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Abstract

In real system simulations, the application of cellular automata has been shown
as an interesting option, because it can represent an emergent behavior and its
implementation is simple. This paper presents a method for simulating thermo-
dynamic systems, such as cloud dynamics, with cellular automata. In accordance
with thermodynamic principles, this paper presents an isolated system model that
describes temperature dynamics. The model uses the Von Neumann neighborhood
of five cells, each with two possible states: the presence or absence of a cloud or
a part of it. Our model uses three weather properties, as follows, condensed cloud
water particles, temperature and outer winds. Two types of experiments were per-
formed to validate the model proposed: one with a warm body inthe center of the
environment and another with a cloud.
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1 Introduction

Cellular automata (CAs) [1] are discrete models on
which many areas, such as computation, mathematic,
physic, complexity science, and biology, are conduct-
ing research. CAs consist of a grid of cells, each with
a finite number of states. For each cell, a set of cells,
called neighborhood, is defined for the specified cell.
At each iteration, a new state of each cell arises in ac-
cordance with the current state of the cell, the states
of the cells in its neighborhood, and some fixed rules.
Typically, the rule to update the state of a cell is the
same for all cells and does not change over time, and is
applied to the whole grid simultaneously.

In real system simulations, the application of cellular
automata has been shown as an interesting option, be-
cause it can represent an emergent behavior and its im-
plementation is simple. CAs consist of an-dimensional
grid of cells with the same behaviors described by a
set of transition rules [2]. CAs use a defined number
of neighbor cells that interact with each other, creating
a local interaction and then a global behavior. These
interactions reflect the system dynamics based on the
transitional rules.

This paper presents a method for simulating thermody-
namic systems, such as cloud dynamics, with cellular
automata. A thermodynamic system is concerned with
the flow and balance of energy. Three types of ther-
modynamic systems are distinguished depending on the
types of interaction and energy exchange taking place
between the system and its surrounding environment:
(i) an isolated system is isolated in every way from its
environment, and it does not exchange heat, work or
matter with its environment; (ii) a closed system can
exchange energy, heat and work, but not matter with its
environment; and (iii) an open system exchanges en-
ergy and matter with its environment. A boundary that
allows the exchange of matter is said to be permeable.
In isolated systems, it is observed that as time passes,
internal rearrangements decrease and stable conditions
are reached. Properties, such as pressures and temper-
atures, tend to equalize, and matter arranges itself into
one or a few homogeneous phases. A system in which
all processes of change have ended is considered to be
in a state of thermodynamic equilibrium.

In accordance with thermodynamic principles, this pa-
per presents an isolated system model that describes
temperature dynamics. This model is also used to sim-
ulate cloud dynamics. Two types of experiments were
performed: one with a warm body in the center of
the environment and another with a cloud. Clouds are
formed from the condensation of water vapors present
in the atmosphere. After it is formed, a cloud is moved
by winds, and changes both its location and its proper-
ties, such as, temperature, pressure, density, and humid-
ity. These properties strongly influence cloud dynam-
ics. The model proposed uses the Von Neumann neigh-
borhood of five cells, each with two possible states: the
presence or absence of a cloud or a part of it. Our model
uses three weather properties, as follows, condensed
cloud water particles, temperature and outer winds. The

transition rules are based on thermodynamic principles
and weather concepts.

The rest of this paper is organized as follows. Section
2 introduces general concepts of cloud dynamics and
cellular automata. Sections 3 and 4 describe the iso-
lated thermodynamic system and the cloud dynamics
model with cellular automata, respectively. Section 5
concludes the paper and suggests new implementations
for future studies.

2 Cloud Dynamics and Cellular Au-
tomata

Clouds are formed from the condensation of water ex-
isting in the humid air in the atmosphere. The elevation
of air is the key process in the production of clouds,
because when it rises and comes into contact with low
temperatures, cold air makes it possible for clouds to
form. This elevation can be produced by convection,
convergence of air streams, topographical elevation or
frontal lifting [3].

