
SIMULATION STUDY OF PARALLEL MODEL
PREDICTIVE CONTROL

Stefan Behrendt1, Peter Dünow1, Bernhard Lampe2

1Hochschule Wismar, University of Applied Sciences: Technology, Business and Design,
Research Group CEA, Philipp-Müller-Straße, PF1210, 23952 Wismar, Germany

2University of Rostock, College of Computer Science and Electrical Engineering,
Richard-Wagner-Str. 31 / H.8, 18119 Rostock, Germany

stefan.behrendt@hs-wismar.de (Stefan Behrendt)

Abstract

Over the decades the model predictive control (MPC) concepthas proved success-
fully in controlling plants with complex dynamics. Due to its high computational
complexity its usage is being limited to plants with slow dynamics like in the pro-
cess industry. To address this limitation several techniques have been developed
to enlarge the field of MPC to embedded systems with small sampling times. With
the advent of multi-core controllers it seems reasonable that parallel algorithms for
MPC could lower the computational burden. In this paper the speed-up behaviour
of a parallelisation approach on a functional level, in particular the incorporated
optimisation, is studied due to a discrete-time simulationwith Matlab/Simulink.
This approach leads to some extent to super-linear speed-upof more than eight on
four workers. The paper pictures the necessary computational basics in MPC and
constrained optimisation and explains the mentioned approach in detail. Numer-
ical simulation results are given on a multi-input multi-output (MIMO) control
problem and the efficiency of the approach is shown.

Keywords: Model Predictive Control, Parallel Algorithm, Di screte-Time Simulation,
Computational Complexity

Presenting Author’s Biography

Stefan Behrendt is a Research Associate in the research group Compu-
tational Engineering and Automation (CEA) at the Faculty of Engineer-
ing, University of Wismar, Germany. He obtained the degree (Honours) in
Electrical Engineering in 2006 and M.Eng. in Process Automation in 2009
from University of Wismar. He joined the Ingenieurgesellschaft Auto und
Verkehr (IAV) GmbH as a Process Engineer in 2006 and then started the
PhD studies under supervision of CEA at the University of Wismar and in
cooperation with the University of Rostock in 2007. His research interests
are in the areas of mathematical programming, optimisationalgorithms
and its application in process control engineering. In particular the author
is concerned with spark ignition engine control.



1 Introduction

Over the decades the model predictive control (MPC)
concept has proved successfully in controlling plants
with complex dynamics. Due to its high computational
complexity its usage is being limited to plants with slow
dynamics like in the process industry (e.g. [1]). Numer-
ous companies developed reliable software for process
automation systems (PAS) (e.g. [2]) and programmable
logic controllers (PLC) (e.g. [3]).

In contrast, controlling plants with fast dynamics still
poses a problem. The fast sampling times necessary
prevented the MPC of these plants on standard em-
bedded systems, beside the benefits are already proven
[4, 5]. To address this limitation several techniques
have been developed to enlarge the field of MPC to em-
bedded systems with small sampling times.

An implementation with sufficient worst case timing for
the MPC of a single-input single-output (SISO) system
is presented in [6]. It suggests the enhancement of em-
bedded systems by a digital signal co-processor (DSP)
for the fast evaluation of the underlying algorithms.

The implementation strategies and the actual imple-
mentation on field programmable gate array (FPGA)
chips are presented by [7] and [8] respectively. While
the former address the specific architecture, like paral-
lelism, explicitly and therefore the greater improvement
is expected, the effort of implementing the necessary al-
gorithms in a hardware description language should not
be underestimated. To compete against high-potential
micro-controllers in terms of computational time is a
challenging task.

Another approach is the combination of on-line optimi-
sation and a partial enumeration method [9]. The solu-
tions of the optimisation problem with active constraint
sets that appear with highest frequency are computed
off-line and stored in a table. This table is searched on-
line for the best control. In case, that meanwhile the on-
line computation an active constraint set does not exist
in the table, it is adapted. With this method a significant
speed-up is possible. The drawbacks are performance
degradation and the memory requirements.

