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Abstract

A moving-boundary model for condenser and evaporator heat exchangers in
vapour compression cycles is presented. The model is formulated as system of
differential and algebraic equations suitable for an implementation in the mod-
eling language Modelica. The main idea of moving boundary models is to in-
troduce separate control volumes for two-phase and single phase fluid flow. The
boundaries of these control volumes or zones change dynamically. The model
consists of a maximum of three zones: superheating, subcooling and condens-
ing/evaporating. During simulation the number of zones dynamically changes by
switching between different equations. Occurring discontinuities are formulated
in a way that allows the simulation tool to handle them numerically stable. The
models are well-suited for control design purposes as well as for model based con-
trol. Additionally, a validation procedure is presented. The zone lengths, which
are differential states of the model, are measured directly by infrared thermogra-
phy. This method allows a direct comparison of simulated and measured values
of all state variables.
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1 Introduction
Vapour compression cycles for air-conditioning or re-
frigeration have significant impact on the worldwide
primary energy demand. Basically there are two top-
ics where numerical simulation can help to further in-
crease its efficiency: one is design and the other topic
is control of such systems. For control topics dynamic
system models can be used to test the performance of
certain controllers or even as online implementation on
the controller for advanced model based control. In all
cases heat-exchanger models are a key component of
the system model.

The most general equations to describe fluid flow are
dynamic partial differential equations (PDE) which de-
scribe the conservation of mass, momentum and en-
ergy. For simulation on system level the numerical
solution of these PDE is way too computationally ex-
pensive. There exist different mathematical methods to
discretize the spatial dimension of the PDE and trans-
form it into a system of differential and algebraic equa-
tions (DAE). The Finite Volume method integrates the
PDE over constant volumes. For two-phase flows there
is a discontinuity in the fluid property equations when
leaving or entering the two-phase zone. The Mov-
ing Boundary method takes this explicitly into account.
Similar to the Finite Volume method the PDE are inte-
grated over a control volume. But the boundaries of the
control volumes are not constant, they are exactly at the
points, where the fluid changes from one-phase to two-
phase and vice-versa (see Fig. 1). As these points vary
with time, the control volumes have moving bound-
aries.

superheated two phase subcooled

Fig. 1 Divison of refrigerant flow into three zones.

Illustratively spoken, the benefit of this approach is that
there are no discontinuities inside control volumes. Al-
though the models are of comparatively low order the
dynamic behaviour of evaporators and condensers can
be described with high accuracy [1]. Special attention
has to be paid to the cases, when phase boundaries are
disappearing and therefore control volumes disappear.

Moving boundary heat exchanger models can be found
in many control related publications [2, 3, 4, 5, 6].
Usually the derived DAE system is given in descriptor
form. Modelica as an object-oriented equation based
modeling languages provides the possibility to formu-
late models in a highly reusable and natural way [7].
The symbolic transformation into a numerical suitable
form is done by a simulation tool. To the authors’ best
knowledge there are only two publications about mov-
ing boundary models written in Modelica [8, 9] or other
equation based languages. In this work the thermody-
namically exact derivation of moving boundary models

for condensers and evaporators is described. In contrast
to models in previous literature the energy and mass
balance equations are exactly fulfilled. Additionally,
there are no unphysical equations needed as they are
added in many moving-boundary models in order to get
stable switching behaviour [4, 5].

Existing publications with experimental validation of
moving-boundary models usually examine a whole
vapour compression cycle. We propose a validation
procedure that allows a deeper look inside the heat ex-
changers. In addition to temperatures, pressures and
mass flow rates the length of the different zones (su-
perheated, two-phase, subcooled) can be directly mea-
sured by high-speed infrared thermography. We show
the feasibility of this method by analyzing an automo-
tive condenser. The exact comparison of numerical and
experimental data will be part of future work.

