
PERFORMANCE OPTIMIZATION FOR
ENTERPRISE WEB APPLICATIONS THROUGH

REMOTE CLIENT SIMULATION
Tomas Cerny1 and Michael J. Donahoo2

1 Department of Computer Science and Engineering, Czech Technical University,
Charles Square 13, 121 35 Prague 2, CZ

2 Department of Computer Science, Baylor University,
P.O. Box 97356, 76798-7356 Waco, TX, US

tomas.cerny@fel.cvut.cz(Tomas Cerny)

Abstract

Contemporary enterprise web applications provide complex user interface func-
tionality to attract users with desktop-like features. Naturally, such increasing UI
complexity and user expectation results in greater application resource demands,
which may degrade performance. System performance is measured by applica-
tion responsiveness for end users in service delivery. Web application perfor-
mance optimization occurs at all levels of the application, from server hardware,
to database, etc. In this paper, we focus on the network delivery of application
assets, identify bottlenecks in the service delivery, and provide suggestions for
optimization. To accomplish this, we provide tools to simulate a variety of remote
user communication scenarios and identify the application assets with the greatest
impact on application performance. Based on the simulation results for the pro-
duction application, we provide optimization options, which may be iteratively
applied and simulated until the desired application performance is achieved.

Keywords: Web page load time optimizations, Performance evaluation, Network emula-
tion, Remote client simulation.

Presenting Author’s Biography
Tomas Cerny. Research in networking and simulation, specializing in web
application optimization with a recent publication at MOSIS 2010. Other
research interests include software engineering and model-driven develop-
ment with publications at ICISA 2010, TechEd 2010 and ISD 2010.



1 Introduction
Enterprise web applications have experienced signifi-
cant expansion in the last decade [1]. More and more
web users expect modern applications to provide a rich
user experience, typically implemented with multiple
technologies such as AJAX, AHAH, JavaScript, Flash,
etc. While rich applications provide a better user expe-
rience, performance can be negatively affected because
the server-side needs to perform more processing and
provide more data per application request. Currently
if we want to design an application, we most likely uti-
lize technologies that involve rich-client experience, but
we need to be aware of its performance. Web applica-
tions typically utilize the Hypertext Transfer Protocol
(HTTP) protocol [2] [3] [4] for the data transfer. This
protocol is built on top of Transmission Control Pro-
tocol (TCP) in a layered architecture, which may also
contribute to lower performance [5] when using HTTP.

In this work, we look at optimization of communica-
tion between an application server and a client con-
nected via HTTP. We investigate factors that impact ap-
plication responsiveness for end users in service deliv-
ery. We describe the elements of TCP directly impact-
ing performance, which provides a motivation for opti-
mization improvements. Since web applications pro-
vide service to a wide range of clients, we develop
a simulation tool that allows specification of network
conditions and remote user emulation. Next we conduct
a network simulation study with optimization evalua-
tion of an enterprise web application. Through iterative
simulation and revision, we demonstrate improvement
in the end user’s performance. The optimizations were
ultimately applied to a production application.

This paper is organized as follows. In Section 2, we
discuss the difficulties with the underlying technologies
and recommend application resource configuration. We
provide a simulation case study and apply the simula-
tion results to a production application in Section 3. Re-
lated work is discussed in Section 4. Finally, we end
with a summary of our contributions and conclusions.

2 Underlying Technologies
In this section, we describe the technologies underly-
ing the typical web application and characterize how
they impact end user service delivery. Consider a user
browsing a news server such as cnn.com. The user
navigates his web browser to the URL cnn.com. In
the background, the web browser translates the URL
cnn.com into an IP address (e.g., 157.166.255.19) by
DNS lookup and initiates a connection to the cnn.com
IP address on server port 80. The server then sends an
HTTP request for the default or index page. The HTTP
request is wrapped with the TCP header (20 bytes)
which is extended with an IP header (20 bytes), link
frame header and passed to the network[2][3]. For our
work, we focus on only HTTP and TCP. TCP initializes
the connection with a 3-way handshake where the two
endpoints negotiate their connection parameters before
they start communication[3]. Here the client sends a
SYN segment to the server (cnn.com), the server replies

with SYN-ACK segment, and the client replies with an
ACK segment. Then the connection is established and
we can send the actual data, which still includes the
TCP header overhead. The connection is closed in a
similar way to its initiation where both endpoints must
send a FIN and receive an acknowledgement to com-
plete.

