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Abstract

In European Union 10-15% of population has elevated levels of cholesterol, which
is know to be a risk factor for cardiovascular diseases. Several treatment strategies
and drugs have been developed to control the elevated cholesterol levels, however,
they are not always successful. Statins are now most widely used cholesterol-
lowering drugs, however, all the mechanisms of their action are not understood
and can sometimes lead to adverse effects. A dynamical mathematical model of
the cholesterol biosynthesis network was developed to study the effects of various
substances that interfere with cholesterol biosynthesis. In this article we show
that in spite of serious lack of data, the model can be used to study the con-
cepts of possible mechanisms of cholesterol biosynthesis and drug interactions.
If only steady-state data is used for model identification the model can predict
steady-state relations in different situations, while dynamical properties cannot be
correctly simulated. However, the model can be improved if dynamical data be-
comes available. The performed experiments that were analysed with the model
simulations show, that the two substances with completely different modes of ac-
tion most likely trigger the same control mechanism.
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1 Introduction

In European Union 10-15% of population has ele-
vated levels of cholesterol, which is know to be a
risk factor for cardiovascular diseases [1]. While
the relation between cholesterol and cardiovascular
diseases is not clear, it can be statistically shown,
that elevated levels of blood cholesterol are related
to cardiovascular diseases. Cholesterol and glucose
metabolisms are also closely related, therefore, im-
balance in cholesterol metabolism can also disturb
the homeostasis of glucose metabolism, which may
complicate the underlying disease [2]. Consequently,
any interaction with any metabolic pathway may cause
system-wide disturbance and unpredictable effects.
That is why safe-drug development is so problematic
[3]. Identification of metabolic networks is extremely
difficult, since they all operate in closed loops and
since they constantly interact with each other. Several
methods have been developed in order to solve the
problem [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], however, the
complexity of the problem prevents clear identification
of the system.

Sterol metabolism is one of the key metabolic pro-
cesses in the organisms and cholesterol is the main
building block for the cell membranes of animals; how-
ever, the biosynthesis metabolic network is still rel-
atively poorly understood. While any animal cell is
capable of producing cholesterol, liver is the major
cholesterol-metabolising organ in the body. Several
drugs have been designed to interact with cholesterol
biosynthesis with goal to lower blood cholesterol lev-
els. Statins are now among widely used cholesterol
lowering drugs, however, in some cases, severe ad-
verse effects, such as rhabdomiolysis, have been re-
ported. The cholesterol metabolic network begins with
acetyl co-enzyme A which is one of the basic building
blocks in many metabolic processes, including Krebs
cycle. After several enzyme reactions squalene is
formed and from squalene lanosterol, the first sterol
(cyclic molecule) is formed. From lanosterol to choles-
terol the networks becomes extremely complicated (see
Fig. 1). Before squalene several other pathways sep-
arate from the cholesterol network, leading to other
important metabolites, such as isoprenoids, co-enzyme
Q etc.. Some intermediates between lanosterol and
cholesterol are also substrates for other pathways, such
as 7-dehydro cholesterol which is a substrate for vita-
min D biosynthesis. Cholesterol and also some metabo-
lites of the late cholesterol metabolic network can ac-
tivate SREBPs which regulates the expressions of all
enzymes involved in cholesterol biosynthesis [14, 15].
The described structure of the network is typical biolog-
ical feedback mechanism. Statins have been designed
to inhibit HMGCR enzyme which is of the early en-
zymes in the cholesterol network, however, they may
interact with other processes as well. In understanding
the functioning of such a complex system, modelling
and simulation can contribute a valuable information.
Therefore, an attempt was made to model the late part
of the cholesterol network in order to evaluate the ef-
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Fig. 1 Structure of the cholesterol synthesis mathemat-
ical model. The meaning of the symbols is as follows:
black circles metabolites, grey circles enzymes, white
circles mRNA, thick black lines metabolic flux under
normal conditions (arrows show the normal direction of
reactions), thin black lines enzymes involvement, grey
lines the effect of metabolites on enzyme degradation,
broken lines enzyme formation and degradation, dotted
lines the effect of metabolites on gene expression, % -
division of metabolic flux at branching points.

fects of statins and some other xenobiotic substances.
However, due to lack of suitable data (statical relations
before and after drug administration) the model param-
eters could not be identified. In spite of ad-hoc selected
parameter values, the model is still a valuable tool for
cholesterol network functioning research. The objec-
tive of the paper is to show what aspects of the uniden-
tified model can serve as information on real system
functioning in steady-state.



