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Abstract

With the aim to reduce a large amount of calculation cost and to improve the
convergence to the optimal solution for multi-peak optimization problems with
multi-dimensions, we propose a new method of Adaptive Plan System with Ge-
netic Algorithm (APGA). This is an approach that combines the global search
ability of Genetic Algorithm (GA) and Adaptive Plan (AP) for the local search
ability. The APGA differs from GAs in handling design variable vectors (DVs).
GAs generally encode DVs into genes and handle them through GA operators.
However, the APGA encodes the control variable vectors (CVs) of AP, which
searches for local optimum, into its genes. CVs determine the global behavior of
AP, and DVs are handled by AP in the optimization process of APGA. The pro-
posed strategy using Hybrid neighborhood control method is introduced into the
APGA (H-APGA) to improve the convergence towards the optimal solution. The
H-APGA is applied to some benchmark functions to evaluate its performance.
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1 Introduction

The product design is becoming more and more com-
plex for various requirements from customers and
claims. As a consequence, its design problem seems to
be multi-peak problem with multi-dimensions. The Ge-
netic Algorithm (GA) [1, 2] is the most emergent com-
puting method has been applied to various multi-peak
optimization problems. The validity of this method has
been reported by many researchers [3, 4, 5]. However,
it requires a huge computational cost to obtain stabil-
ity in the convergence to an optimal solution. To re-
duce the cost and to improve stability, a strategy that
combines global and local search methods becomes
necessary. As for this strategy, current research has
proposed various methods [6, 7, 8, 9]. For instance,
Meta-Lamarckian learning [10] in Memetic Algorithms
(MAs) [10, 11, 12, 13, 14] improves the search abil-
ity for multi-peak functions with multiple dimensions
by introducing a human expert judgment, where local
search methods are used. Additionally, in Fast Adap-
tive Memetic Algorithm (FAMA) [12], the coordination
and choosing of the local search method is controlled
by means of a measurement of fitness diversity over the
individuals of the population dynamically.

On the other hand, Hasegawa et al. proposed a hy-
brid meta-heuristic method (HMH) by reflecting the
recognition of dependence relations among design vari-
ables automatically, and reported the effectiveness of
this method [15]. The HMH needs to switch from the
Simulated Annealing (SA) [16] to the intuitive method
- direct search using the learning result of the depen-
dency of a DV - just before convergence to improve the
local search ability of the optimal solution environs. To
sum up, these methodologies need to choose suitably
a best local search method from various local search
methods for combining with a global search method
within the optimization process. Furthermore, since ge-
netic operators are employed for a global search method
within these algorithms, DVs which are renewed via a
local search are encoded into its genes many times at its
GA process. These certainly have the potential to break
its improved chromosomes via gene manipulation by
GA operators, even if these approaches choose a proper
survival strategy.

To solve these problems and maintain the stability
of the convergence to an optimal solution for multi-
peak optimization problems with multiple dimensions,
Hasegawa proposed a new evolutionary algorithm (EA)
called an Adaptive Plan system with Genetic Algorithm
(APGA) [17].

In this paper, we purposed a Hybrid neighborhood con-
trol method of Adaptive Plan system with Genetic Al-
gorithm (H-APGA) to converge to the optimal solution.
This paper is organized in the following manner. Sec-
tion 2 and 3 present the algorithm of the proposed strat-
egy. Section 4 discussed about the convergence to the
optimal solutions of multi-peak benchmark functions.
Section 5 provides some brief conclusions.

2 The proposed strategy, APGA
2.1 Formulation of the optimization problem

The optimization problem is formulated in this section.
Design variable, objective function and constrain con-
dition are defined as follows:

Design variable : X = [x1, . . . , xn] (1)

Objective function : −f(X) → Max (2)

Constrain condition : XLB ≤ X ≤ XUB (3)

where XLB =
[
xLB
1 , . . . , xLB

n

]
, XUB =[

xUB
1 , . . . , xUB

n

]
and n denote the lower bound-

ary condition vectors, the upper boundary condition
vectors and the number of design variable vectors
(DVs) respectively. A number of DV’s significant
figure is defined, and DV is rounded off its places
within optimization process.