From the description above, we see that to receive one
resource from cnn.com over HTTP actually sends mul-
tiple TCP segments to open and close each connec-
tion. This overhead can add significant cost to the trans-
port of each resource, especially for small resources. If
there is a significant latency between the client and the
server, the connection setup and teardown handshake
may cause a notable delay. As we look at the main page
of cnn.com, we see that it consists of multiple resources
that may be requested separately, including the content
html page, multiple style sheet files (CSS), JavaScript
files, images, icons, additional html fragments, etc. as
shown in Fig. 1. At the time of this writing, the CNN
homepage requires 121 resources for a total of 1.3and
a load time of approximately 9 seconds. If the web
browser uses HTTP 1.0 or older, then the TCP con-
nection is closed after a single request/response pair.
Fortunately [6] improves this behavior with persistent
connection that stays open after a request/response pair
and can handle additional requests; however, this only
partially solves the multi-resource problem.

Network characteristics can significantly impact perfor-
mance. The first characteristic we consider is end-to-
end propagation delay, which is impacted by both topo-
logical distance and network congestion. For web ap-
plications that serve an international audience, the geo-
graphic separation results in some clients that are nec-
essarily topologically distant from the server. The sec-
ond characteristic we consider is bandwidth. Clients
vary in the bandwidth quality of their network connec-
tion or in specific bottlenecks in ISP peerings [7]. High
latency and/or low bandwidth can significantly impact
page load time. From the client’s perspective, we see
that the page would load faster if some of the following
factors were reduced (Fig. 2): First, the size of the con-
tent impacts bandwidth requirements; consequently, we
should reduce the total size in order to deliver the con-
tent faster. Second, reducing the number of resources
decreases both the overhead of TCP segment headers
and the number of round-trip times for each resource
request. Finally, we may expect that a client navigates
among similar pages, which use the same design, and
we can leverage this locality by caching static resources
involved in the page design, which can speed up the
consequent page loads.

3 Simulation Case Study
In this section, we provide a case study simulation of a
web application on an emulated network. We apply our
experiment on the Contest Management (CM) applica-
tion under International Collegiate Programming Con-
test (ICPC)[8] [9]. This enterprise web application is
hosted in Texas and used by around 2,000 universities



Fig. 1 Unoptimized client/server communication

worldwide to register for a programming competition.
Naturally, users expect this application to provide fast
service delivery irrespective of network conditions.

Application performance testing requires the evaluation
of user experience for a wide range of network band-
width and/or latency. Developers often overlook prob-
lems with limited network performance because devel-
opment environments typically exhibit very high band-
width and low latency. To identify the application bot-
tlenecks, we need to test the application under con-
ditions reflecting the experience of the range of typi-
cal users. We propose providing this range of testing
through network emulation by controlling the network
latency and bandwidth as described in [7]. To accom-
plish this, we developed an open-source tool, CZProxy
[10] [11], that provides network emulation where such
network conditions can be configured. Commercial ap-
plications with similar functionality also exist[12].

In [7] we measure network conditions for various client
conditions, allowing us to reproduce application behav-
ior similar the remote user’s experience. For this case
study, we focus on the performance for a client with
a latency of 600ms and bandwidth of 251KBs. This
is based on our actual network performance measure-
ments for a client in Japan accessing a server in the
Czech Republic. We then select three, typical test pages
from the CM application with differing complexity and
evaluate the performance. In our simulation measure-
ments, the initial, unoptimized version of the CM appli-
cation produces pages from 907 to 1675KBs and serves
our test pages in 40 to 60 seconds. A service deliv-
ery with timing in 40-60 seconds is really poor; con-
sequently, we developed the following optimization ap-
proaches [10] based on the discussion in Section 2:

Fig. 2 Optimized client/server communication (no
cache)

Obfuscation of resources
Obfuscation involves eliminating unneces-
sary whitespace and comments from CSS and
JavaScript. Such data does not need to be sent
over the network because they do not have any
meaning to the final web page composition.
Reduction of content to send over the network
means faster service delivery to the client. In our
simulation, we experience page size reduction of
195 to 323KBs, about 15-50% size reduction per
resource.