Clouds may be in a liquid or solid state, or may be a
mixed composition of water and ice. The composition
of a cloud depends on its altitude. After having formed,
clouds are moved by winds in all directions. When
a cloud is moved in a vertical direction, its altitude
changes as do its properties, such as temperature, pres-
sure, kinetic energy, density and humidity. On rising,
there is a cooling of condensed cloud water particles
that may become partially or completely frozen. On
the other hand, when a cloud goes to a lower altitude,
it goes to a higher temperature environment; therefore,
precipitation may arise and spread the cloud.

The dynamics, growth, motion and dissipation of
clouds are complex. Thus, it is important to under-
stand these dynamics in order to allow an efficient im-
plementation of the real system [4]. The basic elements
necessary to simulate clouds are velocity, air pressure,
temperature, water vapor, and condensed cloud water.
These water content variables are of mixed ratios, i.e.,
the mass of vapor or liquid water per unit mass of air.
We consider a system of equations that models cloud
dynamics in terms of velocity and condensed cloud wa-
ter variables.

A cellular automaton is formally defined as a discrete
mathematical model, implemented in computers, auto-
mated by deterministic rules, and its conduct of an el-
ement within a homogeneous set will be based both on
the state of its own attributes and those of the attributes
of the neighboring elements [5].

A CA is characterized by its cell space and its transi-
tion rule. The cell space is a lattice ofN identical cells
arranged in ad-dimensional grid, each with an identi-
cal pattern of local connections to other cells. When we
consider the lattice is of finite length, boundary condi-
tions are applied resulting in a circular lattice. A transi-
tion rule provides the next state for each cell, as a func-
tion of the configuration of its current neighborhood.
At each step of time, every cell of the lattice updates its



states according to this rule [6].

As to the CA-dimensional rule contained in each cell,
it is essentially a finite state machine, usually specified
in the form of a table of rules. These are called ele-
mentary cellular automata. The neighbors of a cell are
adjacent cells, or cells on the right and left. Thus a
cell is connected to air local neighbors (cells) where r
is related to the radius, so that each cell has a neighbor-
hood of2r + 1. A neighborhood is made up of three
cells, so there are 23 = 8 possible patterns for a neigh-
borhood. There are therefore 28 = 256 possible rules.
Wolfram [2] proposed a numbering scheme for the el-
ementary CAs, in which the output bits are ordered al-
phabetically, as in the transition rule, and are read from
right to left to form a base number in decimal notation
between 0 and 255.

For CAs, dimensional cells are arranged in a two-
dimensional space (represented in the form of a grid),
the neighborhoods most widely used are the Von Neu-
mann neighborhood, consisting of 5 cells (central cell
and 4 neighbors, up, down, left , right.) and the Moore
neighborhood, consisting of 9 cells (the Von Neumann
neighborhood of more cells in the diagonal.).

Cellular automata are used in simulation and emulation
of real systems [1], such as:

• Simulation of bacterial or viral behavior, crystal
growth, coral, rocks and other natural elements,
behavior of gases, spread of fires, population de-
velopment, economic, behavior of land, rivers and
topographies, and forecast of plant growth;

• Video: generating random pictures, image filters
and distortions;

• Music: melody-generating digital noise and
sound;

• Mathematics: alternative to replacement differen-
tial equations;

• Computer: random number generation, cryptogra-
phy, and conceptual design of parallel computa-
tions mass; and

• 3D animation: particle simulation and generating
textures.

3 Thermodynamic Model with Cellular
Automata

This section presents the model to describe an isolated
system with cellular automata. In isolated systems, as
the time passes, internal rearrangements decrease and
stable conditions are reached. Properties, such as pres-
sures and temperatures, tend to equalize, such that the
processes of change come to an end and the system
reaches the state of thermodynamic equilibrium.

