RTL simulations. Its interface design methodology pro-
vides a customizable communication scheme, that can
be adapted to the real communication pattern through
parameterization at simulation runtime. Despite of the
capabilities of interaction-based communication, sev-
eral issues remain unsolved, that should be addressed
in the future.
First of all, hardware modularization has to be increased
to avoid the invocation of the entire design cycle when
changes are made to the hardware partition.
Furthermore, the identification of I/O handshake sig-
nals from the RTL netlist (Shannon Expansion) would
simplify the partitioned RTL simulation flow signifi-
cantly. Detailed information about I/O transfer control
signals would provide a way to automatically evaluate
component/module interface candidates for simulation
partitioning.
In this paper, we have limited our investigations to
stream processing algorithms, which usually show a
nearly constant processing time. However, an adaption
of nskipandnread under rapidly changing communi-
cation patterns is easily achievable, providing different
levels of interaction during the simulation process.

7 References

[1] F. Ghenassia.Transaction-Level Modeling with
SystemC: TLM Concepts and Applications for
Embedded Systems. Springer, New York, 2006.

[2] Mentor Graphics Emulation Systems, 2010.
http://www.mentor.com/products/fv/emulation-
systems/.

[3] Cadence Incisive Palladium Series, 2010.
http://www.cadence.com/products/sd/palladium
series.

[4] M.N. Wageeh, A.M. Wahba, A.M. Salem, and
M.A. Sheirah. FPGA based accelerator for func-
tional simulation.Circuits and Systems, 2004. IS-
CAS ’04. Proceedings of the 2004 International
Symposium on, 5:V–317–V–320 Vol.5, May 2004.

[5] Stefan Reichör. Turbo für die Simulation.Elek-
tronik SoC, 2006.

[6] Kyuho Shim, Kesava Talupuru, Maciej Ciesiel-
ski, and Seiyang Yang. Simulation Acceleration
with HW Re-Compilation Avoidance. InVLSID
’08: Proceedings of the 21st International Con-
ference on VLSI Design, pages 487–491, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[7] Mario Larouche. Infusing Speed and Visibility
into ASIC Verification. White paper, Synplicity,
Inc., 2007.

[8] Altera Corporation. Stratix II GX PCI Express
Development Board Reference Manual, 2007.
http://www.altera.com/literature/manual/mnl-
s2gx-pci-express-devkit.pdf.

[9] Mentor Graphics. ModelSim SE Foreign Lan-
guage Interface Manual, Software Version 6.3c
edition, September 2007.

[10] Xiph.org Foundation.Theora FPGA Sourcecode,
2008. http://svn.xiph.org/trunk/theora-fpga/.

[11] Xiph.org Foundation.Theora Specification, April
2008.

[12] Andrá Luiz Nazareth da Costa and Timothy B.
Terriberry. Hardware Implementation of The-
ora Decoding, Integration with LEON3, 2007.
http://www.students.ic.unicamp.br/˜ra031198/
theorahardware/.