Merging resources
We may merge static content such as CSS,
JavaScript, and icons into a single file per type
(see Fig. 2), resulting in reduction in cumula-
tive TCP round-trip times, equilibrium discovery,
etc. We can merge multiple icons by combining
them into a single image and then using by CSS
to display just a fragment of the merged image.
This optimization is commonly applied in existing
JavaScript frameworks.
For the CM application, there are two sources of
CSS and JavaScript resources: custom and Rich-
Faces. Custom resources are files created specif-
ically for our application. RichFaces provides a
third-party interface component library, and its re-
sources are generated by the library. We evaluate
two options for merging.
We begin by evaluating the performance of merg-
ing our custom CSS and JavaScript and merging
RichFace’s CSS. Here we reduce the number of re-
sources per page by an average of 25. In our simu-
lation, the typical page contains approximately 90-
100 resources. We did not evaluate the impact of
icon merging.
Next we add RichFace’s JavaScript merging to our
previous experiment. This had an impact on the



overall size, which increased by 321 to 648KBs
per page; however, the number of resource per
page was reduced by 40-60. This is a better op-
tion if we consider client web browser cache when
the user needs to load the static resources once in
the initial request and then use the cache for the
resources. This initial load time amortizes over
application use and in result may have better per-
formance than the previous merge option.

Browser cache
Modern web browsers allow web application de-
velopers to specify which resources to cache and
for how long. The client still issues a resource re-
quest to the server checking for update of cached
resources. This may also reduce some other de-
pendant requests that are invoked by application
of a fetched resource. In fact, not all cacheable
resources are cached. We can find these by using
the CZProxy tool looking at the traffic on HTTP
response headers for 304 Not Modified. It is also
important to follow separation of layout and struc-
ture and to factor out CSS from the dynamically
generated HTML files, and if possible the same
with the page embedded JavaScript. In addition to
an abstract separation, this also allows caching the
separated CSS and JavaScript files, which cannot
be cached in case of dynamically generated HTML
pages.
In our experiments, we found that caching reduced
the fetched resource size by approximately 1MB
for the second request in case of merged CSS and
JS files.

Compress the data transfer
The most significant improvement to the service
delivery involves compression to reduce the re-
quired bandwidth. Although this option is a great
improvement for distant clients, for a bandwidth-
rich client it can decrease the performance since
the compression on the server-side and decom-
pression on the client-side takes some time; how-
ever, in general we benefit with the compres-
sion option in most of public production level
enterprise web applications. In our case study,
compression reduces the uncached resources from
1.7MBs to 400KBs (1.3KBs to 300KBs) and the
cached requests decrease by 26-78KBs.

In our simulation, we reduce the initial load time for
the simulated Japanese client from 40-60 seconds to 7-
10 second and subsequent access with the applied cache
to 2-5.5 seconds. These optimizations take place on the
server-side where we set the server to compress the con-
tent and the application to cache specific resources and
to merge the CSS and JavaScript. The latter one can
be automated by YUI compressor tool [13]. A more
details of the measurement can be found at [7].

We have applied the simulation results to the production
level application hosted in Texas and received positive
feedback from regions where we originally had slow
performance. The simulation helped to discover bottle-

necks in the application for distant users. In addition
we applied the simulation also for feature evaluation
[7] and identified the delay contributors for the replace-
ment.

4 Related Work
Recent research in optimizing web application for vary-
ing network conditions proposes changes and exten-
sions to HTTP. The Structured Hypertext Transfer Pro-
tocol (STTP)[14] includes new messages to control the
resource transmission for a particular web page. HTTP-
MPLEX[15] employs header compression and response
encoding scheme for HTTP. It is similar STTP in that
it multiplexes multiple responses to a single sustained
stream of data to speed response times and improve
application layer use of TCP. While experiments show
solid performance improvement with these protocols,
they are not adopted by modern browsers. Our work
focuses on optimization built on top of widely adopted
technologies.

Optimization using persistent HTTP[16] may also im-
prove application scalability. It is crucial for correct use
of persistent HTTP to applying proper settings for the
persistence connections timeout and max-client bound-
ary. These are in fact additional optimizations that can
be applied to the server from the perspective of multi-
ple users. In our work, we focused at optimization of
communication between a server and a client.

[17] proposes strategies for web page fetching in low
bandwidth environment. Specifically, this work demon-
strates the disadvantage of the common approach of
greedy loading. The paper investigates communica-
tion between TCP and HTTP to analyze factors of the
large response times. This research paper provides
a browser-side optimization mechanism to reduce the
user response time.

Related work mostly focuses on optimization through
development of new protocols. Naturally, the main
issue with these is the backward compatibility with
legacy applications and adaptability of web servers and
web browsers. To address this, [18] suggests focus-
ing on improvements of legacy technologies rather than
outright replacement. In our paper, we focused on a
simulation of remote locations, which may help to iden-
tify bottlenecks and also with research experiments of
new protocol adoption. In addition we proposed various
optimization factors that should be applied regardless of
application of any new protocol.