The explicit MPC has gained much attention in the re-
cent years. Therefore the state space is partitioned into
polyhedral regions. The control law is formulated as a
function of the plant state and the piecewise linear so-
lutions to the control problem with respect to the con-
straints are calculated [10, 11]. The on-line computa-
tional complexity reduces to the selection of the appro-
priate control law depending on the actual state. Nu-
merous successful applications followed [12, 13, 14].
On the other hand, explicit MPC is limited to low-
dimensional plants and short control horizons (for an
explanation of this term see section 2) as the number of
regions grows exponentially with these parameters. A
prohibitively large amount of memory would be neces-
sary, which is addressed e.g. by [15]. Additionally the
constraints on the control variables are fixed, which is
undesired in some control problems.

With the advent of multi-core controllers for embed-
ded systems [16, 17, 18] and multi-core DSPs [19]
it seems reasonable that parallel algorithms for MPC
could lower the computational burden. To the knowl-
edge of the author the main developments occur in the
field of large-scale and sparse problems [20, 21] and
focus on the parallelisation of incorporated operations
(e.g. matrix multiplication, factorisation or inversion
and solution of system of equations) [22].

In this paper a parallelisation approach on a functional
level, in particular the incorporated optimisation, for
small-scale problems is presented. Therefore the op-
timisation is solved in dependency on a number of dif-
ferent initialisations on different cores of a multi-core
architecture, which forms an embarrassingly parallel
problem. The initialisations are determined by either
an heuristic method or an initialisation routine. Because
the initialisation is crucial for the computational com-
plexity of the overall algorithm this approach leads to
some extent to super-linear speed-up as it will be shown
in the remainder of the paper.

The paper is organised as follows. The basics of MPC
and algorithms for the solution of the incorporated op-
timisation are presented in section 2. In section 3 an
possible extension to parallel computation is decribed.
Section 4 and 5 explain the simulation system and the
results of the parallel approach. The paper closes with
a conclusion.

2 Model Predictive Control Basics
In this section a short introduction to the MPC funda-
mentals is presented. For a more comprehensive survey
on the theory of MPC the reader is referred to [23] and
[24].

The MPC method combines the advantages of predict-
ing the behaviour of the plant, namely the output, and
respects constraints on the actuators. Therefore the cost
function

J(k) =
Hp

∑
i=1

||ŷ(k+ i|k)−w(k+ i|k)||2q(i)+

Hu−1

∑
i=0

||∆u(k+ i|k)||2r(i) (1)

with the prediction horizonHp, the control horizonHu,
the weights on the error signalq, the weights on the
rate of change of the difference control actionr, the
predicted output ˆy, the referencew and the difference
control action∆u needs to get minimized with respect
to ∆u.

The prediction follows from the state equations of the
plant

x(k+1) = Ax(k)+Bu(k) (2)

y(k) =Cx(k) (3)

with the statesx∈R
nx×1, the inputu∈R

nu×1 and the
outputy∈R

ny×1 by

ŷ(k) = Ψx̂(k)+ϒu(k−1)+Θ∆u(k) . (4)



TherebyΨ, ϒ, Θ and∆u(k) are in the notation as pre-
sented by [23]. With the reference signalw(k+ i|k),
i = 1. . .Hp, the control difference over the prediction
horizon

ε(k) =







w(k+1|k)
w(k+2|k)

...
w(k+Hp|k)






−Ψx̂(k)−ϒu(k−1) (5)

leads to the cost functional

J(k) = ∆u(k)TH∆u(k)−gT∆u(k) (6)

with

g= 2ΘTQε(k) and H = ΘTQΘ+R. (7)

By means of the weighting matricesQ andR the result-
ing control is parametrized.