2 Moving Boundary Heat-Exchanger
Model

In this section the derivation of the governing equa-
tions for different control volumes is presented. These
equations are then used to build up an evaporator and
a condenser model. Both models consist at maximum
of three zones: subcooled, superheated and two-phase.
The single-phase zones can dynamically appear and
disappear. The switching of the different modes is a
crucial part of the model. It is important to formulate
these implicitly defined discontinuities in a way that no
inconsistent switching occurs for all system states. This
topic is handled in an extra subsection.

Tab. 1 Symbols used in the model equations.

Symbol Unit Description

α W
m2 K Heat transfer coefficient

γ - Void fraction
μ - Density ratio
ρ kg

m3 Density
A m2 Area
c J

kg K Specific heat capacity
h J

kg Specific enthalpy
H J Total enthalpy
L m Total heat exchanger length
m kg Mass
ṁ kg

s Mass flow rate
p Pa Pressure
Q̇ W Heat flow rate
t s Time
T K Temperature
V m3 Volume
w m

s Velocity
x - Extended vapour quality
y m Zone length

2.1 General refrigerant equations

The basis for all above derived equations is mass
and energy balances for an open control volume. As



ṁin ṁout
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Fig. 2 Refrigerant control volume

sketched in Fig. 2 there is one fluid flow entering and
one leaving the control volume leading to the mass bal-
ance:

dm

dt
= ṁin − ṁout. (1)

Negelecting kinetic and potential energy the energy bal-
ance can be stated as

dH

dt
= ṁinhin − ṁouthout + Q̇ +

dp

dt
Acy, (2)

where y is the control volume length and Ac the cross
sectional area. With H = mh and Eq. (1) the energy
balance can also be formulated as

m
dh

dt
= ṁin(hin − h) − ṁout(hout − h)

+Q̇ +
dp

dt
Acy.

(3)

2.2 Refrigerant single phase equations

For single phase flow a linear enthalpy distribution in-
side the control volume is assumed. The mean enthalpy
h can be calculated out of the boundary enthalpies:

h =
hA + hB

2
. (4)

Density can be expressed as a function of pressure and
enthalpy:

ρ = ρ(p, h). (5)

The refrigerant mass is

m = ρAcy. (6)

Inserted into the general mass balance Eq. (1) it be-
comes

dρ

dt
Acy +

dy

dt
ρAc = ṁin − ṁout, (7)

with

dρ

dt
=
(

∂ρ

∂p

)
h

dp

dt
+
(

∂ρ

∂h

)
p

dh

dt
. (8)

Eq. (8) is derived by differentiating Eq. (5). The partial
derivatives are fluid properties and can be calculated as
functions of p and h.

For single phase flow the energy balance Eq. (3) is con-
sidered. Additional equations are required to determine
the heat flow rate entering the control volume.

2.3 Refrigerant two phase equations

For two phase flow an important variable is the volu-
metric void fraction γ which is defined as

γ =
Vd

Vd + Vb
, (9)

where Vd is the total vapour volume and Vb the total
liquid volume inside the control volume. The indices
stand for dew and bubble. With this definition the total
refrigerant mass can be calculated out of the liquid and
vapour densities:

m = Acy (γρd + (1 − γ)ρb). (10)

Differentiating Eq. (10) and inserting it into the general
mass balance Eq. (1) leads to

dy

dt
Ac(γρd + (1 − γ)ρb) + yAc

(
dγ

dt
(ρd − ρb)

+ γ
dρd

dt
+ (1 − γ)

dρb

dt

)
= ṁin − ṁout.

(11)

Similar to the total mass in Eq. (10) we can formulate
the total enthalpy as weighted sum of liquid and vapour
enthalpy:

H = yAc (γρdhd + (1 − γ)ρbhb) . (12)

To obtain the two phase energy balance formulation,
Eq. (12) is differentiated and combined with the general
energy balance Eq. (2):

dy

dt
Ac (γρdhd + (1 − γ)ρbhb)

+yAc

(
dγ

dt
(ρdhd − ρbhb)

+γ
d(ρdhd)

dt
+ (1 − γ)

d(ρbhb)
dt

)

= ṁinhin − ṁouthout + Q̇ +
dp

dt
Acy.

