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Abstract  

The timed coloured Petri Net formalism is a modelling formalism which allows 
several abstraction levels depending on the objective of the study. In order to 
coordinate the main activities of manufacturing systems it is desired to have 
simulation-based computer tools that help the decision maker to cope with the 
complex process of schedule all the available resources in the system. The 
exploration and analysis of the state space of timed Coloured Petri Nets has been 
used by several authors to evaluate systems behaviour as well as a search space 
for states of particular interest. In this paper, recent developments of heuristics 
implemented in algorithms that use the state space to transform the simulated-
based optimization problem into a search problem are presented. These 
algorithms can be implemented in software tools for controlling and coordinate 
the activities of real-time systems. 
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1 Introduction 

In manufacturing processes there exists always the 
problem of coordinating all the available resources in 
order to obtain a manufacturing goal (the production 
of goods). In every production day it results very 
difficult to adequately coordinate all the different 
resources to produce the different goods, normally this 
task is achieved assigning the resources based on a 
short time horizon taking into account the information 
at hand (amount of products needed, raw materials 
and human resources available, etc) instead of 
evaluating the outcomes of all the possible resource 
allocation. 

Simulation has been traditionally used as a tool which 
optimizes the available resources configurations 
through the execution of several simulation 
experiments which allow evaluating a high quantity of 
resource allocations. Unfortunately this approach 
results insufficient to generate an optimal allocation or 
resource configuration; it produces in the most 
optimistic case a configuration close to the optimal, 
but the optimal assignment can be never assured. The 
Timed Coloured Petri Net Formalism (TCPN) is a 
modelling formalism which in conjunction with the 
analysis of the so-called reachability graph can 
overcome this problem transforming the simulation-
based optimization problem into a search problem. 
The main drawback of using this approach is the state 
explosion [12] which in most of the cases saturates the 
computer resources without obtaining the optimal 
configuration or the objective state. This situation 
makes clear the necessity of developing intelligent 
exploration approaches which allow exploring the 
highest possible quantity of nodes without reaching 
the computer limitations. In this article some 
algorithms combined with heuristic selection rules are 
presented. These algorithms have given good results 
when they were applied in manufacture TCPN models 
under particular scenarios which will be discussed in 
the correspondent sections. 

1.1 The TCPN formalism  

Coloured Petri Nets (CPN) is a simple yet powerful 
modelling formalism, which allows the modelling of 
complex systems which present an asynchronous, 
parallel or concurrent behaviour and can be 
considered discrete event dynamic systems [4,7]. The 
formalism allows modelling not only the dynamic 
behaviour of systems but also the information flow, 
which is an important characteristic and very useful in 
industrial systems modelling. 

In order to investigate the KPI’s (Key Performance 
Indicators) at which the industrial systems operate 
under different policies, such as scheduling, resource 
occupancy, costs and inventory among others it is 
convenient to extend CPN with a time concept 
(TCPN). This extension is made introducing a global 
clock for the model, time stamps for the entities and a 

time delay for the model transitions. The global clock 
represents the model time, and the time stamps 
describe the earliest model time at which the entities 
of the model, graphically represented by dots (tokens), 
can be used for the transition evaluation process [6]. A 
token is ready if the correspondent time stamp is less 
than or equal to the current model time. If the token is 
not ready, it can not be used in the transition enabling 
procedure. 

 It is natural to associate activities of the real system to 
transitions in the TCPN model. Simulation community 
use TCPN to specify discrete event systems by 
attaching a r  time delay to transitions in order to 
simulate the time consumption of a certain activity. 
Therefore when a transition occurs, the output tokens 
will have a time stamp r  time units larger than the 
current global clock Gc which simulates time delay 
due to the execution of an activity. Therefore the time 
values of the output tokens can be obtained using the 
following formula: 

  ot Gc r                              (1) 

Where to is the time stamp value of the output tokens 
when the transition firing takes place. 

Gc is the global clock of the model when the firing 
occurs. 

r is the time associated with the transition. 

It is a common convention to use the sign @ to denote 
time in the elements of the model. When it is attached 
to transitions, it specifies the time consumption r .  

The TCPN can be formally defined as follows. 

Definition 1. The non-hierarchical TCPN is the tuple: 

 TCPN = (P, T, A,∑, V, C, G, E,D, I) where 

1. P is a finite set of places. 

2. T is a finite set of transitions T such that P T = 
  

3. A  P T  TP is a set of directed arcs 

4. ∑ is a finite set of non-empty colour sets.  