5 Conclusion
In this work, we face the issue of growing demand
on web application features and capabilities, which di-
rectly impacts application performance. We discuss
the background of the HTTP and TCP protocols and
demonstrate the drawbacks of the technology of which
one needs to be aware when dealing with application
performance. We identify various technological impact
factors on remote clients and apply these in our simula-



tion with emulated network conditions using a proxy
tool we developed for an enterprise web application.
We demonstrate significant improvements in the sim-
ulated application by proposing and applying optimiza-
tion techniques, which results in faster service deliv-
ery for remote clients in the production application. A
brief survey of popular web applications such as news
servers CNN, iDnes, EuroNews, BBC etc., shows that
all of these typically have pages with more than 100
resources, which could be merged down to a few. We
see that all can benefit from our optimization sugges-
tions. We believe that both legacy and new application
development can benefit from our suggestions, and ap-
plication developers must be aware of the underlying
technologies to design better products from improving
end user service delivery.

6 References
[1] Tomas Cerny and Michael J. Donahoo. Metamor-

pic: Self-contained photo archival and presenta-
tion. In ISD 2010: Proceedings of the confer-
ence on International Conference on Information
Systems Development, Prague, Czech Republic,
2010. Springer.

[2] W. Richard Stevens. TCP/IP Illustrated (vol. 1):
The Protocols. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1993.

[3] Andrew Tanenbaum. Computer Networks. Pren-
tice Hall Professional Technical Reference, 2002.

[4] Hypertext transfer protocol – http/1.1, 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html.

[5] Len Bass, Paul Clements, and Rick Kazman. Soft-
ware architecture in practice. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA,
USA, 1998.

[6] Jeffrey C. Mogul. The case for persistent-
connection HTTP. In SIGCOMM 1995: Proceed-
ings of the conference on Applications, technolo-
gies, architectures, and protocols for computer
communication, pages 299–313, New York, NY,
USA, 1995. ACM.

[7] Tomas Cerny and Michael J. Donahoo. Evaluation
and optimization of web application performance
under varying network conditions. In Jan tefan
Petr Peringer, editor, Proceedings of the 44th
Spring Innternational Confenece, page 8, Ostrava,
April 28 2010. Brno University of Technology,
FEEI, VB - Technical University Ostrava, Wro-
claw University of Technology, MARQ, Tiskar-
nicka.

[8] Contest management web application for ICPC,
2010. http://cm.baylor.edu.

[9] Tomas Cerny. The next generation web applica-
tion framework for ICPC: Contest management
system version 3 (CM3). Master’s thesis, Baylor
University, Computes Science dept., Waco, TX,
USA, 2009. http://cm.baylor.edu.

[10] Tomas Cerny and Michael J. Donahoo. A tool
for evaluation and optimization of web applica-
tion performance. In Jan tefan Petr Peringer,

editor, Proceedings of the 44th Spring Innter-
national Confenece, page 6, Ostrava, April 28
2010. Brno University of Technology, FEEI,
VB - Technical University Ostrava, Wroclaw
University of Technology, MARQ, Tiskarnicka.
http://sourceforge.net/projects/cz-proxy.

[11] Tomas Cerny and Michael J. Donahoo.
CZProxy - HTTP proxy/monitor, 2008.
http://sourceforge.net/projects/cz-proxy.

[12] Charles - http proxy/monitor.
http://www.charlesproxy.com.

[13] YUI compressor, 2010.
http://developer.yahoo.com/yui/compressor.

[14] Bin Swen. Outline of initial design of the struc-
tured hypertext transfer protocol. J. Comput. Sci.
Technol., 18(3):287–298, 2003.

[15] Robert L. R. Mattson and Somnath Ghosh. HTTP-
MPLEX: An enhanced hypertext transfer protocol
and its performance evaluation. J. Netw. Comput.
Appl., 32(4):925–939, 2009.

[16] Akiyoshi Sugiki, Kenji Kono, and Hideya
Iwasaki. Tuning mechanisms for two major pa-
rameters of apache web servers. Softw. Pract. Ex-
per., 38(12):1215–1240, 2008.

[17] Tae-Young Chang, Zhenyun Zhuang, Aravind Ve-
layutham, and Raghupathy Sivakumar. Webaccel:
Accelerating web access for low-bandwidth hosts.
Comput. Netw., 52(11):2129–2147, 2008.

[18] Anthony Finkelstein and Jeff Kramer. Software
engineering: a roadmap. In ICSE ’00: Proceed-
ings of the Conference on The Future of Software
Engineering, pages 3–22, New York, NY, USA,
2000. ACM.