The model proposed uses the Von Neuman neighbor-
hood with five cells, Figure 1. The cell temperature be-
havior is derived from the thermodynamic principles in

Fig. 1 Von Neumann Neighborhood

which heat transfer between neighborhood cells is pro-
vided. In each iteration, the whole grid is updated with
new cell temperatures, as follows

Ti(k + 1) = Ti(k) + α ∆T (k), (1)

where

∆T (k) =

∑

i
Ti(k) − (No − 1)Ti(k)

No

, (2)

for i = l, r, a, b, No is the number of cells per neigh-
borhood,α is a constant that defines the step size of the
temperature update,Ti(k) is the temperature intoi-th
cell at iterationk, and the subscriptsl, r, a, b mean the
neighbors on the left, on the right, above, and below
neighbors of ani-th cell.

Now, two simulations of isolated thermodynamic sys-
tems are presented in30 × 30 and50 × 50 grids. The
model was implemented with a Web platform, using C-
Sharp language at ASP.net framework. For these simu-
lations, the temperature interval was [0, 50] degrees, the
initial temperature was0oC, andα = 0.123456. Figure
2 shows the temperature intervals and their respective
colors.

Fig. 2 Legend of colors used in isolated thermodynamic
system model.

Figure 3 shows six iterations of each simulation. In the
simulation of the30 × 30 grid, Figure 3(a), a warm
body of50oC and 50%-grid area was initialized into the
center of the grid. The heat of the warm body spread
quickly – see iteration 4. In iteration 27, the extreme
area of the grid had been warmed, by heat from the
warm body, to a temperature of between 1 and 10oC.



Iteration 48 shows that the center of the warm body
started to cool, because its heat spread throughout the
grid. Iterations 112 and 369 show that the heat contin-
ued to spread, thus providing the temperature equaliza-
tion. Iteration 472 shows the moment at which the grid
temperature was totally equalized between 1 and 10oC.

In the simulation of the50 × 50 grid, Figure 3(b), a
warm body of50oC and 80%-grid area was initialized
into the center of the grid. The system behavior was
similar to that of the first simulation,30 × 30 grid. The
heat spread quickly throughout the whole grid. After
iteration 46, the heat of the center of the grid started to
decrease. Iterations 112 and 134 show the beginning of
the temperature equalization throughout the whole grid.
Iteration 485 shows the grid with its temperature totally
equalized between 20 and 30oC, higher than that of the
first simulation because of the larger area of the warm
body (80%-grid area).

These simulations showed that a cellular automaton
model can simulate a thermodynamic system. In both
of them, the heat in the center of grid spread throughout
the whole grid until the thermodynamic equilibrium.

4 Cloud Dynamics with Cellular Au-
tomata

The model proposed simulates only one cloud into the
grid. The cloud has an initial size that may be modified
by weather events. All initial simulation parameters are
set at random. The model has so called inner variables
and outer events. The inner variables are the cell prop-
erties, while the outer events involve the whole grid.
The inner variables are the number of condensed cloud
water particles and temperature. The outer events are
to do with the insertion of winds and condensed cloud
water insertion into the cells, both with random prop-
erties. The following sections explain these parameters
and events.

4.1 Inner Variable

The inner variables are the cell properties, as follows,
the number of condensed cloud water particles,n, and
the temperature,T . For each iteration, a thermody-
namic law is used in each cell in order to describe its
dynamics. The cell temperature behavior is set as de-
scribed in Section 3.

Each cell has a cloud, or part of it, if the number of
condensed cloud water particles is equal or larger than
a threshold; otherwise, there is no cloud in the cell. The
number of condensed cloud water particles into ani-th
cell at iterationk is defined as a function of its current
temperature,Ti(k), as follows

A =

{

0, if Ti(k) > TC

nmin, if Ti(k) = TC

nmin (TC − Ti(k)), if Ti(k) < TC

, (3)

whereTC is the temperature of water condensation at
current atmospheric conditions andnmin is a threshold,

that is, the number of condensed cloud water particles
that defines the presence of a cloud in a cell.

