
HEURISTIC ALGORITHMS TO OBTAIN
OPTIMIZED SCHEDULES OF MANUFACTURE

TCPN MODELS
Miguel A. Mujica1, Miquel Angel Piera2

1,2Autonomous University of Barcelona, Faculty of Telecommunications and Systems
Engineering,

08193 Bellaterra, Barcelona

Miguelantonio.mujica@uab.es (Miguel Mujica)

Miquelangel.piera@uab.es (Miquel Piera)

Abstract

The timed coloured Petri Net formalism is a modelling formalism which allows
several abstraction levels depending on the objective of the study. In order to
coordinate the main activities of manufacturing systems it is desired to have
simulation-based computer tools that help the decision maker to cope with the
complex process of schedule all the available resources in the system. The
exploration and analysis of the state space of timed Coloured Petri Nets has been
used by several authors to evaluate systems behaviour as well as a search space
for states of particular interest. In this paper, recent developments of heuristics
implemented in algorithms that use the state space to transform the simulated-
based optimization problem into a search problem are presented. These
algorithms can be implemented in software tools for controlling and coordinate
the activities of real-time systems.

Keywords: Coloured Petri Nets, State space, Heuristics, Makespan, Optimization.

Presenting Author’s biography

Miguel A. Mújica Mota was born in Mexico City. He studied chemical engineering at
Autonomous Metropolitan University of Mexico, an MSc in Operations Research in the
National Autonomous University of México. He also received a Master’s in Industrial
Informatics from the Autonomous University of Barcelona. Actually he is a PhD
Student at Autonomous University of Barcelona. He also has professional experience in
manufacture and production planning in the cosmetic industry. His research interest
focuses on optimization techniques using the Coloured Petri Nets formalism aiming to
solve industrial problems.

1 Introduction

In manufacturing processes there exists always the
problem of coordinating all the available resources in
order to obtain a manufacturing goal (the production
of goods). In every production day it results very
difficult to adequately coordinate all the different
resources to produce the different goods, normally this
task is achieved assigning the resources based on a
short time horizon taking into account the information
at hand (amount of products needed, raw materials
and human resources available, etc) instead of
evaluating the outcomes of all the possible resource
allocation.

Simulation has been traditionally used as a tool which
optimizes the available resources configurations
through the execution of several simulation
experiments which allow evaluating a high quantity of
resource allocations. Unfortunately this approach
results insufficient to generate an optimal allocation or
resource configuration; it produces in the most
optimistic case a configuration close to the optimal,
but the optimal assignment can be never assured. The
Timed Coloured Petri Net Formalism (TCPN) is a
modelling formalism which in conjunction with the
analysis of the so-called reachability graph can
overcome this problem transforming the simulation-
based optimization problem into a search problem.
The main drawback of using this approach is the state
explosion [12] which in most of the cases saturates the
computer resources without obtaining the optimal
configuration or the objective state. This situation
makes clear the necessity of developing intelligent
exploration approaches which allow exploring the
highest possible quantity of nodes without reaching
the computer limitations. In this article some
algorithms combined with heuristic selection rules are
presented. These algorithms have given good results
when they were applied in manufacture TCPN models
under particular scenarios which will be discussed in
the correspondent sections.

1.1 The TCPN formalism

Coloured Petri Nets (CPN) is a simple yet powerful
modelling formalism, which allows the modelling of
complex systems which present an asynchronous,
parallel or concurrent behaviour and can be
considered discrete event dynamic systems [4,7]. The
formalism allows modelling not only the dynamic
behaviour of systems but also the information flow,
which is an important characteristic and very useful in
industrial systems modelling.

In order to investigate the KPI’s (Key Performance
Indicators) at which the industrial systems operate
under different policies, such as scheduling, resource
occupancy, costs and inventory among others it is
convenient to extend CPN with a time concept
(TCPN). This extension is made introducing a global
clock for the model, time stamps for the entities and a

time delay for the model transitions. The global clock
represents the model time, and the time stamps
describe the earliest model time at which the entities
of the model, graphically represented by dots (tokens),
can be used for the transition evaluation process [6]. A
token is ready if the correspondent time stamp is less
than or equal to the current model time. If the token is
not ready, it can not be used in the transition enabling
procedure.

