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Abstract  

The implementation of active vibration control to the two dof system by means of PI 
controller is modelled and simulated using bond graphs and conventional multi-physics 
matrix approach. The active vibration control of the transient and harmonic excitation is 
considered. The analysis has been performed in time and frequency domain. The results are 
correlated to the experiments on the real model. 
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1 Introduction 
The implementation of the active vibration control to 
the two dof mechanical system by means of PI 
controller is modeled and simulated using bond graphs 
and conventional multi-physics matrix approach. The 
active vibration control of the transient and harmonic 
excitation is considered. The analysis has been 
performed in time and frequency domain. The results 
are correlated to the experiments on the real model. 

The governing equation of the linear mechanical 
system reads: 

Mq + ζq + Kq = Q   (1) 

where M, ζ and K are mxm system mass, damping and 
stiffness matrices, respectively and q and Q are 
generalised coordinates and generalised forces. 
Providing that boundaries, deformation geometry and 
material do not involve the nonlinearities, the system 
model will be governed by linear equations i.e. 
matrices M, ζ and K do not depend on displacements 
and their derivatives, [1]. The equation has dimension 
of force: inertial forces, viscose forces, elastic forces 
and external forces, respectively. The size of the 
system matrices in generalized coordinates is m 
whereas n=2m is the problem size in state space 
presentation. The generalised displacements are 
defined as the minimal set that describes position of 
the structure in unique way. Typically, to solve 
problem means: find position q(t) for known forces 
Q(t) 

q
that satisfies governing equation (1) and initial 

conditions 0(0) =q 0(0) =q indirect 
problem, finding forces Q for given motion q is 
straightforward. 

 and q . The 

The control tasks traditionally involve completely new 
terminology and aspects. The governing equation: 

( )c c tx A x B u= +   (2) 

where Ac and Bc are system matrices, u(t) is input and 
x(t) is vector of state variables, is said to be in state 
space. For the linear mechanical system (1) 
corresponding system in state space is linear and time 
invariant i.e. system matrices Ac and Bc

T 

 are constant 
and state vector typically has the form 

, [2]-[3]: T Tx = q q
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The state variables make minimal set of variables that 
is supposed to be sufficient to find system state x(t) at 
instant t for given state x(t0) at instant t0, so in generic 
form we have: 
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  (3) 
When designing a new structure, the structural 
dynamic engineers use (1) more frequently than (2) 
due to number of reasons: the tradition and the 
available huge number of efficient numerical methods 
are some of the most important. However, when we 
need feedback from the real/realized structure, it 
comes in the form: 

  ( )ty Cx Du= +  (4) 
Where matrices C and D represent (hopefully linear) 
properties of sensors. Having output in the form:  

a v dy C q + C q + C q=  
where Ca, Cv, Cd are output influence matrices, we 
find: 

( )a vt-1 -1
2y C -M ζq - M Kq + B u C q C q = +  d+

where B2 is force influence matrix.  
The number of the activities related to the structure 
development: structure model validation, structure 
model update, control of smart structures and so on 
relay on (1), (2) and (4).  
Although, the procedure of forming model in state 
space (2) for given (1) is simple and straightforward it 
is not unique. Hopefully, the modal characteristics are 
kept in transformation form (1) to (2) and this is the 
most often basis for structure monitoring, damage 
detection and so on, [4].  
State space discrete time model presentation, deduced 
from (2) and (3), reads:  

( )1 ( ) (
( ) ( ) ( )

k k
k k

x Ax Bu )k
ky Cx Du

+ = +

= +
  (5) 

where:  
c teAA ∆=  

0

dc

t

ceAB Bτ τ
∆

= ∫  

and k∆t = t.  
Here, the basic terminology related mathematical 
model of the controlled structure is introduced and we 
proceed to the problem modelling and simulation. 

The modelling and simulation of the linear systems 
are well developed and researched. However, different 
fields in engineering typically have independent 
development strategies and paths due to historical 
reasons. The exchange of ideas in forms of the 
knowledge transfer has enhanced frequently the 
domain.     

2 The mathematical model of the two 
bar mechanical system 
The two bar mechanical system that will be actively 
controlled is presented on the Fig. 1. The expected 



•Time response  ( ), ( ), ( )X t X t X t  excitation is harmonic, random or impact force and 
they are applied at the lever 1. 