(13)

The total derivatives of thermodynamic state variables
on the dew and bubble curve as they occur in Eq. (11)



and Eq. (13) can be calculated according to the follow-
ing derivation. As example we take the density on the
dew curve ρd. The same principles hold for all other
state variables, too. In general density can be expressed
as function of pressure and temperature. On the dew
curve temperature itself is not independent but a func-
tion of pressure, given by the saturation curve:

ρd = ρ(p, Ts(p)). (14)

Differentiating this equation leads to

dρd

dt
=
(

∂ρ

∂p

)
T

dp

dt
+
(

∂ρ

∂T

)
p

dTs

dp

dp

dt
. (15)

The remaining partial derivatives, as well as the deriva-
tive of the saturation curve are fluid properties.

To complete the set of equations we have to take care of
one more unknown: the void ratio γ. Void ratio is not
constant along the direction of flow. The total volumet-
ric void fraction is actually a mean value of the local
void fraction γ ′:

γ =
1
y

∫ y

0

γ′(ỹ) dỹ. (16)

There exists a variety of mathematical models to de-
scribe the local void fraction. Thome [10] gives an ex-
cellent introduction to this topic. In this work we use
the well-known model of Zivi [11]:

γ′(ỹ) =
1

1 + 1−x(ỹ)
x(ỹ)

(
ρd
ρb

)2/3
, (17)

where x is the local vapour mass fraction. The density
ratio μ := ρd

ρb
is only a function of pressure and is con-

stant along the direction of flow. We insert Eq. (17) into
Eq. (16) and integrate analytically assuming that x is
linear in ỹ. The result is

γ =
(xB − xA)(1 − μ2/3)2 + μ2/3 ln xA(μ−2/3−1)+1

xB(μ−2/3−1)+1

(xB − xA)(μ2/3 − 1)2
,

(18)

where xA denotes the vapour mass fraction at ỹ = 0
and xB at ỹ = y. For the mass and energy balance
equations we need the total derivative of γ, which can
be obtained by differentiating Eq. (18):

dγ

dt
=
(

∂γ

∂xA

)
xB,μ

dxA

dt
+
(

∂γ

∂xB

)
xA,μ

dxB

dt

+
(

∂γ

∂μ

)
xA,xB

dμ

dp

dp

dt

(19)

Analytical expressions for the partial derivatives can be
derived from Eq. (18). The total derivative of the den-
sity ratio is a fluid property. The total derivatives of the
inlet and outlet vapour mass fractions depend on the
heat exchangers state. They are equal zero if all three
zones exist.

2.4 Wall material equations

The wall material of every zone is a separate control
volume. Solid density ρ and specific heat capacity c is
assumed as constant. The temperature is time depen-
dent but equally distributed. Treating the wall material
as thermodynamic phase the variable control volume
boundary can be associated with an enthalpy flow that
enters or leaves the control volume. The energy balance
is

m
dh

dt
= ṁA(hA−h)+ṁB(hB−h)− Q̇i + Q̇o. (20)

The specfic enthalpy can be expressed as h = c(T−T0)
leading to

mc
dT

dt
= ṁAc(TA − T ) + ṁBc(TB − T )− Q̇i + Q̇o.

(21)

We introduce two new variables, wA and wB, which
denote the velocities of the zone boundaries. Both vari-
ables are defined to be positive if the boundary move-
ment corresponds to a growing control volume. The
boundary wall temperatures depend on the boundary’s
movement direction:

TA =
{

T if wA ≤ 0
T +

A if wA > 0 , (22)

TB =
{

T if wB ≤ 0
T +

B if wB > 0 . (23)

T +
A and T +

B denote the wall temperatures of the neigh-
bouring zones. Finally we introduce the wall’s cross
sectional area Aw and write:

ρAwc
dT

dt
= ρAwwAc(TA − T )

+ρAwwBc(TB − T ) − Q̇i + Q̇o.