 It is natural to associate activities of the real system to
transitions in the TCPN model. Simulation community
use TCPN to specify discrete event systems by
attaching a r time delay to transitions in order to
simulate the time consumption of a certain activity.
Therefore when a transition occurs, the output tokens
will have a time stamp r time units larger than the
current global clock Gc which simulates time delay
due to the execution of an activity. Therefore the time
values of the output tokens can be obtained using the
following formula:

 ot Gc r   (1)

Where to is the time stamp value of the output tokens
when the transition firing takes place.

Gc is the global clock of the model when the firing
occurs.

r is the time associated with the transition.

It is a common convention to use the sign @ to denote
time in the elements of the model. When it is attached
to transitions, it specifies the time consumption r .

The TCPN can be formally defined as follows.

Definition 1. The non-hierarchical TCPN is the tuple:

 TCPN = (P, T, A,∑, V, C, G, E,D, I) where

1. P is a finite set of places.

2. T is a finite set of transitions T such that P T =


3. A  P T  TP is a set of directed arcs

4. ∑ is a finite set of non-empty colour sets.

5. V is a finite set of typed variables such that Type
[] ∑ for all variables  V.

6. C: P ∑ is a colour set function assigning a
colour set to each place.

7. G: TEXPR is a guard function assigning a guard
to each transition T such that Type [G(T)] = Boolean.

8. E: AEXPR is an arc expression function
assigning an arc expression to each arc a, such that:

Type [E(a)] = C(p)

Where p is the place connected to the arc a

9. D: TEXPR is a transition expression which
assigns a time delay to each transition.

10. I is an initialization function assigning an initial
timed marking to each place p such that:

Type [I(p)] = C(p)

EXPR denotes the mathematical expressions
associated to the elements of the formalism (variables,
colours, logic conditions) where the syntax can vary
when coding the formalism in a programming
language. The TYPE[e] denotes the type of an
expression e EXPR, i.e. the type of values obtained
when evaluating e. The set of free variables in an
expression e is denoted VAR[e] and the type of a
variable v is denoted TYPE[v].

The state of every TCPN model is also called the
timed marking which is composed by the expressions
with their time stamps associated to each place p.

Definition 2. The timed marking of a TCPN is a
function M :P EXPRT  such that MT(p)C(p). It
maps each place p into a multi set of values MT(p)
representing the timed marking of place p. The
individual elements of the multi set are called timed
tokens and the expressions contain also the time
information (time stamps and global clock).

Definition 3.The untimed marking MU of a TCPN
model is a function M :P EXPRU  that maps each

place p into a multi set of values of values MU(p)
representing the untimed marking of place p and
MU(p)C(p). In this case the expressions do not
contain any time information.

Definition 4. The objective marking is a particular
configuration of tokens in places disregarding the time
extension, i.e. a particular untimed marking MU.

1.2 The Compact Timed State Space

The reachability graph or state space (SS) is a directed
graph used commonly for the verification and analysis
of behavioural properties of CPN models such as
liveness, boundedness and reachability among others
[5] which determine the behaviour of the model. The
analysis is performed through the generation and
storage of all the different reachable states from an
initial one.
The main characteristics of the timed SS are:
 Each node in the SS represents a timed marking

of the TCPN model
 The root node represents the initial marking of the

system.
 Each node is connected with its successor nodes

through directed arcs.
 The connecting arcs represent transition firings

and they also contain the information regarding
the fired transition and the tokens used.

 The successor or children nodes correspond to the
new states or markings obtained once the enabled
transitions have been fired.

 For each node in the tree, as many successor
nodes must be generated as the amount of
enabling combination of tokens the marking has.

The following definitions are necessary to describe the
algorithms performance.

Definition 5. Let TM be the set of timed markings
of a state space, and T

iM , T
kM be timed markings. A

state T
kM will be considered as old node if it is

exactly the same (together with its time values) as one
T

iM that had been previously generated in any other

level of the SS, i.e. T
kM = T

iM

Definition 6. A dead marking T
jM is a state that

does not have any enabled transition.

Definition 7. A new state is neither a dead marking
nor an old node.

Definition 8. A feasible path is a sequence of nodes
that go from the root node or initial state to the
objective marking.

Some authors have developed different ways of
representing the timed sate space (TSS) basing their
representations on different characteristics of the
model itself [5]; these representations were developed
with the purpose of reducing as much as possible the
state explosion problem without loosing analysis
capabilities. The SS used in this work is the so called
Compact Timed State Space [8], and it was developed
aiming to optimize a utility factor.