5. V is a finite set of typed variables such that Type 
[ ] ∑ for all variables  V. 

6. C: P ∑ is a colour set function assigning a 
colour set to each place.  

7. G: TEXPR is a guard function assigning a guard 
to each transition T such that Type [G(T)] = Boolean. 

8. E: AEXPR is an arc expression function 
assigning an arc expression to each arc a, such that: 

Type [E(a)] = C(p) 

Where p is the place connected to the arc a 



9. D: TEXPR is a transition expression which 
assigns a time delay to each transition. 

10. I is an initialization function assigning an initial 
timed marking to each place p such that: 

Type [I(p)] = C(p) 

EXPR denotes the mathematical expressions 
associated to the elements of the formalism (variables, 
colours, logic conditions) where the syntax can vary 
when coding the formalism in a programming 
language. The TYPE[e] denotes the type of an 
expression e EXPR, i.e. the type of values obtained 
when evaluating e. The set of free variables in an 
expression e is denoted VAR[e] and the type of a 
variable v is denoted TYPE[v]. 

The state of every TCPN model is also called the 
timed marking which is composed by the expressions 
with their time stamps associated to each place p. 

Definition 2. The timed marking of a TCPN is a 
function M :P EXPRT  such that MT(p)C(p). It 
maps each place p into a multi set of values MT(p) 
representing the timed marking of place  p. The 
individual elements of the multi set are called timed 
tokens and the expressions contain also the time 
information (time stamps and global clock). 

Definition 3.The untimed marking MU of a TCPN 
model is a function M :P EXPRU  that maps each 

place p into a multi set of values of values MU(p) 
representing the untimed marking of place p and 
MU(p)C(p). In this case the expressions do not 
contain any time information. 

Definition 4. The objective marking is a particular 
configuration of tokens in places disregarding the time 
extension, i.e. a particular untimed marking MU. 

1.2 The Compact Timed State Space  

The reachability graph or state space (SS) is a directed 
graph used commonly for the verification and analysis 
of behavioural properties of CPN models such as 
liveness, boundedness and reachability among others 
[5] which determine the behaviour of the model. The 
analysis is performed through the generation and 
storage of all the different reachable states from an 
initial one.  
The main characteristics of the timed SS are: 
 Each node in the SS represents a timed marking 

of the TCPN model 
 The root node represents the initial marking of the 

system. 
 Each node is connected with its successor nodes 

through directed arcs. 
 The connecting arcs represent transition firings 

and they also contain the information regarding 
the fired transition and the tokens used. 

 The successor or children nodes correspond to the 
new states or markings obtained once the enabled 
transitions have been fired. 

 For each node in the tree, as many successor 
nodes must be generated as the amount of 
enabling combination of tokens the marking has. 

 

The following definitions are necessary to describe the 
algorithms performance. 

Definition 5. Let TM  be the set of timed markings 
of a state space, and T

iM , T
kM  be timed markings. A 

state T
kM  will be considered as old node if it is 

exactly the same (together with its time values) as one 
T

iM that had been previously generated in any other 

level of the SS, i.e. T
kM = T

iM  

Definition 6. A dead marking T
jM  is a state that 

does not have any enabled transition. 

Definition 7. A new state is neither a dead marking 
nor an old node. 

Definition 8. A feasible path is a sequence of nodes 
that go from the root node or initial state to the 
objective marking. 

Some authors have developed different ways of 
representing the timed sate space (TSS) basing their 
representations on different characteristics of the 
model itself [5]; these representations were developed 
with the purpose of reducing as much as possible the 
state explosion problem without loosing analysis 
capabilities. The SS used in this work is the so called 
Compact Timed State Space [8], and it was developed 
aiming to optimize a utility factor. 

The compact timed state space (CTSS) is a particular 
version of a TSS [8] which reduces the TSS taking 
advantage of the repeated untimed markings. The 
latter is carried out during the construction of the SS 
in the following way. When a timed marking whose 
underlying untimed marking appears exactly the same 
as the one of a state previously generated, the marking 
with the repeated characteristics is not explored again; 
instead it is marked as S-old node and its time 
elements (time stamps and global clock) stored for 
later analysis. Let us put this in a more formal way. 

Definition 9.  Let TM  be the set of timed markings of 
a state space. Let T

iM and T
kM  be timed markings 

with their correspondent untimed markings U
iM and 

U
kM . 