4.2 Outer Events

The outer events occur on the whole grid. These ran-
dom events are the outer winds and the insertion of con-
densed cloud water, that occur as a probabilitypw and
pi, respectively.

The outer winds have different directions, widths, and
magnitudes. There are eight directions:

• north-south, and vice-versa;

• east-west, and vice-versa;

• southeast- northwest, and vice-versa; or

• southwest-northeast, and vice-versa.

The minimum and maximum wind widths arewmin and
wmax. The wind magnitude means the strength over
a cloud. With a wind occurrence over a cell, its con-
densed cloud water are displaced in accordance to the
wind magnitude and direction. The condensed cloud
water displacement is computed as follows

ni(k + 1) = ni(k) (1 − I), (4)

whereI ∈ [0, 1] is the wind magnitude. The difference
betweenni(k + 1) and ni(k) is the number of con-
densed cloud water particles that was displaced from
i-th cell to a neighborhood cell. These displaced con-
densed cloud waters go to a neighborhood in accor-
dance with the wind direction. For instance, if a wind
with direction west-east cover the l-cell, Figure 1, the
condensed cloud waters displaced will go to thei-cell.

In order to represent changes in the humidity of the
weather, we implemented a condensed cloud waters in-
sertion as a random event into the cells. The insertion
of condensed cloud waters into ani-th cell is defined as
follows

ni(k + 1) = ni(k) + β ∆n (5)

where∆n is the maximum number of condensed cloud
waters particles that can be inserted into a cell andβ ∈

[−1, 1] is a random variable that defines the number of
condensed cloud waters particles to be inserted into a
cell.

4.3 The Model Dynamics

The model dynamics is based on a discrete and itera-
tive system. The temperature is started with0oC and a
cloud with temperature and condensed cloud waters are
chosen at random. All grid cell transitions are based on
Equations 1-4 that change the cell states, providing the
global effect in the grid. The pseudo-code of our model
is presented as follows:

1. Initialize [Tmin, Tmax], TC , [nmin, nmax], where
nmax = nmin(TC − Tmin), and the temperature,



Fig. 3 Isolated thermodynamic system simulations.

TA, whereTA > TC is the environmental temper-
ature;

2. Initialize the grid cells withT = TA andn = 0;

3. Create a cloud into the grid at random, with
Ti(k) < TC andni defined by Equation 1;

4. Update cell temperatures by Equation 1;

5. Update number of condensed cloud water particles
for each cell by Equation 3;

6. If x < pw, wherex ∈ [0, 1] is a random number,
then

• Initialize the wind direction, I,
[wmin, wmax], at random;

• Apply the wind on the grid, and use Equation
4 when it cover a cell withni > 0;

7. If x < pi, then insert condensed cloud water on
the all grid cells by Equation 5;

8. Go back to step 4 while a stop criterion is not sat-
isfied.

4.4 Simulations and Result Analyses

This subsection presents two simulations with30 × 30
and50 × 50 grids. The temperature interval was [-1,
-50] degrees. Figure 4 shows the temperature intervals
and their respective colors. In these simulations,TA =

Fig. 4 Legend of colors used in the cloud dynamics sim-
ulations.

0oC, TC = −10oC, nmin = 100, nmax = 400, and
α = 0.123456. Three grid sizes were used.

In the first simulation, grid30 × 30, the minimum,
wmin, and maximum,wmax, wind widths were 4 and
7, respectively. This simulation, Figure 5, showed fast
change of the cloud behavior with respect to its area
and temperature. Figure 5(a) shows the initial cloud
state, at iteration 3. Figure 5(b) shows the iteration 88,
where the thermal equilibrium just began. In Figure
5(c), iteration 118, the cloud dissipation is starting and
it is finished after iteration 208, Figure 5(e). The cloud
dissipated completely at iteration 220, and Figure 5(f)
shows the last iteration 226.