The compact timed state space (CTSS) is a particular
version of a TSS [8] which reduces the TSS taking
advantage of the repeated untimed markings. The
latter is carried out during the construction of the SS
in the following way. When a timed marking whose
underlying untimed marking appears exactly the same
as the one of a state previously generated, the marking
with the repeated characteristics is not explored again;
instead it is marked as S-old node and its time
elements (time stamps and global clock) stored for
later analysis. Let us put this in a more formal way.

Definition 9. Let TM be the set of timed markings of
a state space. Let T

iM and T
kM be timed markings

with their correspondent untimed markings U
iM and

U
kM .

We say a marking T
iM is an S-old node to another

T
kM marking when the following condition holds:

,T T T U U
i k i kM M M M  M

The use of the S-old nodes allows generating an SS
that can be used to verify system properties and to
explore the SS without loosing important time
characteristics that invalidate the results obtained.

During the generation of the CTSS when it is detected
an S-old node, both states are merged and the
discovered one is not explored again thus reducing the
state space size and the number of operations to
generate it. Figure 1 exemplifies the information
contained in the CTSS where node 1 represents the
initial marking at 0 time of the TCPN model; the
nodes that have several input arcs represent the S-old
nodes.

Figure 1. The CTSS of a TCPN model

1.3 The Job-Shop and Open-Shop Scheduling
Problems.

The job-shop and open-shop scheduling problems in
its different modalities are part of the most difficult
NP-hard problems [3]. The job shop scheduling
problem (JSSP) consists of n jobs and each job visits a
number of machines following a predetermined route.
In some models a job may visit any given machine at
most once and in other models a job may visit each
machine more than once. In the latter case it is said
that the job shop is subject to recirculation. Job shops
are prevalent in industries where each customer order
is unique and has its own parameters. There are
several industries which perform as a work shop such
as wafer fabrics or hospitals [10]. Therefore the
solutions to these kind of problems would help to
efficiently coordinate the different resources and
activities in these kinds of industries. The case of the
Open shop scheduling problem (OSSP) involves a
collection of m machines and a collection of n jobs
where there is no particular predefined order of the
operations, but the machines can be used only once by
each job. The main objective in this study is to
generate a schedule with a makespan as short as
possible; the makespan is simply the total elapsed time
in the schedule. To achieve this objective TCPN
models whose makespan were optimized using the
CTSS together with search algorithms have been
developed. Figure 2 exemplifies the kind of models
developed in this study.

Figure 2. TCPN model of a JSSP

2 Heuristic Algorithms

In this section three different algorithms which gave
good results with different job-shops and open shops
are presented. In the following subsections the
algorithms are briefly presented and their
characteristics discussed.

2.1 The two-step algorithm

This algorithm has the characteristics that generate the
state space in one phase and the second phase is used
for analyzing the timed elements of the S-old nodes
found during the generation phase. Some of these
algorithms have been discussed in previous works [8]
and implemented to solve the 3x3, 5x5 and 6x6 JSSP
[2]. The first phase of the algorithm generates the state
space using a depth first search (DFS) algorithm
which can be improved using different heuristics for
selecting the successor nodes to be evaluated each
time the algorithm evaluates the next level down the

tree. It is implemented a utility function kf which

assigns a value to each successor node based on the
values of the time stamps and it is selected the
successor with the lowest value. Figure 3 exemplifies
this principle.

 Figure 3. The use of a utility function in the DFS
algorithm

During the state space generation, every repeated S-
old node is not evaluated again, instead its time
elements are stored for being analyzed in the next
step. Figure 4 illustrates the generated list when
several S-old nodes are detected.

*

(2) 12kf  (3) 28kf  (4) 10kf  (5) 40kf 

1
ROOT NODE

43 52

1

2 3 4 5

6 7 8 9 10 11

12 13 14 16 17 18 21 23

24 26 28 33

T1@0:1’(2)@0,

1’(1)@0

T1@0:1’(3)@0,

1’(1)@0

T2@0:1’(2)@0,

1’(1)@0

T2@0:1’(3)@0,

1’(1)@0

T2@0:1’(3)@0,

1’(1)@0
T3@1:1’(1)@1

T2@0:1’(2)@0,

1’(1)@0

T3@1:1’(3)@1

T1@0:1’(3)@0,

1’(1)@0
T4@10:1’(2)@10

T1@0:1’(2)@0,

1’(1)@0

T4@10:1’(3)@10

T3@1:1’(2)@1 T4@10:1’(3)@10

T1@1:1’(3)@0,

1’(1)@1

T2@1:1’(3)@0,

1’(1)@0
T3@1:1’(3)@1

T4@10:

1’(2)@10

T1@1:1’(2)@0,

1’(1)@1

T2@1:1’(2)@0,

1’(1)@0

T1@10:1’(3)@0,

1’(1)@0

T2@10:1’(3)@0,

1’(1)@10

T1@10:1’(2)@0,

1’(1)@0

T2@10:1’(2)@0,

1’(1)@10

T4@10:
1’(3)@10

T3@10: 1’(2)@1
T3@2: 1’(3)@2

T4@10:
1’(2)@10

T3@10: 1’(3)@1

T3@2: 1’(2)@2
T4@20:
1’(3)@20

T4@20:
1’(2)@20

P2P1 P3

1’(X,*)1’(X+1,W) 1’(E,W,P) 1’(E,W,P) 1’(Z) 1’(Z)

GUARDS: [X=E]
[W=Z]

COLOUR DEFINITION DESCRIPTION

W Int 1..3 Machine Needed for the Next Job

X Int 11..33 Job and Task in progress

E Int 11..33 Job and Task Identifier

P INTEGER Time Spent for each Job

Z Int. 1..3 Available Machines

t P 

M4

LIST OF REPEATED STATES AND TIME VALUES

1

2

3

4

5
.
.
.

LIST OF S-OLD
NODES IN THE SS

1 2 3 4

TIME VALUES LIST OF REPEATED S-OLD
NODES

M1 M3

M5 M2 M3

M8 M9 M10

M10 M7

M12

M15

STATE SPACE

M1

M2 M3

M6 M7

M8 M9 M10

M11 M13 M14

M4

M5

M12 M15

Figure 4. State space and the S-old node list

The left hand side of the figure represents the
generated state space, and the right hand side of the
figure represents that the original S-old nodes are
stored only once, and when it is detected a node that
produce a similar marking (but with different time
values) the time elements are stored in a list which
will be used by the optimizing step of the algorithm.

The second phase of the algorithm evaluates the stored
S-old nodes generated during the first phase to detect
those that optimize the sub-branches that lead to the
optimal makespan of the original TCPN model.

The S-old node analysis is carried out performing the
following procedure.

Let T
iM , T

jM TM and the corresponding list of time

stamps of each node Ti and TJ. Function k is used to

make the time comparison between time stamps in the
following way.

Let  be an auxiliary function such as

 0,1

0,
x,y)

1,

x y

x y

   
 

  


 
 (2)

with the use of the auxiliary function, the comparison
is carried out applying formula (3).

1

:

(,) (,)

k k
k

k

i j il jl
l

T T T T


  



  
 (3)

Applying the function k to the S-old nodes T
iM

and T
jM where T

iM
is the S-old node that appeared

originally in the TSS and T
jM the S-old node with

different time stamps, the following three possible
outcomes can be obtained:

k = 0: The time stamp values of the T
iM state are

equal or higher than the ones of the T
jM state. In this

case the best branch is chosen from among the

successors of T
iM (since the best branch of T

iM will

also be the best one for T
jM) and the time values of

the path that goes to the objective state are updated by
analytical evaluation of the new time values using the
time stamps of the T

jM state. The previous procedure

is done using token and transition information stored
from the generation of T

iM .

k = k: The time stamp values of the T
iM state are

smaller than the ones of T
jM state. In this case, it is

not necessary to evaluate again the successor nodes of
the T

jM state because the underlying untimed states

will be the same as those of T
iM , and the time values

will not be smaller than the ones generated by T
iM .

The previous procedure is done using token and
transition information stored from the generation of

T
iM .

0 k k   : Some time stamp values of the T
jM

state are equal or higher than the ones of T
iM state

and others are less than the ones of T
iM state. In this

case it is not possible to decide whether the T
jM state

produces better results in the objective marking or not.
In this case an exploration through the best branch has
to be done until the objective marking is found and
then the final comparison can be made.

2.2 Time-Line algorithm

This algorithm was developed based on the idea of the
so called sweep line method [1].This algorithm
performs also in two phases. In the first phase the
CTSS is generated using a firing time-basis. The
nodes to be evaluated are selected based on the time
value when the first firing occurs, i.e. the earliest
firing time.