We say a marking T
iM  is an S-old node to another 

T
kM  marking when the following condition holds: 

,T T T U U
i k i kM M M M  M   

The use of the S-old nodes allows generating an SS 
that can be used to verify system properties and to 
explore the SS without loosing important time 
characteristics that invalidate the results obtained. 



During the generation of the CTSS when it is detected 
an S-old node, both states are merged and the 
discovered one is not explored again thus reducing the 
state space size and the number of operations to 
generate it. Figure 1 exemplifies the information 
contained in the CTSS where node 1 represents the 
initial marking at 0 time of the TCPN model; the 
nodes that have several input arcs represent the S-old 
nodes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The CTSS of a TCPN model 
 

1.3 The Job-Shop and Open-Shop Scheduling 
Problems. 

The job-shop and open-shop scheduling problems  in 
its different modalities are part of the most difficult 
NP-hard problems [3]. The job shop scheduling 
problem (JSSP) consists of n jobs and each job visits a 
number of machines following a predetermined route. 
In some models a job may visit any given machine at 
most once and in other models a job may visit each 
machine more than once. In the latter case it is said 
that the job shop is subject to recirculation. Job shops 
are prevalent in industries where each customer order 
is unique and has its own parameters. There are 
several industries which perform as a work shop such 
as wafer fabrics or hospitals [10]. Therefore the 
solutions to these kind of problems would help to 
efficiently coordinate the different resources and 
activities in these kinds of industries. The case of the 
Open shop scheduling problem (OSSP) involves a 
collection of m machines and a collection of n jobs 
where there is no particular predefined order of the 
operations, but the machines can be used only once by 
each job. The main objective in this study is to 
generate a schedule with a makespan as short as 
possible; the makespan is simply the total elapsed time 
in the schedule.  To achieve this objective TCPN 
models whose makespan were optimized using the 
CTSS together with search algorithms have been 
developed. Figure 2 exemplifies the kind of models 
developed in this study. 

 

 

 

 

 

 

 

 

 

Figure 2. TCPN model of a JSSP 

2 Heuristic Algorithms  

In this section three different algorithms which gave 
good results with different job-shops and open shops 
are presented. In the following subsections the 
algorithms are briefly presented and their 
characteristics discussed. 

2.1 The two-step algorithm 

This algorithm has the characteristics that generate the 
state space in one phase and the second phase is used 
for analyzing the timed elements of the S-old nodes 
found during the generation phase. Some of these 
algorithms have been discussed in previous works [8] 
and implemented to solve the 3x3, 5x5 and 6x6 JSSP 
[2]. The first phase of the algorithm generates the state 
space using a depth first search (DFS) algorithm 
which can be improved using different heuristics for 
selecting the successor nodes to be evaluated each 
time the algorithm evaluates the next level down the 

tree. It is implemented a utility function kf  which 

assigns a value to each successor node based on the 
values of the time stamps and it is selected the 
successor with the lowest value. Figure 3 exemplifies 
this principle. 

 

 

 

 

 Figure 3. The use of a utility function in the DFS 
algorithm 

 

During the state space generation, every repeated S-
old node is not evaluated again, instead its time 
elements are stored for being analyzed in the next 
step. Figure 4 illustrates the generated list when 
several S-old nodes are detected. 
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Figure 4. State space and the S-old node list 
 

The left hand side of the figure represents the 
generated state space, and the right hand side of the 
figure represents that the original S-old nodes are 
stored only once, and when it is detected a node that 
produce a similar marking (but with different time 
values) the time elements are stored in a list which 
will be used by the optimizing step of the algorithm. 

The second phase of the algorithm evaluates the stored 
S-old nodes generated during the first phase to detect 
those that optimize the sub-branches that lead to the 
optimal makespan of the original TCPN model.  

The S-old node analysis is carried out performing the 
following procedure. 

Let T
iM , T

jM TM  and the corresponding list of time 

stamps of each node Ti and TJ. Function k  is used to 

make the time comparison between time stamps in the 
following way. 

Let  be an auxiliary function such as  

 

 0,1

0,
x,y)

1,

x y

x y

   
 

  


 
                          (2) 

with the use of the auxiliary function, the comparison 
is carried out applying formula (3). 