In the second simulation, grid50 × 50, wmin = 8 and
wmax = 16. This simulation showed a similar behavior
to that of the first simulation, with thermal equilibrium



Fig. 5 Six states of the second simulation, grid30 × 30.

throughout the grid and dissipation of the cloud by the
wind actions. Due to the larger grid size with respect to
the previous simulation, the cloud reaches the thermal
equilibrium in a larger number of simulations.

Figure 6(a) shows the grid at iteration 3 in which it is
possible to see the different temperature in the cloud,
represented by the colors, due to the random initializa-
tion. Figure 6(b) shows the grid at iteration 118, where
a thermal equilibrium has begun. In iteration 218, Fig-
ure 6(c), the cloud showed a area smaller than its ini-
tial state, Figure 6(a), due to the thermal equilibrium
with the whole grid and wind actions. In iteration 318,
Figure 6(e), the whole cloud converges to the thermal
equilibrium and it is almost dissipated. The full dissi-
pation occurred at iteration 352. Figure 6(f) shows the
last iteration (356), where the whole grid converged to
the thermal equilibrium and the cloud was dissipated.

The cloud dynamics model showed an expected behav-
ior regarding some thermodynamics concepts, because
in all experiments the whole grid reached thermal equi-
librium resulting in total cloud dissipation to which the
actions of wind also contributed. In a grid where a given
temperature prevails over almost of its whole area, the
environmental temperature set to0oC, is expected at in-
finite time into an undisturbed environment such that it
reaches thermal equilibrium to the environmental tem-
perature. These effects resulting from physical phe-
nomena were more prevalent than those of the simu-
lations with smaller grids. These results may be ex-
pected. Because of these smaller areas, thermodynamic
equilibrium tends to be reached faster than in those of
the larger grids, in addition to which the probability of
a wind reaching the cloud is greater.

5 Conclusion

This article set out to construct a model to simulate
thermodynamic systems using cellular automata. Two
types of models were presented, an isolated thermody-
namic system and a cloud dynamics model. The former
showed that a cellular automaton can simulate a ther-
modynamic system. This first model was the basis for
the second one, the cloud dynamics model.

The second model used a limited representation con-
sidering the variables that represent the dynamics of a
real cloud. The number of condensed cloud waters par-
ticles per cell and the temperature and external winds
in the two-dimensional grid were included. A two-
dimensional CA with a Von Neumann neighborhood
of 5 cells was used. The transition rules were defined
based on the thermodynamic principle that defines the
thermal equilibrium.

The validation of the second model was made in sim-
ulations with different grid sizes and parameters. In
this preliminary study, we did not compare our model
with other ones for cloud dynamics. Thus, we only
conducted a visual validation, considering basic ther-
modynamic principles. The simulations showed that
our proposed model presented a satisfactory behavior,
considering some thermodynamic principles. The wind
actions also were considered coherent, because they
moved the clouds until their full dissipation. In all ex-
periments, the clouds, with heterogeneous temperature
randomly initialized, tended to converge to a uniform
temperature, reaching the thermal equilibrium. Another
observed behavior was the thermal equilibrium between
the cloud and grid, which always resulted in cloud dis-
sipation. The wind actions also contributed to conver-
gence of cloud temperature to environmental tempera-
ture, because they spread the clouds, accelerating the



Fig. 6 Six states of the third simulation, grid50 × 50.

thermal equilibrium. In all simulations, the clouds ob-
tained a similar behaviors; in grid50 × 50, the third
simulation, the cloud remained in the grid longer than
those in the other simulations.

As a follow-up to this study, other variables will be
added, such as, pressure, kinetic energy, density and
humidity, thus making the model more reliable. An-
other proposal is to simulate a three-dimensional space,
approximating the model of a real system. The pro-
posed model also may be implemented using the par-
allel computing paradigm, improving its performance
and, consequently, its ability to perform in real time.
The latter proposal is justified by the increase of vari-
ables involved, which feature a real atmospheric sys-
tem. Thus, parallel computing may increase the model
performance in a more complex scenario.
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