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Abstract  

This paper deals with Takagi-Sugeno modelling and parallel distributed 
compensation (PDC) control of nonholonomic mobile robots. The emphasis is 
given especially to the modelling part where the problem of discretization is 
solved. The nonlinear tracking error-model is solved analytically under the 
premise of ZOH present at the system input. The nonlinear discrete model is 
then developed. Several discretization approaches are discussed and the 
modelling errors are analysed and compared. The goal is to find the model that 
would allow for a simple solution of the underlying control problem. This is 
why the trade-off between the complexity and the accuracy of the model is 
discussed. The sector nonlinearity approach is used for constructing the Takagi-
Sugeno discrete model. The PDC control is then designed in the LMI (linear 
matrix inequalities) framework to ensure the stability of the controlled system 
and to optimise the decay rate. Some performance issues are discussed on the 
simulation cases. 
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1 Introduction 
Mobile, autonomous robots are about to become an 
important element of the “factory of the future” [15]. 
Their flexibility and their ability to react in different 
situations [10] opened up totally new applications, 
leaving no limit to the imagination. To drive the 
mobile robot from its initial point to the target point, 
the robot must follow previously planned path. Many 
restrictions are usually imposed on the path that is 
being designed. These may arise from physical 
limitations [8], (moving) obstacles etc. 
     Several controllers were proposed for mobile 
robots with nonholonomic constraints, where the two 
main approaches to controlling mobile robots are 
posture stabilization and trajectory tracking. The aim 
of posture stabilization is to stabilize the robot to a 
reference point, while the aim of trajectory tracking is 
to have the robot follow a reference trajectory. For 
mobile robots trajectory tracking is easier to achieve 
than posture stabilization. This comes from the 
assumption that the wheel makes perfect contact with 
the ground, resulting in nonholonomic constraints, 
which means that not all the velocities are possible at 
a certain moment. An extensive review of 
nonholonomic control problems can be found in [7]. 
According to Brockett’s condition [2] nonholonomic 
systems cannot be asymptotically stabilized around 
equilibrium using smooth time-invariant feedback. 
Completely nonholonomic, driftless systems are 
controllable in a nonlinear sense; therefore, asymptotic 
stabilization can be obtained using time-varying, 
discontinuous or hybrid control laws. An 
exponentially stable, discontinuous feedback 
controller was proposed by [3] and the point 
stabilization of mobile robots via state-space exact-
feedback linearization using proposed coordinates was 
studied in [9]. 
     Trajectory tracking is more natural for mobile 
robots. Usually, the reference trajectory is obtained by 
using a reference robot; therefore, all the kinematic 
constraints are implicitly considered by the reference 
trajectory. The control inputs are mostly obtained by a 
combination of feedforward inputs, calculated from 
reference trajectory, and feedback control law, e.g. in 
[5]. Lyapunov stable time-varying state-tracking 
control laws were also used [11], where the system’s 
equations are linearised with respect to the reference 
trajectory, and by defining the desired parameters of 
the characteristic polynomial the controller parameters 
are calculated. The stabilization to the reference 
trajectory requires a nonzero motion condition. Many 
variations and improvements of this simple and 
effective state-tracking controller followed in later 
research. 
     The approach proposed in our paper is based on 
discrete Takagi-Sugeno fuzzy model, introduced in 
[12], obtained from the discrete nonlinear model of the 
kinematic error. Then, a classical Parallel Distributed 
Compensation (PDC) law [13] is computed using LMI 

techniques [1]. The proposed architecture is valid for 
all the trajectories when their linear and angular 
velocities are bounded. Moreover, with this approach 
control law can be implemented easily in real time 
since it is possible to find stabilizing gains that can 
operate for several trajectories when their linear and 
angular velocities are bounded and the stability 
property is proven for any initial condition in a pre-
specified compact set of the state space. 
     The main point in this paper is to discuss 
discretization issues of the T-S model and also to 
discuss the performance of the PDC control. 
     This paper is organized as follows. In Section 2 the 
tracking-error model of the mobile robot in continuous 
case is shown. In Section 3 several discrete versions of 
the error model are discussed. The T-S model is 
developed in Section 4. Section 5 deals with the PDC 
control of the mobile robot. 