•MAC    Φ

 

•The simultaneously weighted combination of the 
different characterization of the system… 

The objective function depends on the system 
parameters such as mass, stiffness, damping,… (M, K, 
D, Ω2, Φ, ξ,…)  
 
 
 
 
 
 
 
 
 
  Fig. 1: Mechanical system with two dof, An electro-

dynamical exciter performs vibration due to PI 
controller. 

 
 
  

The active vibration controls of the permanent 
(harmonic and random excitation) and transient 
responses (impact excitation) are evaluated 
respectively. 

The governing differential equation that corresponds 
to the actively controlled mechanical system reads: 

Mq Dq Kq F+ + =  

Two beams are represented as lumped masses.  

The system properties and values of the corresponding 
matrices are crucial in reliable modelling and 
simulation. So, an extensive identification procedure 
is implemented in order to define system parameters. 
However, identification procedure itself requires the 
model of the system and multiple simulations that are 
required by the optimisation procedure. Typically, the 
identification is inverse procedure where the 
minimisation of the objective function leads to the 
fitting of the real system response.  

Although the simple idea, this inverse procedure is 
numerically challenging due to great number of local 
minima with close values, even for a small systems. 
The optimisation procedure is case sensitive and 
depends also on the fitting targets: time or frequency 
response. Some possible targets are: 

•Real part of FRF     Re( )ijH

•Imaginary part of FRF   Im( )ijH

•Module of FRF    ( )ijAbs H

•Argument of FRF   ( )ijArg H

 
 

 
 
 
 
 
 
 
 

Fig. 2: Objective function example, Error norm as 
function of m1 and m2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Objective function example, Error norm as a 
function of k1 and k2 

 



The examples of objective functions are presented in 
Figs 2 and 3 where the character of these functions 
can be observed. 
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Le us stress the fact that we are going to model and 
simulate the real system and we need the parameters 
of the system.  

The system model can be built on the knowledge of 
the physical processes of the system. The parameters 
of the system can be acquired from the known 
material data. The practical experience in modelling of 
the real systems has proved that a significant 
improvement can be achieved in the model update 
with tuning model with real system responses. 

Fig. 4: Schematic presentation of control loop with the 
process (P(s), mechanical structure with external 

excitation) and transfer function T(s) for the sensor 
(transducer)  

 
However, to perform the model update we need the 
model of the system that we are going to simulate. In 
this way the whole modelling procedure appears to be 
an iterative algorithm. 

In Fig. 4 the PID controller is presented. However, 
only PI control is modelled and simulated in this 
paper. 

Applying identification procedure, the system is 
identified, and we have mass matrix, [5]:  
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M  

and stiffness matrix: 

335.1318 13.5843 N10  
13.5843 18.7371 m

− 
= ⋅ − 

K  

The type of the system damping is unknown but as far 
as we are dealing with the real system damping exists. 
The origins of the friction are the beam supports, 
spring contacts and internal friction. So, for the real 
system we are going to model and simulate, viscous – 
proportional damping is assumed: a) Mechanical model scheme 

 α β= ⋅ + ⋅D K M  

The coefficients of the damping α and β are detected 
within identification process, we find: 0.05α =  and 

0.0007β =  

Now we have damping matrix: 

24.8343 9.509
9.509 13.2574

− 
=  − 
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The identification process is based on the ERA 
procedure (Eigensystem Realisation Algorithm). The 
ERA was used in combination with the observer 
Kalman filter in order to detect the system modal 
parameters and verify stiffness, mass and damping. 

Transfer function of the controlled system/process is: 

( ) 2

1s
s s

=
+ +

G
M D K

 
b) Bond graph model 

Fig. 5: Mechanical model and corresponding Bond 
graph 

The block diagram of the controller and controlled 
system is presented in Fig. 4. 

  



The iterative identification/mode update procedure is 
applied in this case. The system is modelled based on 
the physical knowledge of the processes and than 
iteratively improved until satisfactory data are 
reached. 
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The important issue rise: how we can know when the 
model is appropriate in the case when we do not have 
built the physical model yet. Here, the experience in 
building the similar models play very important role. 
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Fig. 7: Bong graph model of 2 dof lever mechanical 
system in BondSim 

 

The bond graph models are shown in Fig. 5 to 7. The 
bond graph models are typically transformed to state 
space model and then solved. The used BondSym 
applies different methodology: bond graphs are 
converted in the system of differential and algebraic 
equations and then solved simultaneously, [6]. 