2 Dynamical model of cholesterol biosyn-
thesis

The model was designed as dynamic model with rela-
tions between molecules as described in Fig. 1. The
basic building block for modelling metabolic networks
are enzyme reactions (see Fig. 2 and thick arrows in
Fig. 1). Each enzyme reaction is described with four
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Fig. 2 Structure of enzyme reaction mathematical
model. The meaning of the symbols is as follows: black
circle substrate (S) and product (P), grey circle enzyme
(E), grey/black circle complex (C), thick black arrows
forward reaction, broken arrows - reverse reaction, thin
black arrows - enzyme production and degradation, k C ,
kP - forward reaction rate constants, kCR, kPR - re-
verse reaction rate constants, ΦI , ΦO - metabolic fluxes
in and out of the reaction, ΦEI , ΦEO - fluxes of enzyme
production and degradation.

differential equations:

dS

dt
= ΦI − kC · E · S + kCR · C (1)

dC

dt
= kC · E · S + kPR · E · P − kP · C − kCR · C

dP

dt
= kP · C − ΦO − kPR · E · P

dE

dt
= ΦEI + kP · C + kCR · C − kc · E · S−

−kPR · E · P − ΦEO

where S denotes the concentration of the substrate, C
the concentration of the complex, P the concentration
of the product, E the concentration of the enzyme, Φ I

the flux of the substrate into the reactor, ΦO the flux
of the product out of the reactor, ΦEI the flux of the
enzyme into the reactor, ΦEO the flux of the enzyme
out of the reactor, kC the rate constant of the complex
formation, kCR the rate constant of decomposition of
the complex into the substrate and the enzyme, kP the
rate constant of the product formation, and kPR the rate
constant of the complex formation from the enzyme and
the product. For batch reactors, where finite quantities
of the substrate and the enzyme are mixed, each en-
zyme reaction would contribute four independent rate
constants to the pool of model parameters. However,
metabolic networks normally operate in a mode with
continuous supply of substrates and enzymes which in-
troduces some limitations on the choice of the model
parameters values. Operation in continuous metabolic

flux mode requires that the concentrations of the in-
volved substances settle at a non-zero steady-state.

3 Analysis of the model in steady-state
conditions

The measurements that were used in the study provided
only information on the steady-state relations, so the
model was developed and analysed for the steady-state
conditions. Steady-state of the system is reached when
all the time derivatives in the above equations are equal
to zero and when ΦI = ΦO, and ΦEI = ΦEO. The
steady-state equations of the enzyme reaction form the
following system of equations:

0 = ΦI − kC · E · S + kCR · C (2)

0 = kC · E · S + kPR · E · P − kP · C − kCR · C
0 = kP · C − ΦO − kPR · E · P

0 = ΦEI + kP · C + kCR · C − kc · E · S−
−kPR · E · P − ΦEO

The concentrations of S, E, C, and P can be inde-
pendently normalised to the dimensionless quantities
by dividing their values by their steady-state values.
At the same time also the reaction rates are scaled
by the steady-state values of SN , EN , CN , and PN .
The normalised reaction rates now represent the steady-
state contributions of the specific reaction steps on the
whole metabolic flux of the enzyme reaction. Using the
steady-state normalised values of SN , EN , CN , PN ,
and the normalised reaction rates the equations above
can be rewritten. Let us here present only the equation
describing the steady-state of CN since it represents the
relation between all the free model parameters:

0 = kCN · EN · SN + kPRN · EN · PN− (3)