2.2 APGA

The APGA concept was introduced as a new EA strat-
egy for multi-peak optimization problems. Its concept
differs in handling DVs from general EAs based on
GAs. EAs generally encode DVs into the genes of
a chromosome, and handle them through GA opera-
tors. However, APGA completely separates DVs of
global search and local search methods. It encodes
Control variable vectors (CVs) of AP into its genes on
Adaptive system (AS). Moreover, this separation strat-
egy for DVs and chromosomes can solve MA problem
of breaking chromosomes. The conceptual process of
APGA is shown in Fig. 1. The control variable vec-
tors (CVs) steer the behavior of adaptive plan (AP) for
a global search, and are renewed via genetic operations
by estimating fitness value. For a local search, AP gen-
erates next values of DVs by using CVs, response value
vectors (RVs) and current values of DVs according to
the formula:

Xt+1 = Xt +NRt ·AP (Ct, Rt) (4)

where NR, AP(), X, C, R, t denote neighborhood ratio,
a function of AP, DVs, CVs, RVs and generation, re-
spectively. The APGA’s algorithm is described by the
pseudocode given in Fig. 2. In addition, for a verifica-
tion of APGA search process, refer to ref. [17].
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Fig. 1 Conceptual process of APGA



BEGIN 
INITIALIZE population; 

EVALUATE each individual; 
REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO 

GENERATE DVs via AP for each individual; 

EVALUATE individuals with DVs 
SELECT parents; 
RECOMBINE to produce offspring for CVs; 

MUTATE offspring for CVs; 
IF ( RESTRUCTURING CONDITION is satisfied )  

RESTRUCTURE chromosome of offspring for CVs; 

END DO 

END 

Fig. 2 Algorithm of APGA

2.3 Adaptive Plan (AP)

It is necessary that the AP realizes a local search pro-
cess by applying various heuristics rules. In this paper,
the plan introduces a DV generation formula using a
sensitivity analysis that is effective in the convex func-
tion problem as a heuristic rule, because a multi-peak
problem is combined of convex functions. This plan
uses the following equation:

AP (Ct, Rt) = −Scale · SP · sign(∇Rt) (5)

SP = 2Ct − 1 (6)

where Scale, ∇R denote the scale factor and sensitivity
of RVs, respectively.

A step size SP is defined by CVs for controlling a global
behavior to prevent it falling into the local optimum.
C = [ci,j , . . . , ci,p], (0.0 ≤ ci,j ≤ 1.0) is used by
Eq. (6) so that it can change the direction to improve
or worsen the objective function, and C is encoded into
a chromosome by 10 bit strings (shown in Fig. 3). In
addition, i, j and p are the individual number, design
variable number and its size, respectively.

Handling of DV’s out of range

DVs are renewed by AP, and when their values exceed
their range, the APGA returns by Eq. (7) to their range.{

Xt = 2XLB −Xt, Xt < XLB

Xt = 2XUB −Xt, Xt > XUB (7)

Coding into chromosome for CVs

CVs are individually coded into a string to form a chro-
mosome. This 10 bits string with two values (0 and 1)
represents a real value of CVs by using the procedure
shown in Fig. 3. In addition, this figure shows both
DVs and CVs of 2 dimensions cases.

2.4 GA operators

Selection

Selection is performed using a tournament strategy to
maintain the diverseness of individuals with a goal of
keeping off an early convergence. A tournament size of
2 is used.

Elite strategy

An elite strategy, where the best individual survives in
the next generation, is adopted during each generation
process.

It is necessary to assume that the best individual, i.e., as
for the elite individual, generates two behaviors of AP
by updating DVs with AP, not GA operators. Therefore,
its strategy replicates the best individual to two elite in-
dividuals, and keeps them to next generation. As shown
in Fig. 4, DVs of one of them (∆ symbol) is renewed by
AP, and its CVs which are coded into chromosome are
not changed by GA operators. Another one (⃝ sym-
bol) is that both DVs and CVs are not renewed, and are
kept to next generation as an elite individual at the same
search point.