(24)

2.5 Evaporator model

The evaporator model consists of maximum three
zones: subcooled (index 1), two-phase (index 2) and su-
perheated (index 3). Zones 1 and 3 can dynamically dis-
appear and appear. The corresponding switching con-
ditions are discussed in section 2.8. The resulting dif-
ferential state vector is:



xevp := (p, y2, y3, hout, Tw,1, Tw,2, Tw,3). (25)

Input variables, which have to be provided from other
models or boundary conditions, are:

uevp := (ṁin, ṁout, hin,
dhin

dt
). (26)

2.5.1 Refrigerant mass balance equations

1 2 3

ṁin ṁ12 ṁ23 ṁout

Fig. 3 Evaporator zones and mass flow rates.

The total heat exchanger length L is equal to the sum of
all zone lengths:

y1 + y2 + y3 = L ⇒ dy1

dt
= −dy2

dt
− dy3

dt
. (27)

The mass balance for the subccoled zone is

ṁin − ṁ12 = Ac

[(
−dy2

dt
− dy3

dt

)
ρ1

+
dp

dt
y1

((
∂ρ1

∂p

)
h1

+
1
2

(
∂ρ1

∂h1

)
p

dhb

dp

)

+
dhin

dt

y1

2

(
∂ρ1

∂h1

)
p

]
,

(28)

for the two-phase zone

ṁ12 − ṁ23 = Ac

[
dy2

dt
(γρd + (1 − γ)ρb)

+
dγ

dt
y2 (ρd − ρb)

+
dp

dt
y2

(
γ

dρd

dp
+ (1 − γ)

dρb

dp

)]
,

(29)

and finally for the superheated zone

ṁ23 − ṁout = Ac

[
dy3

dt
ρ3

+
dp

dt
y3

((
∂ρ3

∂p

)
h3

+
1
2

(
∂ρ3

∂h3

)
p

dhd

dp

)

+
dhout

dt

y3

2

(
∂ρ3

∂h3

)
p

]
.

(30)

2.5.2 Refrigerant energy balance equations

The energy balance for the subcooled zone is

Ac

[
dp

dt
y1

(
ρ1

2
dhb

dp
− 1
)

+
dhin

dt
y1

ρ1

2

]

= ṁin (hin − h1) − ṁ12 (hb − h1) + Q̇i,1,

(31)

for the two-phase zone

Ac

[
dy2

dt
(γρdhd + (1 − γ)ρbhb)

+
dγ

dt
y2 (ρdhd − ρbhb)

dp

dt
y2

(
γ

d(ρdhd)
dp

+ (1 − γ)
d(ρbhb)

dp
− 1
)]

= ṁ12h12 − ṁ23h23 + Q̇i,2,

(32)

and finally for the superheated zone

Ac

[
dp

dt
y3

(
ρ3

2
dhd

dp
− 1
)

+
dhout

dt
y3

ρ3

2

]

= ṁ23 (h23 − h3) − ṁout (hout − h3) + Q̇i,3.

(33)

2.6 Condenser model

The condenser model consists of maximum three zones:
superheated (index 1), two-phase (index 2) and sub-
cooled (index 3). Zones 1 and 3 can dynamically dis-
appear and appear. The corresponding switching con-
ditions are discussed in section 2.8. The resulting dif-
ferential state vector is:

xcond := (p, y1, y2, hout, Tw,1, Tw,2, Tw,3). (34)

Input variables, which have to be provided from other
models or boundary conditions, are:

ucond := (ṁin, ṁout, hin,
dhin

dt
). (35)

2.6.1 Mass balance equations

The total heat exchanger length L is equal to the sum of
all zone lengths:

y1 + y2 + y3 = L ⇒ dy3

dt
= −dy1

dt
− dy2

dt
. (36)

The mass balance for the superheated zone is



ṁin − ṁ12 = Ac

[
dy1

dt
ρ1

+
dp

dt
y1

((
∂ρ1

∂p

)
h1

+
1
2

(
∂ρ1

∂h1

)
p

dhd

dp

)

+
dhin

dt

y1

2

(
∂ρ1

∂h1

)
p

]
.