−kPN · CN − kCRN · CN

To make the relation between the forward and the re-
verse metabolic fluxes more transparent, the following
ratios can be defined:

kPRN

kCN
= r1 (4)

kCRN

kPN
= r2

Thus the equations can be rewritten in a new form,

0 = kCN · EN · SN + kCN · r1 · EN · PN− (5)

−kPN · CN − kPN · r2 · CN

which yields the final form

0 = kCN ·EN (SN +r1 ·PN )−kPN ·kCN (1−r2) (6)

However, EN , SN , CN , and PN are in the steady-state
of the undisturbed system equal 1, which further sim-
plifies the relation:

0 = kCN (1 + r1) − kPN (1 − r2) (7)



As explained above, normalised reaction rates represent
steady-state metabolic fluxes, therefore the values of r1
and r2 are smaller than 1, since in the undisturbed sys-
tem all enzyme reactions proceed mostly in the forward
direction. If r1 and r2 are selected equal this signifi-
cantly simplifies the relation:

r1 = r2 = r (8)

0 = kCN (1 + r) − kPN (1 + r)

Since the factors (1+r) can be found in both terms, the
relation yields:

0 = kCN − kPN (9)

Using the first equation of the system (2) model param-
eters can be uniquely calculated

kCN =
ΦI

1 − r
(10)

kPN =
ΦI

1 − r

kCRN =
r · ΦI

1 − r

kPRN =
r · ΦI

1 − r

By selecting the values for r and ΦI all the model
parameters can be uniquely calculated by using the
steady-state equations of the model. Thus it is clear
that it is possible to reduce the number of independent
model parameters from four to two by assuming that
the steady-state backward/forward metabolic flux ratio
is smaller than 1 and that it is equal for the complex
and the product formation. The description of the rate
constants with the parameters r and ΦI allows more in-
tuitive experimenting with the model. The following
equations for the steady-state values of SN and CN can
be obtained from the steady-state equations:

SN =
1 − r2

EN
+ r2 · PN (11)

CN = 1 − r(1 − EN · PN )

The equations show how the steady-state values of SN

and CN will change if the new steady-state levels of
EN and PN are enforced as a consequence of changes
in metabolic processes (xenobiotics). Interestingly, the
metabolic flux ΦI has no effect on the steady-state val-
ues of the metabolites, which suggests that for the anal-
ysis of the steady-state conditions it is not necessary to
exactly know the metabolic flux of the metabolic net-
work. However, the backward/forward metabolic flux
ratio has some effect on the steady-state values, espe-
cially if r is relatively large. From the equations we
can see that the normalised concentrations of the sub-
strate are in reciprocal relation to the normalised con-
centration of the enzyme, the value of r is present with
its squared value, which shows that for small values of
r the steady-state values of the substrate primarily de-
pend on the concentrations of the enzyme; the effect

of the enzyme concentrations on the concentrations of
the complex is much smaller. The only problem for a
unique calculation of the steady-state values of SN and
CN represents the usually unknown steady-state value
of PN after perturbation; however, if r is very small the
influence of changed levels of PN is also small.

The whole metabolic network can be described by com-
bining the enzymatic reaction models. If the network
consists of a single linear pathway, the metabolic flux
through the network in steady-state remains equal to
the initial metabolic flux. However, if the network
consists of several interconnected pathways the steady-
state ratio of the metabolic fluxes at each crossing of the
metabolic pathways (branching points) has to be intro-
duced as an additional model parameter. For the tests
performed in this study, the value for r was varied and
was finally chosen 0.01 for all the reactions in the net-
work while the chosen metabolic flux ratios at branch-
ing points are shown in Fig. 1. The branching ratios af-
fect the steady-state of the branching point significantly
if the concentrations of one or more enzymes immedi-
ately after the branching point are changed, since the
flux ratios can change significantly after the perturba-
tion. The metabolic flux at the beginning was set to 100,
however, as shown above, its choice has no effect on the
steady-state values of metabolite concentrations. In any
metabolic network, there are also irreversible steps, at
the latest, when a metabolite is eliminated from an or-
ganism. This solves the problem of the unknown value
of the steady-state of PN after perturbation. Since the
last step of the network is irreversible, r of the last re-
action is equal to 0 and the new steady-states of all the
metabolites are uniquely set. Without irreversible re-
actions the network has an infinite number of possible
steady-states.