 

0  0  0  1  0  1  0  0  0  0 0  0  0  0  0  1  0  1  0  0

ci,1= 80/1023 = 0.07820 ci,2= 20/1023 = 0.01955

0  0  0  1  0  1  0  0  0  0

Individual i

Step size ci,1 of x1: Step size ci,2 of x2:

0  0  0  1  0  1  0  0  0  0 0  0  0  0  0  1  0  1  0  0

ci,1= 80/1023 = 0.07820 ci,2= 20/1023 = 0.01955

0  0  0  1  0  1  0  0  0  0

Individual i

Step size ci,1 of x1: Step size ci,2 of x2:

Fig. 3 Encoding into genes of a chromosome
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Fig. 4 Elite strategy

Crossover and mutation

In order to pick up the best values of each CV, a sin-
gle point crossover is used for the string of each CV.
This can be considered to be a uniform crossover for
the string of the chromosome as shown in Fig. 5(a).

Mutation are performed for each string at mutation ra-
tio on each generation, and set to maintain the strings
diverse as shown in Fig. 5(b).

Recombination of genes

At following conditions, the genetic information on
chromosome of individual is recombined by uniform
random function.

(1) One fitness value occupies 80% of the fitness of all
individuals.

(2) One chromosome occupies 80% of the population.

If this manipulation is applied to general GAs, an im-
proved chromosome into which DVs have been en-
coded is broken down. However, in the APGA, the
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Fig. 5 Example of crossover and mutation

genetic information is only CVs used to make a deci-
sion for the AP behavior. Therefore, to prevent from
falling into a local optimum, and to get out from the
condition of being converged with a local optimum, a
new AP behavior is provided by recombining the genes
of the CVs into a chromosome. And the optimal search
process starts to re-explore by a new one. This strategy
is believed to make behavior like the re-annealing of an
SA.

3 Hybrid Neighborhood Control method

In the multi-point search of APGA, individuals move
from their various points to the new ones in the design
space of DVs. For example, as shown in Fig. 6, individ-
ual A requires a slight change to the value of the DVs to
obtain the global optimum solution. On the other hand,
individual B cannot reach a global optimum solution
without a significant change. In addition, individual C
has landed in a local optimum solution. Such a situa-
tion, in which the individual are intermingled, can gen-
erally occur at any time in search process. Therefore,
it is necessary to find a suitable DV generation process
for the situation of each individual in the design space.

In this paper, to improve the multi-point search capabil-
ity of APGA, we propose a hybrid neighborhood con-
trol method by mixing between linear function and ex-
ponential function. Additionally, applying a neighbor-
hood control is a common approach for an SA, and the
search point can be changed by controlling the neigh-
borhood range. Therefore, the purposed method is in-
troduced to the AS. The method automatically adapts
the neighborhood range to obtain DV generation accu-
racy for the situation of each individual. As a result, we
believe that it will steadily provide a global optimum
solution and reduce the calculation cost.
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Fig. 6 Example of individual situations

3.1 Linear method (method 1)

The neighborhood range is determined by the NR. The
assignation step of method 1 is shown as Fig. 7. The
formula for NR by linear function is as follows:

NRt = 1− 1

2

(
inv

individual
2

)
(8)

where inv, individual denote the current individual and
number of individual.

To calculate NR, this method uses individual number
only. Therefore, NR is distributed to an individual at
random. It is adjusted to wire range with the first half
of individual number and it is modified to small range
with the last haft of one.

3.2 Mixed methods (method 2 and 3)

Method 2 and 3 sort all of individuals by estimating
their fitness then ranking them by results. The rank is
assigned NR that corresponds with this number. In these
methods, with one haft of individual number, NR is ad-
justed by following sigmoid function. Another half one
is determined by linear function.