Additionally constraints on the actuating variables are
defined by the linear matrix inequality

A∆u(k)≤ b (8)

with the well structured coefficient matrix

A=



















1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 1 0 1
−1 0 0 0 0 0
0 −1 0 0 0 0
−1 0 −1 0 0 0
0 −1 0 −1 0 0
−1 0 −1 0 −1 0
0 −1 0 −1 0 −1



















(9)

that cumulates associated difference control actions.
The size and sparsity pattern of this matrix depends on
the number of actuating variables and the chosen con-
trol horizon, but does not change its purpose. The spe-
cific structure of this matrix is important for the later
parallel implementation.

The minimization of the cost function (Eq. 6) under the
constraints (Eq. 8)

min
∆u

{

∆uTH∆u−gT∆u : A∆u≤ b
}

(10)

defines a mathematical standard problem that can be
solved by quadratic programming (QP). A variety of
methods for solving the QP are commonly used [25]
and two of them are described in the next sections.

2.1 Hildreths Quadratic Programming Procedure

The procedure presented by HILDRETH [26, 27] be-
longs to the first algorithms for the solution of con-
strained quadratic optimisation problems. It solves the
dual problem to Eq. 10

min
λ

{

λ TPλ +dTλ : λ ≥ 0
}

(11)

with

P=
1
4

AH−1AT (12)

d = b−
1
2

AH−1g (13)

which is of the same structure like the primal problem,
but of increased dimension due toA∈R

2nuHu×nuHu (ev-
ery actuating variable is subject to a lower and upper
bound) whileH ∈R

nuHu×nuHu. On the other hand, the
simplified constraints make it easier to solve.

The unrestricted, optimal solution is given by

λ+ =−
1
2

P−1d (14)

and by means of the Gauss-Seidel method the restricted,
optimal solution is calculated element-wise while pre-
serving the dual feasibility. The explicit formula for the
ith element ofλ in themth iteration is

wm+1
i =−

1
pii

(

di

2
+

i−1

∑
j=1

pi j λ m+1
j +

2nuHu

∑
j=i+1

pi j λ m
j

)

(15)

λ m+1
i = max(0,wm+1

i ) (16)

where pi j is the i j th element of the matrixP and the
scalardi is theith element of the vectord.

In case of convergence of the method the solutionλ ⋆ is
used to calculate the optimal primal variables by

∆u⋆ =
1
2

H−1(g−ATλ ⋆
)

. (17)

The drawbacks of the algorithm are the slow speed of
convergence and the sensitivity to the precision of the
used number system in comparison to competing meth-
ods like the active set method in the next section.

2.2 Active Set Method

The primal method by FLETCHER [28] identifies itera-
tively the active constraints set in the solution denoted
by

I = {i ∈ {1. . .2nuHu} : ai∆u= bi} (18)

whereai is the ith row of A andbi the ith element of
b. By definition the matrixAI ∈ R

nI×nuHu is a matrix,
which rows are composed by the vectorsai with i ∈ I .

The method utilizes the associated LAGRANGE-
function to Eq. 6 and Eq. 8

L(∆u,λ ) = ∆uTH∆u−gT∆u+λ T(A∆u−b) (19)

whereλ are the LAGRANGE multipliers.

By differentiation and setting to zero the equations

∂L
∂∆u

= 2H∆u−g+ATλ = 0 (20)

∂L
∂λ

= A∆u−b= 0 , (21)

characterize an extremum and the transition to an itera-
tive method that calculates in every iterationm a stepp
towards the minimum while preserving the primal fea-
sibility by an equality constraint

0= 2H(∆um+ p)−g+AT
I λI (22)

0= AI(∆um+ p)−bI (23)



follows. Due to eq. 18

AI∆um = bI (24)

the Eq. 22 and 23 simplify to
[

2H AT
I

AI 0nI×nI

][

p
λI

]

=

[

−(2H∆um−g)
0nI×1

]

. (25)

In case of violating an inactive restriction

A(∆um+ p)−b> 0 (26)

a line-search step is performed that prevents this viola-
tion and the associated restriction is added to the active
set.

The existence of a negative element inλI implies that
the associated restriction needs to be removed from the
active set.

Summarised, the task of FLETCHERs method is to iter-
atively determine the active constraints in the solution.
It needs as much iterations as changes to the active set
needs to be performed.