4 Results

The model was used to predict the results of primary
human hepatocites experiments, where liver cells were
treated with two different compounds, substance 1 and
substance 2. To reproduce the measured levels of
metabolites after perturbation with the model enzyme
levels were forcefully changed in the model. The re-
sults are gathered in Tabs. 1 and 2.

Tab. 1 Simulated and measured metabolite levels rela-
tive to normal steady-state values after the treatments
with the substances 1 and 2, - means no change

metabolite substance 1 substance 2
sim. exp. sim. exp.

lanosterol - - - -
FF-MAS 3.2 3.2 0.5 0.5
T-MAS - - - -

zymosterol - - - -
lathosterol 2.5 2.5 0.5 0.5

7-dehydro cholesterol 34.6 34.2 - -
desmosterol 1.8 1.8 0.5 0.5
cholesterol - - - -



Tab. 2 Simulated enzyme levels relative to normal
steady-state levels necessary to achieve measured
metabolite levels after the treatments with the sub-
stances 1 and 2, - means no change

enzyme substance 1 substance 2
CYP51 - 0.9

TM7SF2 0.3 1.9
SC4MOL
NSDHL - 0.9

HSD17B7
EBP - 0.9

SC5DL 0.3 2.3
DHCR7 0.04 1.2
DHCR24 0.4 1.7

5 Conclusion

To model steady-state situations with dynamical model
it requires less data than description of dynamical
properties. With steady-state measurements it is
possible to correctly predict a steady-state situation
after system perturbation, although the simulation
of the transient phenomena is false. The nature of
metabolic networks allows some simplifications of the
model identification since it operates at permanent
non-zero metabolic flow. The non-zero steady-state
implies limitations on the model parameters values
which narrows the model identification space. If the
last chemical reaction in the network is irreversible,
the values of all model parameters can be calculated
from the known steady-state metabolic flux through
the network and forward/reverse reaction flux ratio of
each reaction. When only testing the network structure
response on different perturbations, the forward/reverse
reaction ratio can be fixed at some small value for all
the reactions and the metabolic flux can be arbitrary
chosen as it only affects the transient phenomena but
not the new steady-state levels after the perturbation.
However, the selection of the flux value must be
such that the model responses are not oscillatory as
it introduces unnecessary numerical problems. Flux
division ratio at branching points of the network has,
however, significant influence on steady-state as any
disturbance of the enzymes’ functions operating at the
branching point changes the flux division ratio. As a
consequence, the fluxes through the rest of the network
are changed in order to adapt to a new situation and this
changes also the consecutive metabolite and enzyme
levels.

As described above, an enzyme that takes a metabo-
lite as a substrate has the major effect on the metabolite
level. In this sense the enzyme levels of the model were
adjusted in order to get similar metabolite levels as were
measured after treatments with the substances 1 and 2.
In case where substance 1 was used, DHCR7 enzyme
levels were reduced to almost 0 while other enzymes
that had significantly reduced levels were DHCR14,
SC5DL, and DHCR24. In case where substance 2 was
used, the same four enzymes were affected, however,

in this case, the levels of the enzymes were elevated,
and none of the enzymes was so drastically changed as
in the case of substance 1. As the substances 1 and 2
have been designed to interact with completely differ-
ent enzymes it is possible, that all the four enzymes are
not directly affected by the substances 1 and 2. Instead,
they might trigger the same feedback mechanism that
can regulate the levels of all four enzymes. However,
as feedback mechanisms is dynamical structure, it can-
not be identified from static data. However, dynamical
model can be quickly improved if some dynamical data
is obtained and the model prediction can be expanded
to correctly simulate dynamical properties of the sys-
tem as well.
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