NRt =
1{

1 + exp
(
β.

rank− individual
2

individual

)} (9)

where β, rank denote the gain of the sigmoid function
and rank number. The search process is varied accord-
ing to these methods toward the best search direction
for all of individuals.

In method 2, as shown in Fig. 8, the good individu-
als (high fitness values) are allocated large NR values
to search global area in the design space of the DVs
following Eq. (8). On the other hand, the low individu-
als (low fitness values) are allocated small NR values to
perform a local search efficiently following Eq. (9).

Method 3 employs the inverse method of method 2 (as
shown in Fig. 8). Method 3 assigns a large NR to the
good individuals following Eq. (9). Moreover, as for
the low individuals, this method assigns a small NR fol-
lowing Eq. (8). From these handlings, to assign larger
NR than method 2, individuals can widely move to new
points in the design space of DVs.
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4 Numerical experiments
In this section, the numerical experiments are first per-
formed to assign the gain β of the sigmoid function
(method 2 and 3) and to compare among methods.
Next, these methods are compared with other method-
ologies for the robustness of the optimization process.
These experiments are performed 20 trials for every
function. The initial seed number is randomly varied
during every trial. In each experiment, the GA parame-
ters used in solving benchmark functions are set as fol-
lows: selection ratio, crossover ratio and mutation ratio
are 1.0, 0.8 and 0.01 respectively. The population size
is 50 individuals and the terminal generation is 5000th
generation. The sensitivity plan parameters in Eq. (5)
are listed in Tab. 3.

4.1 Benchmark functions

For the H-APGA, we estimate the stability of the con-
vergence to the optimal solution by using three bench-
mark functions with 20 dimensions Rastrigin (RA),
Griewank (GR) and Rosenbrock (RO) function. These
functions are given as follows:

RA = 10n+
n∑

i=1

{x2
i − 10cos(2πxi)} (10)

GR = 1 +

n∑
i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)
(11)

RO =
n∑

i=1

100(xi+1 + 1− (xi + 1)2)2 + x2
i (12)

Tab. 1 shows their characteristics, and the terms epista-
sis, multi-peak, steep denote the dependence relation of
the DVs, presence of multi-peak and level of steepness,
respectively. All functions are minimized to zero, when
optimal DVs X = 0 are obtained. Moreover, it is dif-
ficult to search for their optimal solutions by applying
one optimization strategy only, because each function
has a different complicated characteristic. In Tab. 2,
their design range, the digits of DVs are summarized. If
the search point attains an optimal solution or a current
generation process reaches the termination generation,
the search process is terminated.

Tab. 1 Characteristics of benchmark functions

Function Epistasis Multi-peak Steep
RA No Yes Average
GR Yes Yes Small
RO Yes No Big

Tab. 2 Design range, digits of DVs

Function Design range Number of digits
RA No 2
GR Yes 1
RO Yes 3

Tab. 3 Scale factor for normalizing the benchmark func-
tions

Function Scale factor
RA 10.0
GR 100.0
RO 4.0

4.2 Experiment results

The experiment results are shown in Tab. 4, Tab. 5 and
Tab. 6. The success ratio of all benchmark functions is
100% with small computation cost. And the improve-
ment rate (Fig. 12) is average value of improvement
rate of generation number compared with the average
generation of Simple APGA [17].

The solutions of all benchmark functions reach their
global optimum solutions. However, there are some dif-
ferences among methods. Method 1 converged faster
than method 2, and this is really good with RA func-
tion. Method 3 could arrive at a global optimum at a
high probability with every function.

As a result, we assign the best trial that is found by the
maximum improvement rate. Its best gain value is trial
20 with method 1, trial 19 with method 2 and trial 17
with method 3. Moreover, the results using the best trial
of these methods are compared. From this comparison,
we can confirm that method 3 is the best solution.

Next, Fig. 9, Fig. 10 and Fig. 11 shows diagrams
for the average fitness of individual until these meth-
ods reach global optimum solutions, in the numerical
experiment again to confirm above mentioned result.