3 Parallel Extension of Active Set Method
As stated in the previous section, the number of itera-
tions in the active set method depends on the necessary
number of changes to the active set. In case of known
active set in the solutionI⋆, the method needs only one
iteration. It is worth noting that the closed solution can
be given analytically, too.

∆u⋆ =
1
2

H−1g+H−1AT
I⋆
(

AI⋆H
−1AT

I⋆
)−1

(

bI⋆ −
1
2

AI⋆H
−1g

)

(27)

Unfortunately the active set in the solution is usually
not known in advance. Due to this fact we resort to the
technique of estimating the active set. Such guesswork
often poses problems, because finding appropriate rules
for estimation is a challenging task and the quality of
the estimation sometimes increases the computational
complexity.

The parallel execution offers the chance of simultane-
ously solving the quadratic program with different ini-
tialisations. The suggested structure is shown in Fig.
1. The first thread solves the problem in the same man-
ner as the sequential implementation would do. There-
fore the active set of the solution in the previous time
instance is used (known as „warmstart“). This strat-
egy often leads to a decreased number of iterations, but
could have contrary effect as well. In the parallel con-
text this initialisation serves as a failsafe mechanism.
The computational time of the parallel approach could
never exceed the sequential implementation (disregard-
ing the overhead for parallelisation).

The second thread benefits from the estimation of the
active set. Because of the huge effort of a reliable
heuristic estimation the usage of an extreme assumption
like all constraints get activated is preferred. In such

find feasible point

active set method

I1,∆u01

I1

find feasible point

active set method

I2,∆u02

I2

estimate active set

∆u⋆

Thread 1 Thread 2

Fig. 1 Structure of the parallel implementation with two
workers

conditions the most iterations in the active set method
are expected. The drawback is the less usage of this
advanced knowledge. Because extreme situations oc-
cur infrequently this thread does not often participate in
the delivery of the solution. On the other hand, if it is
participating the number of iterations and therefore the
computational time could be drastically decreased.

A more systematic approach that includes the dynamic
behaviour of the plant is the idea of this paper. Despite
the slow speed of convergence is HILDRETHs proce-
dure generating a sequence of dual variables that indi-
cate active constraints by positive values. Because the
actual solution to the dual problem is not of interest,
but the fact that entries are positive already a limited
number of iterations in HILDRETHs procedure might be
sufficient for a reliable estimation of the active set by

I = {i ∈ {1. . .2nuHu} : λi > 0} . (28)

If the estimated active set equals the active set in the
solutionI⋆ would further iterations in HILDRETHs pro-
cedure not improve the result, but increase the compu-
tational complexity again. Hence, an optimal value for
the iteration count exists that is control problem spe-
cific. A related approach that possibly results in sub-
optimal solutions in described in [29], but does not con-
sider a parallel algorithm.

The calculation of a feasible starting point is necessary
for primal methods like the active set method. This pro-
cess is often referred to as Phase I. Due to the fact, that
we want to start with an initial active set the starting
point needs to satisfy Eq. 8 as well as Eq. 24. This
could easily be done by Eq. 27, but because of the sim-
ple structure of the coefficient matrix in the inequality
constraint (Eq. 9) a straightforward computation is pos-
sible that prevents matrix inverses.

The thread that finishes the optimisation first supplies
the optimal difference control value∆u⋆ and interrupts
the other thread. This interruption is the only commu-
nication necessary between the workers.



4 Benchmark plant for a class of systems

This paper deals with a special class of systems that
consists of a main control variable, a main actuating
variable and a number of auxiliary actuating variables.
The purpose of the auxiliary variables is to dynamically
support the main actuating variable, but statically re-
tain to their references. Therefore zero-order holds are
introduced, that allow for the definition of the auxil-
iary variables as actuating and control variables at the
same time. The general system can be described by the
discrete-time transfer function

G(z) =













G11(z) G12(z) G13(z) · · · G1n(z)
0 z−1 0 · · · 0
0 0 z−1 · · · 0
...