 

 

1

:

( , ) ( , )

k k
k

k

i j il jl
l

T T T T


  



  
           (3) 

 

Applying the function k  to the S-old nodes T
iM  

and T
jM  where T

iM  
is the S-old node that appeared 

originally in the TSS and T
jM  the S-old node with 

different time stamps, the following three possible 
outcomes can be obtained:  

k  = 0: The time stamp values of the T
iM state are 

equal or higher than the ones of the T
jM state. In this 

case the best branch is chosen from among the 

successors of T
iM (since the best branch of T

iM will 

also be the best one for T
jM ) and the time values of 

the path that goes to the objective state are updated by 
analytical evaluation of the new time values using the 
time stamps of the T

jM state. The previous procedure 

is done using token and transition information stored 
from the generation of T

iM . 

k = k: The time stamp values of the T
iM  state are 

smaller than the ones of T
jM  state. In this case, it is 

not necessary to evaluate again the successor nodes of 
the T

jM  state because the underlying untimed states 

will be the same as those of T
iM , and the time values 

will not be smaller than the ones generated by T
iM . 

The previous procedure is done using token and 
transition information stored from the generation of 

T
iM . 

0 k k   : Some time stamp values of the T
jM  

state are equal or higher than the ones of T
iM  state 

and others are less than the ones of T
iM  state. In this 

case it is not possible to decide whether the T
jM  state 

produces better results in the objective marking or not. 
In this case an exploration through the best branch has 
to be done until the objective marking is found and 
then the final comparison can be made.  

2.2 Time-Line  algorithm 

This algorithm was developed based on the idea of the 
so called sweep line method [1].This algorithm 
performs also in two phases. In the first phase the 
CTSS is generated using a firing time-basis. The 
nodes to be evaluated are selected based on the time 
value when the first firing occurs, i.e. the earliest 
firing time.  

In this case the nodes to be explored are selected 
based on the following procedure. 

Let T
iM  TM  be a timed marking, Ti its 

correspondent time stamp list and Gc the global clock 
of the timed marking. The function tlinek assigns a 
value or key to each fired state  

  1

:

( , ) , ..., ,

k
k

i i ik

tline

T Gc Max Min T T Gc

 



  
  (4) 

Using formula (4) the nodes are being evaluated when 
the value matches a variable that has the current firing 
time; so the nodes with the same firing time will be 
evaluated first independently of the branch they 
belong to. Under this perspective several branches are 
explored at the same firing time and the objective 
node is found at the end of the generation phase with a 
makespan close to the optimal one. The drawback of 



this approach compared to the two-step algorithm is 
that the two-step one uses a DFS algorithm so it can 
get results (not necessarily the optimal ones) when it 
faces big state spaces without exploring the whole 
state space. On the contrary, the time-line algorithm 
requires to store in computer memory all the 
information related to the nodes of the different 
branches explored so far to maintain the time 
coherence of the different branches of the state space. 

The second phase of the time line algorithm performs 
exactly the same way as the two-step algorithm 
evaluating the S-old nodes generated so far. 

2.3 Hybrid approach  

A hybrid approach which has the benefits of both 
previous approaches (cope with huge state spaces and 
evaluation of several branches at once) was also 
developed. With the use of this approach the first 
phase is decomposed in two sub phases where the first 
one uses a DFS algorithm to find a feasible path. In 
this case heuristic rules that lead the search can also be 
implemented. When the objective state has been 
found, the generation algorithm switches to a time-line 
algorithm so several branches can be evaluated at the 
same time. The importance of having an initial 
feasible path is because the optimization step requires 
an objective node in order to optimize it. The hybrid 
algorithm will be composed of three main phases: 

Phase A: The algorithm explores the CTSS under DFS 
logic until it finds the objective node. When the 
objective state is found, it stores the feasible path. 

Phase B: The algorithm switches to a TLS logic in 
order to generate S-old nodes which result useful for 
optimization purposes. This phase continues until 
CPU resources are close to their limits. 

Phase C: The generated S-old nodes are analyzed for 
optimizing the objective state. 

 It is important to mention that since the time line 
algorithm selects the nodes based on the earliest firing 
time, it is expected that the solution is very sensitive 
to the initial assignments; the latter has been reported 
by some authors[9,10]. Based on that assumption, it is 
expected that the solution found by the hybrid 
approach is performed by analyzing the S-old nodes 
that are in the lower levels of the reachability tree, this 
characteristic results very useful when it is not 
possible to keep in memory the complete state space 
of the studied problem.  