(37)

Two-phase zone’s mass balance is identical to Eq. (29).
For the subcooled zone it is

ṁ23 − ṁout = Ac

[(
−dy1

dt
− dy2

dt

)
ρ3

+
dp

dt
y3

((
∂ρ3

∂p

)
h3

+
1
2

(
∂ρ3

∂h3

)
p

dhb

dp

)

+
dhout

dt

y3

2

(
∂ρ3

∂h3

)
p

]
.

(38)

2.6.2 Energy balance equations

The energy balance for the superheated zone is

Ac

[
dp

dt
y1

(
ρ1

2
dhd

dp
− 1
)

+
dhin

dt
y1

ρ1

2

]

= ṁin (hin − h1) − ṁ12 (hd − h1) + Q̇i,1.

(39)

Two-phase zone’s energy balance is identical to
Eq. (32). For the subcooled zone it is

Ac

[
dp

dt
y3

(
ρ3

2
dhb

dp
− 1
)

+
dhout

dt
y3

ρ3

2

]

= ṁ23 (h23 − h3) − ṁout (hout − h3) + Q̇i,3.

(40)

2.7 Additional equations

For both models, evaporator and condenser, there are
three additional energy balance equations for the wall
volume of each zone. These are derived from Eq. (22),
Eq. (23) and Eq. (24). Furthermore we need equations
to calculate the heat flow rates. The inner heat flow rate

Q̇i,n = αi,nynA
′
i(Tw,n − Tn), (41)

where A′
i is the inner heat transfer area per length. α i,n

is the heat transfer coefficient, which is in general not
equal for all zones n. This is important because its value
is much different for two-phase and one-phase flow.

The outer heat flow rate depends on the secondary
medium and the heat exchanger design. In our exam-
ple we have chosen a cross flow MPET heat exchang-
ers and air as secondary medium. We assume that αo is
equal for all zones:

Q̇o,n = αoynA
′
o(Tair − Tw,n). (42)

The moving boundary heat exchanger models are inte-
grated into the object-oriented framework of the Mod-
elica library TIL [12, 13], allowing a user-friendly de-
tailed geometrical parameterisation for different heat
exchanger types. Sophisticated heat transfer correla-
tions for the refrigerant as well as the air side can be
used.

2.8 Switching model representation

A crucial part of general moving boundary models is
the switching between different number of active zones.
There exist various more or less complex switching
conditions in literature. We propose a new switching
condition, which depends only on one variable. In this
section we focus on the condenser model. The same
basic principles also hold for the evaporator model.

The subcooled and the superheated zone of the con-
denser model can become zero. In order to detect the
switching between different modes an extended vapour
quality at the inlet and outlet is introduced:

xin =
hin − hb

hd − hb
(43a)

xout =
hout − hb

hd − hb
(43b)

In the two-phase region its value is between 0 and 1 and
is equal to the mass fraction of saturated vapour to the
total mass. Outside the two-phase region values higher
than 1 indicate superheated states and values lower than
0 indicate subcooled states. In other words, there is a
subcooled zone if xout < 0 and there is a superheated
zone if xin > 1. These are exactly the switching condi-
tions in the model. The corresponding Modelica code
for the superheated zone is:

if (x_in > 1.0) then

h_12 = h_d;

A_c * (der(y1) * ref1.d
+ der(p) * max(y1, 1e-8)

* (ref1.drhodp + ref1.drhodh/2

* dhdp_d) + der(h_in)