...
.. .

.. .
...

0 0 0 · · · z−1













.

(29)
The benchmark plant has been chosen to be of dimen-
sion twenty, son = 20 in Eq. 29, to demonstrate the
significant reduction in computational time. Each sub-
system is stable and of second order that leads to forty
states that represent dynamic. The relation between the
main control variable and the main actuating variable
described byG11(z) is of slower dynamic in compari-
son to the remaining sub-systems. This encourages the
evident active aid by the auxiliary variables for control-
ling the plant. For clarity the gains of the sub-systems
have been selected to be all positive.

Such systems occur e.g. in spark ignition engine con-
trol [30, 31, 32]. The main control variable could be the
engine speed and the main actuating variable the mass
air flow into the cylinder regulated by the throttle. Be-
cause of the intake manifold the dynamic is relatively
slow. In contrast, the advance angle and exhaust gas
recirculation (EGR) are of faster dynamic and serve as
auxiliary variables. In the steady state they are retained
to not impose deterioration of engine efficiency.

5 Simulation Study

As simulation hardware a standard personal computer
architecture with two Intel Xeon E5335 processors that
include eight cores in total is used. The operating sys-
tem is Windows 7 (32 Bit). The simulation software
used is Matlab/Simulink by The Mathworks Inc. It pro-
vides a comprehensive simulation system with support
for e.g. fixed-point models and signal processing algo-
rithms as libraries known as toolboxes as well as con-
tinuous and discrete time models.

Time measurement 

QPC_ms

References, Plant Model &

Control Parameters

w

umax

umin

K

T

D

q

r

References &

Controlled Output

Plant

u y

Number of the thread

that delivers the solution

numThread

Number of iterations

numIter

MPC

w

umax

umin

Y

K_plant

T_plant

D_plant

q

r

u(k)

QPC_ms

numIter

numThread

Extracts Main Control Variable

K*u

Actuating signal

Fig. 2 Simulation model

re
fe

re
nc

e
an

d
co

nt
ro

lv
ar

ia
bl

es

time [s]
0 1 2 3 4 5 6 7 8 9 10

−10

0

10

20

30

40

50

60

Fig. 3 Control scenario of the plant with references
(dash-dot) and control signals (solid)

The simplified model for the evaluation of the proposed
algorithm is shown in Fig. 2. The yellow block on the
left supplies the referencesw, the constraints on the ac-
tuating variablesumax andumin, the parameters of the
plantK, T andD as well as the parameters of the control
algorithmq andr (Eq. 1) to the model predictive con-
trol block. The parameters of the plant may be changed
during run-time that allows for an adaptive control. In
the actual study the plant is assumed to be linear, so the
parameters are chosen to be static. The control can be
parametrised due to changes onq andr during run-time
as well.

The model predictive control block (orange) incorpo-
rates a Simulink S-Function [33]. It qualifies the user
to extend the capabilities of the simulation system. The
S-Function block contains hand-written source code in
e.g. C, C++ and Fortran and is the analogue to built-in
blocks. The integration of new functionality by means
of a S-Function follows general rules and it can ac-
commodate continuous, discrete, and hybrid systems.
The model predictive control algorithm is written in C
to address the planned implementation on embedded
systems. The parallelisation of the incorporated opti-
misation (as explained in section 3) is carried out by
OpenMP [34]. The implementation details are omitted,
because they are not in the focus of this paper.

The plant block (green) replaces the real plant and
is simulated as a discrete-time state space model. A
discrete-time representation is chosen that the simula-
tion time is basically determined by the solution to the
optimisation problem and not by the ODE solver.

The investigated control cycle is shown in Fig. 3.
The control parameters areHp = 20 andHu = 5. The
main control variable (blue) shows satisfactory refer-
ence tracking and is supported by the auxiliary variables
(shown at the bottom of the figure). However, in the sta-
tionary operating points their influence is repealed. The
main actuating variable is not shown for clarity.