The result of testing by the values of gain β with RO
function is shown in Fig. 13. From this comparison, we
can confirm that method 3 converged faster than method
2, and the best gain ranges from 6 to 14.

To sum up, its validity confirms that this strategy can
reduce the computation cost and improve the stability
of the convergence to the optimal solution.

Tab. 4 Experiment result by method 1

Trial Function Improvement Rate
RA GR RO (%)

1 178 355 1256 62
2 175 366 1216 62
3 177 321 1563 58
4 214 412 1564 72
5 209 321 1473 62
6 208 376 1382 68
7 218 374 1443 69
8 217 355 1201 67
9 206 385 1350 69
10 181 321 1057 58
11 211 297 1578 60
12 208 302 1387 60
13 197 336 1408 62
14 213 396 1597 71
15 183 413 1262 68
16 199 394 1503 69
17 201 302 1304 59
18 202 427 1476 72
19 194 410 1506 70
20 160 314 1538 55

Average 198 359 1404 65
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4.3 Comparison

Method 1, 2 and 3 was compared with two other meth-
ods - Simple APGA [17] and APGA/VNC [18]. The
comparison among methods is shown in Fig. 14.

These methods were better than Simple APGA in all
of benchmark functions. Therefore, it is desirable to
introduce these methods into APGA.

Tab. 5 Experiment result by method 2

Trial Function Improvement Rate
RA GR RO (%)

1 219 384 1792 70
2 220 429 1456 75
3 206 429 1779 73
4 166 377 1466 62
5 218 305 1863 62
6 216 387 1664 70
7 194 421 1693 71
8 217 448 1479 77
9 202 402 1800 70
10 205 471 1072 78
11 217 301 1825 61
12 193 472 1851 76
13 212 459 1118 77
14 213 360 1574 67
15 218 352 1873 67
16 195 409 1612 70
17 207 403 1810 71
18 210 403 1303 71
19 205 232 1878 52
20 217 337 1443 65

Average 208 390 1618 69

Tab. 6 Experiment result by method 3

Trial Function Improvement Rate
RA GR RO (%)

1 209 276 1049 57
2 172 307 1108 56
3 212 327 1162 63
4 207 274 835 57
5 180 305 1057 57
6 200 298 1184 58
7 214 299 1134 60
8 167 311 1171 55
9 211 319 1016 62
10 205 275 1212 57
11 190 323 1076 60
12 207 239 1061 53
13 178 305 1045 56
14 206 316 976 61
15 201 311 1022 60
16 205 327 1191 62
17 125 306 1156 49
18 210 294 1116 59
19 201 242 1190 53
20 208 293 999 59

Average 196 298 1088 58

In particular, it was confirmed that the calculation cost
with these methods could be reduced for benchmark
functions. And it showed that the convergence to the
optimal solution could be improved more significantly.

Method 3 had better convergence than APGA/VNC
method with RA function and GR function, however
it did not gain a high probability with RO function.



In summary, from the result shown in Tab. 7, we em-
ployed method 3 for H-APGA model.

Overall, the H-APGA was capable of attaining robust-
ness, high quality, low calculation cost and efficient per-
formance on many benchmark problems.
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5 Conclusion
In this paper, H-APGA method has been proposed to
solve the multi-peak optimization problems with multi-
dimensions.

The H-APGA was applied to three benchmark func-
tions to evaluate its performance. Moreover it was com-
pared with simple APGA. As a result, we can confirm
that the H-APGA reduces the calculation cost and im-
proves the convergence to the optimal solution.

Next, the H-APGA was compared with APGA/VNC
method, and it was confirmed that it could be better with
some benchmark functions.

About the optimal solution such as minimum time and
maximum reliability, it is a future work.