* max(y1, 1e-8) * ref1.drhodh/2)
= mdot_in - mdot_12;

/* mass balance Eq. (37) */

A_c * (der(p) * max(y1, 1e-8)

* (ref1.d / 2 * dhdp_d - 1)
+ der(h_in) * max(y1, 1e-8) * ref1.d/2)
= mdot_in * (h_in - ref1.h)
- mdot_12 * (h_12 - ref1.h) + Qdot1;



/* energy balance Eq. (39) */

else

h_12 = h_in;

der(y1) = 0.0;
mdot_12 = mdot_in;

end if;

In the ref1 object the fluid property calculations are
located. Its classs is TILMedia.Refrigerant out
of the object oriented fluid property Library TILMe-
dia [12, 13]. For the subcooled zone we get a similar
Modelica code:

if (x_out < 0.0) then

h_23 = h_b;

A_c * (ref3.d * (-der(y1)-der(y2))
+ der(p) * max(y3,1e-8)

* (ref3.drhodp + ref3.drhodh/2

* dhdp_b) + der(h_out)

* max(y3,1e-8) * ref3.drhodh/2)
= mdot_23 - mdot_out;

/* mass balance Eq. (38) */

A_c * (der(p) * max(y3,1e-8)

* (ref3.d/2 * dhdp_b - 1)
+ der(h_out) * max(y3,1e-8)

* ref3.d/2)
= mdot_23 * (h_23 - ref3.h)
- mdot_out * (h_out - ref3.h) + Qdot3;

/* energy balance Eq. (40) */

else

h_12 = h_in;

der(y2) + der(y3) = 0.0;
mdot_12 = mdot_in;

end if;

Translating this set of hybrid differential and algebraic
equations with the Modelica tool Dymola leads to a sys-
tem of equations which is linear in the state derivatives:

A(xcond, ucond)ẋcond = b(xcond, ucond). (44)

The matrix and vector elements of A and b are nonlin-
ear and include the discontinuities introduced with the
above derived if equations. Additional balance equa-
tions for the air-side and heat transfer correlations lead
to a hybrid DAE of index one.

To understand what happens when we approach a
switching point during simulation we look at the
switching from three to two zones, when the subcooling
zone disappears. This is also the case in the simulation
study in section 4. When the outlet vapour quality xout

crosses zero an event is triggered and the integration is
restarted with different values in A and b. It is impor-
tant to notice that the zone length y3 also approaches

zero as expected. This is only the result of thermody-
namically consistent balance and fluid property equa-
tions. Numerical errors during integration and errors in
the fluid property calculation lead to the fact, that y3 ist
not perfectly equal zero when xout = 0 but has a small
nonzero value which can also be negative. Negative val-
ues of zone lengths are physically unfeasible and lead
to an unstable behaviour of the ODE Eq. (44). On the
other hand zone lengths at exactly zero lead to a singu-
lar Matrix A. Therefore we protect the model against
values of y1 and y3 below a small positive number. As
one can see in the code example above this is realised
by the Modelica max() operator.

3 Validation Procedure

Properly designed validation experiments are necessary
to establish a satisfactory level confidence in simula-
tion models. In terms of the moving boundary heat ex-
changer model described above knowledge on the loca-
tion of superheating- and subcooling-fronts is the major
information needed for validation. Therefore a mea-
surement procedure allowing determination of these
fronts under transient conditions is needed. One pos-
sibility to determine the location of these fronts is mea-
surement of wall temperature. Infrared thermography
allows for high resolution measurement of wall temper-
atures both in terms of spatial and time coordinate.

(a) 1st pass with de-superheating and condensing, 2nd pass no sub-
cooling.

(b) 1st pass with de-superheating and condensing, 2nd: condensing
and subcooling.

Fig. 4 Thermograms depicting an automotive con-
denser with two passes.