 

 

4 Threads
1 Thread

co
m

pu
ta

tio
na

lt
im

e
[m

s]

time [s]
0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

Fig. 4 Computational time for the MPC algorithm for
sequential (blue) and parallel (red) implementation with
the heuristic initialisation

5.1 Heuristic Method

The inspection of the control cycle reveals the critical
time instants in terms of computational time. In case
of a changing reference for the main control variable a
large number of variables are constrained. Thus, in the
time instant of the change many constraints need to get
activated that leads to an excessive computational time
as shown in Fig. 4. Because of the common charac-
teristic of positive gains the same constraints (upper or
lower) are active for all variables.

The number of workers is chosen to be four and are
initialised by the assumption of

1. the active set of the previous time instant is valid,

2. the active set is empty,

3. all the constraints associated to the upper bound
are active and

4. all the constraints associated to the lower bound
are active.

The resulting computational time is shown in Fig. 4 and
summarised in Tab. 1. Despite the fact, that the assump-
tions 3 and 4 are valid in less than one percentage of the
control cycle, it is their achievement of computational
speed-up of more than eight. Hence, a super-linear
speed-up is achieved. While the minimal computational
time shows a minor increase due to the parallelisation
overhead, the maximum is decreased considerably. In
matters of the implementation on embedded systems it
is the maximum time that is crucial. The overall time is
reduced by twelve percentage. It is interesting to note,
that the number of iterations increase. Due to the char-
acteristics of the algorithm a deactivation of few con-
straints may be more costly than the activation of much
constraints. In this case the initialisation with the empty
set is more favourable.

Tab. 1 Benchmark data for sequential and parallel im-
plementation with the heuristic initialisation

Algorithm Computational No. of
time [ms] active set

iterations

min max sum

sequential 0.38 52.76 1814 3890
parallel 0.41 13.62 1592 5339

5.2 Initialisation Routine

The more systematic initialisation by means of HIL -
DRETHs procedure promise a better balance between
the workers.

Therefore the workers are initialised by the assumption
of

1. the active set of the previous time instant is valid,

2. the active set is empty,

3. that everyλi > 0 corresponds to an active con-
straint and

4. that everyλi >
λ
10|λ>0 corresponds to an active

constraint.

The assumption 4 initialises the active set with the con-
straints that LAGRANGE multipliers are greater than a
tenth of the mean value of the positive multipliers. This
accounts for the previously mentioned rule to avoid the
deactivation of constraints by disregarding small posi-
tive multipliers. They are the potential source of acci-
dental choice due to the early interruption of the proce-
dure. Such a threshold is worked out depending on the
process.

The systematic initialisation leads to an involvement of
assumption 3 and 4 of approximately fifteen percent-
age. The improved initialisation is having a further im-
pact on the computational time as shown in Tab. 2 in
comparison to Tab. 1. The more HILDRETH iterations
are performed the better estimate of the active set in the
solution is obtained. This can be judged by the amount
of active set iterations that decrease. This conclusion is
evident by examining the time instantt = 6.2s in Fig.
5.

Tab. 2 Benchmark data for parallel implementation with
the initialisation by HILDRETHs procedure

No. of Computational No. of
HILDRETH time [ms] active set
iterations iterations

min max sum

1 0.41 7.42 1260 2714
3 0.46 7.04 1303 1847
5 0.41 7.33 1265 1717



nu
m

be
r

of
ac

tiv
e

se
ti

te
ra

tio
ns

[-
]

time [s]

co
m

pu
ta

tio
na

lt
im

e
[m

s]

time [s]
6 6.1 6.2 6.3 6.4 6.56 6.1 6.2 6.3 6.4

0

2

4

6

8

10

12

14

16

18

20

0

1

2

3

4

5

6

7

8

Fig. 5 Comparison of the parallel implementation with
the initialisation by HILDRETHs procedure with one
(blue), three (green) and five (red) iterations

In contrast, the computational time does not show a sig-
nificant dependency. The numerical complexity of the
HILDRETH iterations outweigh the reduced number of
active set iterations. With further increasing number of
HILDRETH iterations the computational time would in-
crease, because the initialisation is too costly and the
worker with assumption 1 or 2 will solve the problem.