In this case the nodes to be explored are selected
based on the following procedure.

Let T
iM TM be a timed marking, Ti its

correspondent time stamp list and Gc the global clock
of the timed marking. The function tlinek assigns a
value or key to each fired state

  1

:

(,) , ..., ,

k
k

i i ik

tline

T Gc Max Min T T Gc

 



  
 (4)

Using formula (4) the nodes are being evaluated when
the value matches a variable that has the current firing
time; so the nodes with the same firing time will be
evaluated first independently of the branch they
belong to. Under this perspective several branches are
explored at the same firing time and the objective
node is found at the end of the generation phase with a
makespan close to the optimal one. The drawback of

this approach compared to the two-step algorithm is
that the two-step one uses a DFS algorithm so it can
get results (not necessarily the optimal ones) when it
faces big state spaces without exploring the whole
state space. On the contrary, the time-line algorithm
requires to store in computer memory all the
information related to the nodes of the different
branches explored so far to maintain the time
coherence of the different branches of the state space.

The second phase of the time line algorithm performs
exactly the same way as the two-step algorithm
evaluating the S-old nodes generated so far.

2.3 Hybrid approach

A hybrid approach which has the benefits of both
previous approaches (cope with huge state spaces and
evaluation of several branches at once) was also
developed. With the use of this approach the first
phase is decomposed in two sub phases where the first
one uses a DFS algorithm to find a feasible path. In
this case heuristic rules that lead the search can also be
implemented. When the objective state has been
found, the generation algorithm switches to a time-line
algorithm so several branches can be evaluated at the
same time. The importance of having an initial
feasible path is because the optimization step requires
an objective node in order to optimize it. The hybrid
algorithm will be composed of three main phases:

Phase A: The algorithm explores the CTSS under DFS
logic until it finds the objective node. When the
objective state is found, it stores the feasible path.

Phase B: The algorithm switches to a TLS logic in
order to generate S-old nodes which result useful for
optimization purposes. This phase continues until
CPU resources are close to their limits.

Phase C: The generated S-old nodes are analyzed for
optimizing the objective state.

 It is important to mention that since the time line
algorithm selects the nodes based on the earliest firing
time, it is expected that the solution is very sensitive
to the initial assignments; the latter has been reported
by some authors[9,10]. Based on that assumption, it is
expected that the solution found by the hybrid
approach is performed by analyzing the S-old nodes
that are in the lower levels of the reachability tree, this
characteristic results very useful when it is not
possible to keep in memory the complete state space
of the studied problem.

3 Experimental Results

The presented approaches have been implemented in
three job-shops and in one open-shop. The results of
the implementation in the three job-shops are
presented in Table 1 which resumes the performance
of the different algorithms with these kind of
problems.

Table 1. Algorithm Performance Indicators

Type of
Model

Algorithm
Type

Obtained
Make
Span

Stored
S-Old
Nodes

Updated
Nodes

after Stamp
Evaluation

Rejected
Nodes
After

Stamp-
Evaluation

Undecided
Nodes
after

Stamp
Evaluation

Updating s
Performed

after
depth

exploration

Type of
Analysis

JS 3x3
Two-Step
Algorithm

15 time
units 2,712 100 1,255 1,356 4 Complete

JS 3x3
Time-Line

Search
15 time
units 2,712 5 1,240 1,467 0 Complete

JS 3x3
Hybrid

Algorithm
15 time
units 2,712 18 1,259 1,435 0 Complete

JS 5x5
Two-Step
Algorithm

428 time
units

32,375 4,642 15,160 12,385 41 Complete

JS 5x5
Time-Line

Search
428 time

units 32,375 708 16,394 15,272 6 Complete

JS 5x5
Hybrid

Algorithm
428 time

units
32,375 685 16,286 15,403 25 Complete

JS 6x6
Two-Step
Algorithm

255 time
units

605,020 64,466 303,111 237,173 41 Complete

JS 6x6
Time-Line

Search
255 time

units 605,020 14,242 277,128 313,559 5 Complete

JS 6x6
Hybrid

Algorithm
255 time

units
605,020 8, 324 293,423 303,273 19 Complete

OS 4x4
Two-Step
Algorithm

191 time
units

1,805,613 185,413 867,214 752,986 92 Partial
(600,000 nodes)