2 Continuous kinematic error-model of 
trajectory tracking 
By taking into account the non slipping condition, the 
kinematic model of the mobile robot in the x-y plane 
can be written as follows: 
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where the considered control inputs of the mobile 
robot v and w are the linear and the angular speed of 
the robot, respectively. The output variables are x and 
y (the robot gravity-centre position) and θ (the angle 
between the speed vector and the x-axis, i.e. the robot 
orientation). 
     Fig. 1 illustrates the definition of the posture error 

T

x ye e e eθ⎡ ⎤= ⎣ ⎦  expressed in frame of the real 
robot and determined – using the actual posture 

[ ]Tq x y θ=  of the real robot and the reference 

posture [ ]Tr r r rq x y θ=  of a virtual reference 
robot – by the equation: 
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Fig. 1. Posture error 
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From (1) and (2) and assuming that the virtual robot 
has a kinematic model similar to (1), the posture error 
model can be written as follows [4]: 
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where rv  is the linear reference velocity and rw  is the 
angular reference velocity. The control law is then 
defined as [ ]Tu v w= . Very often (e.g. [6]) the 
control is decomposed as: 
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Inserting the control (4) into (3), the resulting model is 
given by: 
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where [ ]T
b b bu v w=  is the feedback signal to be 

defined later. 

3 Discretization of the kinematic model 
The continuous model is not suitable for the 
implementation. In our case the information about the 
posture of the robot is obtained each 33 ms and also 
the control is sent to the robots with the same 
frequency. 

3.1 Euler discretization 

The simplest method of discretization is the Euler 
integration formula where the derivative of the 
function is replaced with the difference quotient, and 
the following discrete model is obtained from (5): 
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where all the signals on the right hand-side of the 
equation are functions of k. 

3.2 The exact ZOH-discretization 

The exact discrete nonlinear kinematic model will be 
derived in this section. It is obtained on the premise of 
constant input signals between sampling instants kT 
( k ∈ ) of the output, i.e. ZOH is being used at the 
system input: 
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Let us now analyse the third equation in (1) when 
( 1)kT t k T≤ < + : 
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Note that the functional dependence on k or t is not 
used very formally in the text, i.e. ( )θ ⋅  does not have 
any meaning. 
     The orientation of the robot changes piece-wise 
linearly and it is possible to analytically determine the 
position of the robot in the next sampling instant 
based on the posture and the control input in the 
current sampling instant. The equations for the 
position can be integrated: 
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Analytical solution for x(k+1) is: 
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Similarly the model for y(k+1) can be obtained: 
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The discrete model of the mobile robot is completed 
by the model for ( 1)kθ +  obtained from (8): 
 ( 1) ( ) ( )k k Tw kθ θ+ = +  (12) 
The reference model for the mobile robot is the same 
as the model (10), (11), (12), only the input signals are 

( )rv k  and ( )rw k : 
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Taking into account (2), (10), (11), (12), and (13) the 
following nonlinear discrete model is obtained: 
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where the explicit dependence on k is omitted in the 
right hand-side of the equations to make them clearer. 
Introducing the control (4) into (14) a very complex 
model is obtained. The equations of the resulting 
model with 0bv =  and 0bw =  depend linearly on 

( )xe k  and ( )ye k , so it is very simple to put it to the 
matrix form: 
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where ( ) ( ) ( ) ( )T
x ye k e k e k e kθ⎡ ⎤= ⎣ ⎦ . It needs to be 

stressed here that (15) was not obtained by 
linearization of the nonlinear model. Actually, all the 
nonlinear dependencies are kept, therefore the model 
is exact. The solution for the input part is much more 
nonlinear and only approximate solution for the B 
matrix can be derived (the approximation is based on 
the premise of small inputs): 
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The error-model obtained from (15) and (16) 
 ( 1) ( ) ( )z z be k A e k B u k+ = +  (17) 
where [ ]( ) ( ) ( )T

b b bu k v k w k=  is very complex for the 
realization of the Takagi-Sugeno model obtained by 
sector nonlinearity approach [13]. This is due to the 
high number of nonlinearities in matrices Az (4) and Bz 
(4). Eight nonlinearities means that the T-S model 
would have 28=256 fuzzy rules and the number of the 
LMIs would be in the range of 216. 

3.3 The simplified ZOH-discretization 

In order to simplify the nonlinear model from the 
previous subsection and reduce the number of 
nonlinearities the following simplifications were 
introduced into (15) and (16): 
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The matrix Az of the resulting model is the same as in 
the Euler model (6), while the matrix Bz becomes: 
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The simplified model possesses similar complexity as 
the Euler one since the number of nonlinearities for 
the T-S model is 4 (2 in the matrix Az and 2 in the 
matrix Bz). 

3.4 Comparison of individual models 

The models presented in subsections 3.1, 3.2 and 3.3 
are compared in this subsection. The comparison 
means here that the elements of matrices Az and Bz are 
compared by calculating their absolute difference. 
It is very easy to see that the difference between Az 
matrices is the highest when wr and T are the highest 
while 0eθ = . For the matrix Bz the highest difference 
was obtained by using numerical methods. In this 
analysis the search is limited to the following set: 

2| | 0.1, | | 0.1, | | , 0 1, | | 2x y r re e e v wπ
θ≤ ≤ ≤ ≤ ≤ ≤ . The 

results are shown in Tab. 1. The error always means 
maximum absolute difference between the “Euler” 
model (section 3.1) or the “simplified” model (section 
3.3) and the “exact” nonlinear model (section 3.2). 
Each row shows the values where the error is the 
biggest. This means that B12Euler and B12simplified are not 
analysed in the same point of the space 
( , , , , )x y r re e e v wθ . Only the cases where the absolute 
error is the biggest are shown. 
     The analysis shows that the only two big (relative) 
differences occur in the case of the elements B12 and 
B22 if the Euler approximation is used (in both cases 
the approximations are more than the factor 2 too big) 
while in the case of the “simplified” model the error is 
low. 
 