6 Conclusion

In summary a parallel implementation of an active-set
algorithm incorporated in the model predictive control
scheme for a shared-memory computer is presented .
The parallelisation is based on the initialisation of the
optimisation algorithm, that takes place by either an
heuristic method or an initialisation routine. Moreover,
computational results in a simulation environment have
been presented that documents the efficiency of the ap-
proach for a benchmark control cycle. Within this cy-
cle super-linear speed-up is obtained at particular time
instants that allow for a reduction of 85% in the peak
computational time and the overall simulation time is
reduced by thirty percentage. It should be emphasised
that in contrast to other parallelisation studies this ap-
proach is much more memory intensive, because sev-
eral optimisation are running in parallel. Thus, the ap-
proach is limited to small-size problems as accounted
for the implementation in embedded systems.

Finally, it is noteworthy to point out that the obtained
results are promising to address timing problems in as-
sociated fields. The solution of overdetermined lin-
ear systems is a common task in numerical algebra
and may be formulated as quadratic optimisation prob-
lem. Hence, the approach may have general interest in
other areas such as constrained least square solutions
of overdetermined systems that appear e.g. in adaptive
techniques.

7 References
[1] Stephen Bassett and Michiel van Wijck. Appli-

cation of Predictive Control Technology at BP’s
Crude Oil Terminal at Grangemouth. Technical
report, BP Oil Grangemouth Refinery Ltd. and
Honeywell Hi-Spec Solution Ltd., 1999.

[2] Aspen Technology, Inc. aspenONE - Advanced
Process Control. http://www.aspentech.com.

[3] Siemens AG. SIMATIC PCS 7 APC-Portfolio.
http://www.automation.siemens.com, Oktober
2008.

[4] Bart Saerens, Moritz Diehl, Jan Swevers, and
Eric Van den Bulck. Model Predictive Control of
Automotive Powertrains - First Experimental Re-
sults. InProceedings of the 47th IEEE Conference
on Decision and Control, pages 5692 –5697, 9-11
December 2008.

[5] Adam Mills, Adrian Wills, and Brett Ninness.
Nonlinear model predictive control of an inverted
pendulum. InACC09, June 2009.

[6] Adrian Wills, Dale Bates, Andrew Fleming, Brett
Ninness, and S.O. Reza Moheimani. Model pre-
dictive control applied to constraint handling in
active noise and vibration control.IEEE Transac-
tions on Control Systems Technology, 16(1):3–12,
December 2008.

[7] Geoff Knagge, Adrian Wills, Adam Mills, and
Brett Ninness. ASIC and FPGA Implementation
Strategies for Model Predictive Control. InEuro-
pean Control Conference (ECC), August 2009.

[8] K.V. Ling, S.P. Yue, and J.M. Maciejowski. A
FPGA implementation of model predictive con-
trol. In American Control Conference, 14-16 June
2006.

[9] Gabriele Pannocchia, James B. Rawlings, and
Stephen J. Wright. The partial enumeration
method for model predictive control: Algorithm
and examples. Technical Report 1, TWMCC –
Texas-Wisconsin Modeling and Control Consor-
tium, 22 March 2006.

[10] Alberto Bemporad, Manfred Morari, Vivek Dua,
and Efstratios N. Pistikopoulos. The explicit lin-
ear quadratic regulator for constrained systems. In
Automatica, volume 38, pages 3 – 20, 2002.

[11] Petter Tondel, Tor Arne Johansen, and Alberto
Bemporad. An algorithm for multi-parametric
quadratic programming and explicit mpc solu-
tions. InAutomatica, volume 39, pages 489 – 497,
2003.

[12] Peter Ortner, Peter Langthaler, José Vicente Gar-
cía Ortiz, and L. del Re. Mpc for a diesel engine
air path using an explicit approach for constraint
systems. InProceedings of the 2006 IEEE Inter-
national Conference on Control Applications, 4-6
October 2006.