Finally, this study plans to do a comparison with the
sensitivity plan of the AP by applying other optimiza-
tion methods to the AP and optimizing the benchmark
functions.
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Tab. 7 Comparison of Method 3 and APGA/VNC

Function Method 3 APGA/VNC
RA O X
GR O X
RO X O
Sum of better 2 1

O - better result; X - worse result

6 References
[1] David E. Goldberg. Genetic Algorithms in Search

Optimization and Machine Learning. Addison-



Wesley, 1989.
[2] Charles L. Karr and L. Michael Freeman. In-

dustrial applications of genetic algorithms. CRC
Press LLC, 1999.

[3] J. D. Digalakis and K. G. Margaritis. An experi-
ment study of benchmarking functions for genetic
algorithms. Proceedings of IEEE Conference on
Transactions, 5:3810–3815, 2000.

[4] J. Sakuma and S. Kobayashi. Extrapolation-
directed crossover for real-coded ga: Overcom-
ing deceptive phenomena by extrapolative search.
Proceedings of Congress on Evolutionary Compu-
tation (CEC 2001), pages 685–662, 2001.

[5] X. Li and M. Kirley. The effects of varying pop-
ulation density in a fine-grained parallel genetic
algorithm. Proceedings of Congress on Evolu-
tionary Computation (CEC 2002), 2:1709–1714,
2002.

[6] S. W. Mahfoud and D. E. Goldberg. A genetic al-
gorithm for parallel simulated annealing. Parallel
Problem Solving from Nature, 2:301–310, 1992.

[7] David E. Goldberg and Siegfried Voessner. Opti-
mizing global local search hybrids. IlliGAL re-
port no. 99001, January 1999.

[8] M. Miki T. Hiroyasu and M. Ogura. Parallel simu-
lated annealing using genetic crossover. Proceed-
ings of the ISCA 13th International Conference on
PDCS-2000, 2000.

[9] T. Hiroyasu M. Miki and T. Fushimi. Parallel sim-
ulated annealing with adaptive neighborhood de-
termined by ga. IEEE International Conference
on System, Man and Cybernetics, 2003.

[10] Y. S. Ong and A. J. Keane. Meta-lamarckian
learning in memetic algorithms. IEEE transac-
tions on evolutionary computation, 8(2):99–110,
2004.

[11] J.E. Smith William E. Hart, N. Krasnogor. Recent
Advances in Memetic Algorithms. Springer, 2005.

[12] F. Neri N. Salvatore A. Caponio, G. L. Cascella
and M. Sumner. A fast adaptive memetic al-
gorithm for online and offline control design of
pmsm drives. IEEE transactions on Systems, Man
and Cybernetics Part B, Special Issue on Memetic
Algorithms, 37(1):28–41, 2007.

[13] T. Krkkinen F. Neri, V. Tirronen and T. Rossi. Fit-
ness diversity based adaptation in multimeme al-
gorithms: A comparative study. IEEE transac-
tions on Systems, Man and Cybernetics Part B,
36(1):141–152, 2006.

[14] T. Krkkinen K. Majava V. Tirronen, F. Neri and
T. Rossi. An enhanced memetic differential evo-
lution in filter design for defect detection in paper
production. Evolutionary Computation Journal,
MIT Press, 16(4):529–555, 2008.

[15] H. Uehara H. Hasegawa, H. Sasaki and
K. Kawamo. The optimization of spot-weld
positions for vehicle design by using hybrid
meta-heuristics. International Journal of Vehicle
Design, 43(1-4):151–172, 2007.

[16] Dimitris Bertsimas and John Tsitsiklis. Simulated
annealing. Statistical Science, Vol.8, No.1:10–15,
1993.

[17] H. Hasegawa. Adaptive plan system with genetic
algorithm based on synthesis of local and global
search method for multi-peak optimization prob-
lems. Proceedings of the 6th EUROSIM Congress
on Modelling and Simulation, 2007.

[18] H. Hasegawa Sousuke Tooyama. Adaptive plan
system with genetic algorithm using the vari-
able neighborhood range control. IEEE Congress
on Evolutionary Computation (CEC 2009), pages
846–853, 2009.