In recent years, a number of studies have been pub-
lished on infrared thermography in heat transfer and
flow visualization. Simeonides et al. [14] and Henckels
et al. [15] developed the infrared thermographic tech-
nique in the measurement of heat transfer in a hyper-
sonic wind tunnel. This technique was applied to deter-
mine local heat transfer in heat exchangers e.g. by Ay et
al. [16]. Most studies focus on local phenomena rather
than looking at the heat exchanger in total. There-
fore tracking of subcooling- and superheating-fronts by
thermography have so far only been published for sin-
gle tubes and not total heat exchangers (e.g. [17]).

Fig. 4 depicts two exemplary thermograms of an auto-
motive condenser. As thermograms display the amount
of infrared energy emitted, transmitted, and reflected
by an object, brighter Regions indicate a high tempera-
ture while darker regions indicate a lower temperature.
The condenser consists out of two passes. The refrig-
erant enters the first pass at the upper right, flows to
the left, is redirected through intergrated receiver, en-
ters the second pass and flows back to the right. In the
upper thermogram only de-superheating and condens-
ing takes place. The former only in the first pass, the
second pass at the bottom is entirely white. This is dif-
ferent for the lower thermogram; the refrigeration cycle
charge is high enough to establish subcooling in the sec-
ond pass. The starting point of the subcooling area can
be seen in the thermogram as a transition from white
to dark. The location of this transition line is tracked
using the Matlab Image Processing Toolbox.

4 Numerical Results
In this section we present simulation results of an ex-
ample system. In Fig. 5 the graphical model set up
is shown. The system consists of a cross-flow con-
denser with boundary conditions. On the air-side con-
stant mass flow rate, pressure and inlet temperature are
given. On the refrigerant-side inlet enthalpy is constant.
The mass flow rates are given by two PT1-blocks with
different time constants.

Fig. 5 Graphical representation of the system model.

During the first 50 seconds inlet and outlet mass flow
rate are equal. At t = 50s a step jump is applied to the
PT1-blocks’ inputs. Due to the larger time constant the
outlet mass flow rate lags behind. After some time both
mass flow rate are equal again. This changing boundary

conditions cause a accumulation of refrigerant mass in
the condenser. The corresponding trajectory is shown
in Fig. 6.
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Fig. 6 Trajectory of stored refrigerant mass in the con-
denser.

As one can see in Fig. 7 the pressure, which is a differ-
ential state, also increases.
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Fig. 7 Trajectory of refrigerant pressure.

In Fig. 8 the trajectory of the outlet vapour quality is
shown. In the beginning we have values between 0 and
1. That means there is no subcooling. Shortly after the
mass flow rate step jump we get values below 0 and
after some time xout gets positive again.
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Fig. 8 Trajectory of extended vapour quality at con-
denser’s outlet.



In Fig. 9 the trajectory of the relative zone lengths of
the subcooled zone is shown. Reference value is the to-
tal condenser length. In the beginning the zone length
is zero. We only have a superheated and a two-phase
zone. When xout gets 0 an event is triggered and the
integration is restarted with different equations, as dis-
cussed in section 2.8. In this simulation result we actu-
ally see two switching events: one when the subcooled
zone becomes active and one when it becomes inactive
again.
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Fig. 9 Trajectory of subcooled relative zone length.

5 Conclusions

The object-oriented modeling language Modelica is
well-suited for the formulation of moving boundary
heat exchanger models as hybrid DAE. The thermody-
namically exact derivation of the most important equa-
tions is shown in detail. An extended vapour mass
fraction on the inlet and outlet is defined and used as
switching condition. Numerical experiments show a ro-
bust behaviour of this new formulation. Additionally
a new validation procedure is presented. Thermogra-
phy allows detecting the phase boundary positions in-
side the heat exchanger. The actual validation of the
models by this method will be part of future research.
A specially designed test stand, which allows open loop
experiments of heat exchangers, will be used.
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