3 The simulation and the control 
a) The schematic presentation of the mechanical 

system digital control 
The PI controller is implemented as analogue and 
digital, see Fig 6 and 8. The controller is tuned using 
Ziegler-Nichols practical procedure, [7 – 9]. The same 
coefficients are used for real setup and numerical 
simulation. These coefficients were starting point for 
the system optimization. 

s

e1:I m

F2

v1

F3 v1

Part of 
system to 
2. DOF

F1 v1

s

F1 v1

PI

Fp

v1
Se

Part of the 
system to wall

s

F
e

v
1

S
e

Fn

v1

 

 

 
Fig. 8: The analogue implementation of the PI control 

 

The simulation has been performed using BondSim on 
shown Bond graph model.  b) The mechanical system and PI control  

Fig. 6: The implemented control and Bond graph 
model 

The advantage and disadvantage of specific modelling 
and simulation methods can bee heavily dependent on 
the software implementation and user previous 



experience. So, we do not have preference regarding 
the implementation of the bond graph method over the 
more conservative ones like matrix approach. 
However, the bond graphs are the suggestive 
encapsulation tool and give the strong device feeling 
especially in graphic presentation. 

The optimised parameters of the controller depend on 
the loading conditions of the mechanical model. The 
all three loading conditions require dedicated 
optimisation. Also, multi-objective optimisation can 
be performed to reach good-weighted optima. 
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Fig. 9: FRF of bond-graph model using BondSim. 
Black response is for free system and grey is for 

controlled. 
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Fig. 10. Simulated results of mass unbalance for 
frequency of 120 rad/s. Black line stands for free 

system and gray stands for controlled system. 

 

The response of the open loop system and the 
optimized PI controlled system are presented in 
frequency domain, see Fig. 9. The Fig. 10 represents 

the system response to the harmonic excitation at 120 
rad/s for both: the open loop and the PI controlled 
system.  

The strong impact of the active control can be 
observed. The active control is more efficient in the 
resonant frequency domain where mechanical systems 
have lower dynamic stiffness. 

4 Measurement on the real model 
The measurements have proved simulation results as 
expected as far as the parameters of the model have 
been retrieved in identification. The additional 
assessment of the control efficiency has been 
performed measuring transient response on the real 
model. 

 

 
Fig. 11: Settling down due to step excitation 

(displacement): Measured open loop system; abscise– 
time in s, ordinate–passive shaker force in N and 

velocity in ms-1 

 

 
Fig. 12: Settling down due to step excitation 

(displacement); Measured response of actively 
controlled system (PID parameters: Kp=1.85, Ki=10); 

abscise – time in s, ordinate – the half of force in 
shaker in N (the half of the force fit in the same scale 
with velocity) and velocity of controlled body in ms-1 



 

The Fig. 11 and 12 represents response of the system 
to the step excitation. In Fig. 11 we have the open 
loop response. However, some passive vibration 
damping in exciter is inevitable, because the actuator 
is connected to the mechanical system end have 
damping due to friction and the airflow. The impact of 
the active control can be observed in Fig. 12, where 
we see that the settling time as well as peak velocity 
value is reduced approximately to half of the 
undamped value.  

The identification of the closed loop system has not 
been performed. 

5 Conclusion 
The implementation of the active vibration control to 
the two dof system by means of the PI control are 
modeled and simulated using bond graphs and 
conventional multi-physics matrix approach. The 
identified parameters of the open loop mechanical 
system are used in simulation of the active PI control 
of vibration. The active vibration control is 
implemented to the transient and harmonic excited 
mechanical system. The analysis of the active 
vibration control has been performed in time and 
frequency domain. 

The optimised parameters of the controller depend on 
the loading conditions of the mechanical system. The 
harmonic excitation and transient step excitation of 
the mechanical system are considered. 

The advantage and disadvantage of the bond graph 
approach has been considered. At the given level of 
the application, only the practical and subjective 
differences are observed in comparison with 
conservative multi-physics approach. 

The identification of the open loop system has been 
performed, however, the identification of closed loop 
system is gong to be done in the future research. The 
evaluation of the active vibration control efficiency is 
assessed based on displacement and velocity 
amplitude reduction.  
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