Tab. 1. Worst case elements of the matrices 
Matrix 
Element 

exact 
value 

Approx. max. 
error 

A11, A22 0.99782 1 0.00218 
A12, -A21 0.06595 0.06600 54.8 10−⋅  
A13 -0.00109 0 0.00109 
A23 0.03298 0.03300 52.4 10−⋅  
B11 -0.99927 -1 47.3 10−⋅  
B21 -0.03298 0 0.03298 
B12Euler -0.00199 -0.00330 0.00131 
B12simplified 0.00330 0.00330 -72.8 10⋅  
B22Euler 0.00144 0.00330 0.00186 
B22simplified -0.00494 -0.00549 -45.4 10⋅  

 
     The Euler model (especially its matrix B) is 
therefore not very suitable for the control design. It is 
preferable to use the “simplified” error model. It is 
also possible to use some hybrid model while still 
keeping the number of nonlinear functions in the T-S 
model equal to 4. Obviously, three nonlinear functions 
(for A23, B12, and B22) can be used directly from the 
exact model, the fourth one can be sin rw T  instead of 

rw T  (The approximation of the cos rw T  term is 
worse, but it would add another nonlinearity.) It is 
also possible to approximate the element B21 without 
increasing the number of nonlinearities: 
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In the simplified model 0 is used as an approximation 
(the error would be ( )O T  instead of 3( )O T ). 

4 Takagi-Sugeno model of the robot 
The discrete TS models are represented through the 
following polytopic form [12]: 
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In order to construct the model the approach with 
sector nonlinearity will be used [13]. This means that 
the nonlinearities have to be taken from the nonlinear 
model and used in the premise vector z(k). The vector 
z(k) in our case is: 
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The matrices Az and Bz  are: 
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Now we have to find minimum and maximum values 
of the 4 nonlinear functions: 
 min max 1, 2,3, 4l l lz z z l< < =  (24) 
The number of rules is 42 16r = = . The matrices of 
the model are: 
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5 PDC control of the robot 
In order to stabilize the discrete TS fuzzy model (21), 
a PDC (Parallel Distributed Compensation) control 
law is used [13]: 
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Several results concerning the stability of the T-S 
model with the PDC controllers exist. The problem is 
often solved within the LMI framework.  
     Here the solution that tries to optimise the decay 
rate of the system will be used [13]: 
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The above generalized eigen value problem can be 
solved. The results are optimal decay rate that has to 
satisfy 0 1β≤ <  and 
 1

i i
−=F M X  (29) 

The problem is that the LMI Toolbox in Matlab 
cannot solve the LMIs with the ‘≥ ’. In this case also 
the ‘>’ can be used instead. The other problem is that 
numerical problems often cause that the system is 
stable although decay rate shows instability. This 
problem can be partly overcome if a new variable is 
introduced: 
 1γ β= −  (30) 
The algorithm finds the solution for 0γ <  easier 
although the decay rate itself does not show the actual 
decay rate. This is of course due to a very conservative 
approach. 
    The “optimal” results are unusable because the 
control system is too quick. This problem can be 
solved by using the constraint on the input [13]. The 
latter is also very conservative, and the control needs 
some tuning before the use. 
     Simulation results of the tracking are shown in 
Figs. 2, 3, and 4. 
     A lot of improvements in the sense of the 
optimized LMI solutions exist [14], but these were not 
in the focus of this paper. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 x

 y

 
Fig. 2. The reference trajectory (dashed) and the actual 
one (solid) in the x-y plane 
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Fig. 3. The linear (upper figure) and the angular 

(lower figure) velocities with respect to time 
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Fig. 4. Convergence of the errors with respect to time 

 

6 Conclusion 
This paper deals with Takagi-Sugeno modelling and 
control of nonholonomic mobile robots. The nonlinear 
tracking error-model is solved analytically under the 
premise of ZOH present at the system input. The 
nonlinear discrete model is developed. Several 
discretization issues are discussed and the modelling 
errors are analysed. It is shown that the model 
obtained by the Euler integration method possesses 
big errors in some cases and it should not be used 
when we deal with large sample times. Models of 
similar complexity result in much better precision. 
The sector nonlinearity approach is used for 
constructing the Takagi-Sugeno model. The control is 
designed in the LMI framework. Some performance 
issues are discussed on the simulation cases. 
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