3 Experimental Results  

The presented approaches have been implemented in 
three job-shops and in one open-shop. The results of 
the implementation in the three job-shops are 
presented in Table 1 which resumes the performance 
of the different algorithms with these kind of 
problems. 

Table 1. Algorithm Performance Indicators 

Type of 
Model

Algorithm 
Type

Obtained 
Make 
Span

Stored
S-Old 
Nodes

Updated 
Nodes 

after Stamp
Evaluation

Rejected  
Nodes 
After

Stamp-
Evaluation

Undecided 
Nodes
after 

Stamp 
Evaluation

Updating s 
Performed 

after 
depth 

exploration

Type of 
Analysis

JS 3x3
Two-Step 
Algorithm

15 time 
units 2,712 100 1,255 1,356 4 Complete

JS 3x3
Time-Line 

Search
15 time 
units 2,712 5 1,240 1,467 0 Complete

JS 3x3
Hybrid 

Algorithm
15 time 
units 2,712 18 1,259 1,435 0 Complete

JS 5x5
Two-Step 
Algorithm

428 time 
units

32,375 4,642 15,160 12,385 41 Complete

JS 5x5
Time-Line 

Search
428 time 

units 32,375 708 16,394 15,272 6 Complete

JS 5x5
Hybrid 

Algorithm
428 time 

units
32,375 685 16,286 15,403 25 Complete

JS 6x6
Two-Step 
Algorithm

255 time 
units

605,020 64,466 303,111 237,173 41 Complete

JS 6x6
Time-Line 

Search
255 time 

units 605,020 14,242 277,128 313,559 5 Complete

JS 6x6 
Hybrid

Algorithm
255 time 

units
605,020 8, 324 293,423 303,273 19 Complete

OS 4x4
Two-Step
Algorithm

191 time 
units

1,805,613 185,413 867,214 752,986 92 Partial
(600,000 nodes)

OS 4x4
Time-Line 

Search
---- ---- ---- ---- ---- ---- Unable toAnalize

the Problem

OS 4x4 Hybrid
ALgorithm

196 time 
units

1,805,613 20,213 1,204,617 580,783 12 Partial: 
(600,000 nodes)

 

It can be noticed that in the case of the job shop 
problems the three algorithms give the same 
optimized make span, but the key performance 
indicators vary from every type of model. It has been 
reported by the authors[8] that the most time 
consuming activity is the analysis of the results that 
come from the second outcome of the analysis 
(section 2.1). From the results it is clear that the time 
line algorithm is the one that gives feasible solutions 
closest to the optimal because when the analysis is 
performed, the quantity of updatings (column 8 in the 
figure) is small compared to the ones performed by 
the two-step algorithm. In the case of the hybrid 
algorithm the performance falls in the middle of both 
algorithms. 

It is fair to mention that the obtained results for the job 
shops correspond to the ones reported in literature [2] 
which confirm the value of the presented algorithms 
when these type of problems are faced. Due to the size 
of the job shop problems it was possible to generate 
the complete CTSS and evaluate the performance of 
the three algorithms.  In the case of a very hard 
problem such as the open shop 4x4 [11] it was 
impossible to maintain in computer memory the total 
amount of states. With problems like the open shop 
the two-step algorithm and the hybrid approach are 
capable of getting to the objective node without 
saturating computer memory but with the limitation 
that they can only perform a partial exploration. 

4 Conclusions and Future Work 

Three algorithms that combine simulation with search 
algorithms implemented in state space analysis have 
been presented. Depending on the rules to explore the 
state space these algorithms are capable of facing 
different size problems. Those that follow a DFS 
analysis are able to cope with problems whose state 



space is so big that result unfeasible to maintain in 
computer memory all the state space information but 
they are able to produce feasible solutions that are 
expected to be close to the optimal ones. On the other 
hand the algorithms that evaluate several branches at a 
time produce solutions closer to the optimal ones but 
they have the disadvantage that they require to 
maintain in computer memory all the generated 
information to perform the analysis of the S-old nodes 
which optimize the feasible path. The performance 
indicators suggest also that the performance of the 
TLS algorithm requires less analysis of the stored S-
old nodes therefore it is possible to improve even 
more the performance of these algorithms in order to 
develop decision support tools that give response in 
little time. 

The authors are actually working on an algorithm that 
not only maintains the advantages of the combination 
of both approaches but also that throws away the 
information that is not useful for optimization 
purposes so that it avoids the memory saturation in 
most computers. 
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