OS 4x4
Time-Line

Search
---- ---- ---- ---- ---- ---- Unable toAnalize

the Problem

OS 4x4 Hybrid
ALgorithm

196 time
units

1,805,613 20,213 1,204,617 580,783 12 Partial:
(600,000 nodes)

It can be noticed that in the case of the job shop
problems the three algorithms give the same
optimized make span, but the key performance
indicators vary from every type of model. It has been
reported by the authors[8] that the most time
consuming activity is the analysis of the results that
come from the second outcome of the analysis
(section 2.1). From the results it is clear that the time
line algorithm is the one that gives feasible solutions
closest to the optimal because when the analysis is
performed, the quantity of updatings (column 8 in the
figure) is small compared to the ones performed by
the two-step algorithm. In the case of the hybrid
algorithm the performance falls in the middle of both
algorithms.

It is fair to mention that the obtained results for the job
shops correspond to the ones reported in literature [2]
which confirm the value of the presented algorithms
when these type of problems are faced. Due to the size
of the job shop problems it was possible to generate
the complete CTSS and evaluate the performance of
the three algorithms. In the case of a very hard
problem such as the open shop 4x4 [11] it was
impossible to maintain in computer memory the total
amount of states. With problems like the open shop
the two-step algorithm and the hybrid approach are
capable of getting to the objective node without
saturating computer memory but with the limitation
that they can only perform a partial exploration.

4 Conclusions and Future Work

Three algorithms that combine simulation with search
algorithms implemented in state space analysis have
been presented. Depending on the rules to explore the
state space these algorithms are capable of facing
different size problems. Those that follow a DFS
analysis are able to cope with problems whose state

space is so big that result unfeasible to maintain in
computer memory all the state space information but
they are able to produce feasible solutions that are
expected to be close to the optimal ones. On the other
hand the algorithms that evaluate several branches at a
time produce solutions closer to the optimal ones but
they have the disadvantage that they require to
maintain in computer memory all the generated
information to perform the analysis of the S-old nodes
which optimize the feasible path. The performance
indicators suggest also that the performance of the
TLS algorithm requires less analysis of the stored S-
old nodes therefore it is possible to improve even
more the performance of these algorithms in order to
develop decision support tools that give response in
little time.

The authors are actually working on an algorithm that
not only maintains the advantages of the combination
of both approaches but also that throws away the
information that is not useful for optimization
purposes so that it avoids the memory saturation in
most computers.

5 References

[1] Christensen S., T. Mailund, 2002, A Generalized
Sweep-Line Method for Safety Properties, in
FME, Springer- Verlag, Berlin- Heidelberg

[2] Dauzére-Peres, S., Lasserre, J.B., 1994, An
Integrated Approach in Production Planning and
Scheduling, in Lecture Notes and Mathematical
Systems, Springer-Verlag, Berlin.

[3] Gary M.R., Johnson D.S., 1979, Computers and
Intractability: A Guide to NP-Completeness,
Freeman

[4] Jensen K., 1997, Coloured Petri Nets: Basic
Concepts, Analysis Methods and Practical Use,
Vol.1 Springer-Verlag. Berlin.

[5] Jensen K., T. Mailund, L.M. Kristensen,2001,
State Space Methods for Timed Coloured Petri
Nets, in Proceedings of 2nd Intenational
Colloquium on Petri Net Technologies for
Modelling Communication Based Systems, Berlin

[6] Jensen K., Kristensen L.M., 2009, Coloured Petri
Nets: Modelling and Validation of Concurrent
Systems, Springer.

[7] Moore K.E., S.M. Gupta, 1996, Petri Net Models
of Flexible and Automated Manufacturing
Systems: A Survey, in International Journal of
Production Research, Vol.34, No. 11

[8] Mujica M.A., Piera M.A., 2010, Revisiting state
space exploration of timed coloured petri net
models to optimize manufacturing system's
performance, in Simulation Modelling Practice
and Theory, Vol.18, 9, p.p. 1225-1241.

[9] Music G., 2009, Petri Net Based Scheduling
Approach Combining Dispatching Rules and
Local Search, in Proceedings of the I3M2009
Multiconference, Tenerife, Spain

[10] Pinedo M.L., 2005, Planning and Scheduling in
Manufacturing and Services, Springer, New York

[11] Taillard, E., 1993. Benchmarks for basic
scheduling problems, European Journal of
Operational Research

[12] Valmari A., 1996, The State Explosion Problem,
in Lecture Notes in Computer Science, Vol.1491,
Springer-Verlag, London