[13] Gerrit Naus, Roel van den Bleek, Jeroen Ploeg,
Bart Scheepers, Rene van de Molengraft, and
Maarten Steinbuch. Explicit mpc design and per-
formance evaluation of an acc step-&-go. InPro-
ceedings of the 2008 American Control Confer-
ence, 11-13 June 2008.



[14] Alicia Arce, Alejandro J. del Real, Carlos Bor-
dons, and Daniel R. Ramirez. Real-Time Imple-
mentation of a Constrained MPC for Efficient Air-
flow Control in a PEM Fuel Cell. IEEE Trans-
actions on Industrial Electronics, Accepted July
2009.

[15] J.A. Rossiter and P. Grieder. Using interpolation
to simplify explicit model predictive control. In
Proceeding of the 2004 American Control Con-
ference, pages 885 – 890, 30 June - 2 July 2004.

[16] Parallax Inc. Propeller.
http://www.parallax.com/propeller/.

[17] Infineon Technologies AG. TC1796 (Audo-
NextGeneration). http://www.infineon.com.

[18] XMOS Ltd. XS1-G4: 4-core processor.
http://www.xmos.com.

[19] Texas Instruments Inc. TMS320C647x Multicore
DSPs. http://www.ti.com.

[20] J. Gondzio and A. Grothey.Computational Fi-
nance and its Applications II, chapter Solving
Nonlinear Financial Planning Problems with 109

Decision Variables on Massively Parallel Archi-
tectures. WIT Press, 2006.

[21] J. Gondzio and A. Grothey. Parallel interior point
solver for structured quadratic programs: Appli-
cation to financial planning problems. InAnnals
of Operations Research, volume 152, pages 319 –
339, 2007.

[22] A.E.B. Ruano and H.A. Daniel. Parallel imple-
mentation of an adaptive generalized predictive
control algorithm. InEuropean Control Confer-
ence, Brussels, 1-4 July 1997.

[23] Jan Marian Maciejowski.Predictive Control with
Constraints. Pearson Education Limited, 2002.

[24] E.F. Camancho and C. Bordons.Model Predictive
Control. Springer, 2004.

[25] Jorge Nocedal and Stephen J. Wright.Numeri-
cal Optimization. Springer, second edition edi-
tion, 2006.

[26] Clifford Hildreth. A quadratic programming pro-
cedure. InNaval Research Logistics Quarterly,
volume 4, pages 79 – 85, 1957.

[27] Alfredo N. Iusem and Alvaro R. de Pierro. On the
convergence properties of hildreths quadratic pro-
gramming algorithm. InMathematical Program-
ming, volume 47, pages 37 – 51, 1990.

[28] R. Fletcher. Practical Methods of Optimization,
volume 2: Constrained Optimization. John Wiley
& Sons, 1981.

[29] Edwin T. van Donkelaar, Okko H. Bosgra, and
Paul M.J. Van den Hof. Constrained model pre-
dictive control with on-line input parametrization.
In Proceedings of the 38th Conference on Deci-
sion & Control, December 1999.

[30] C. Fritzsche, P. Dünow, S. Behrendt, P. Seemann,
M. Schnaubelt, and M. Schultalbers. Predictive
speed and torque control. InProceedings of 7.
Symposium "Steuerungssysteme für den Antriebs-
strang", Berlin, Germany, 2009.

[31] C. Fritzsche, H.-P. Dünow, B. Lampe, and
M. Schultalbers. Torque coordination of spark ig-
nition engines based on predictive control. InPro-
ceedings of International Conference on Methods
and Models in Automation and Robotics, 2007.

[32] P. Dünow, K. Lekhadia, M. Köller, and T. Jeinsch.
Model based predictive control of spark ignition
engine processes. InProceedings of International
Conference on Methods and Models in Automa-
tion and Robotics, 2005.

[33] The Mathworks Inc. Simulink 7 - Developing S-
Functions, March 2010.

[34] OpenMP Architecture Review Board. The
OpenMP API specification for parallel program-
ming. http://openmp.org/.


