
PRELIMINARY STUDY OF USING ELLAM
FRAMEWORK FOR SOLUTION OF ATMOSPHERIC
ADVECTION-DIFFUSION-REACTION EQUATION
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Abstract

This paper deals with the numerical solution of the specific atmospheric equation
called advection-diffusion-reaction equation (ADR). This equation describes the
behaviour of the pollutant that was released to the atmosphere, namely a change of
its concentration during time. The ADR equation is rather complicated, because
of the highly variable coefficients with respect to time and space. The common
technique to simplify the solution is to use the approach of operator splitting,
where the ADR equation is divided into two or three parts thatcontain advec-
tion, diffusion or reaction part, sometimes two of them together. Then the special
methods are used to solve each part of it. This paper containsthe results of ex-
periments where the Walcek [1] and ELLAM methods were compared with each
other through various tests that refer to the pure advectionequation. The slightly
adapted ELLAM method has turned out to be the more accurate and the more
stable in these tests.
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1 Introduction
The area of pollutant dispersion is nowadays exposed
to vivid research interest of scientific community and
close attention is given to the modeling of this phe-
nomenon. The dispersion model is described by
a specific partial differential equation (PDE) called
advection-diffusion-reaction (ADR) equation. The ad-
vection part denotes the transport of the material, which
is caused mostly by a wind in the atmosphere or by
a stream in a water environment, such as lakes, seas
or rivers. The diffusion part of the equation is linked
to a process that is natural for molecules in a liquid
state or in a gaseous state. For this kind of molecules,
the forces between them are weaker and when the
substance/pollutant penetrates such environment it can
reach an equilibrium state and it leads to a uniform dis-
persion throughout the environment. The last reaction
part includes the chemical reactions of the pollutant in
the atmosphere which result mostly in sinking of the
contaminant concentration.

The dispersion model is described by the the PDE that
is very complex and only its special cases can be solved
analytically. Therefore, the numerical methods are used
to acquire the solution. The splitting operator technique
is used to simplify the solution by splitting equation into
smaller parts corresponding to advection, diffusion and
reaction. Although the special simple methods can be
used to solve the separate parts, the error due to split-
ting, which is often neglected, arises [2].

The Walcek method [1] was successfully tested and
compared against up to its date best methods that solve
the pure advection part of the ADR equation. Con-
sequently, another method, more precisely the frame-
work, for solution of advection dominated pollutant
dispersion model was being developed. Although the
ELLAM is much more complicated than the Walcek’s
method, it has the advantage of incorporating of the
other part, diffusion or reaction. The ELLAM has many
variants that were mostly adapted to water fluid envi-
ronments were the behaviour of the flows is different
from the atmospheric turbulent flows. Therefore, in
this paper the slightly modified version of ELLAM was
compared with the Walcek method in appropriate vari-
ous tests.

The paper is organized as follows. In the second section
Walcek’s method is presented. The ELLAM method is
described and discussed in the third section. The fourth
chapter contains the declaration of the test methodol-
ogy and the particular tests are presented. The overall
conclusion is then stated in the last section.

2 Advection equation and its solution
The advection part of the ADR equation in one dimen-
sion has the form

δc

δt
= −

δ(V c)

δx
(1)

wherec is a concentration,t means time,V is the veloc-
ity andx is the spatial variable. The velocity field is of-

ten very complex and therefore, no analytical solution
exists and numerical approximations are used instead.
The simplest numerical approximations cause the inac-
curacies and artificial artefacts to the solution. The long
term research that has taken several last decades has
lead to the numerical methods that try to hold several
properties. These are mass conservation, monotonicity
(peak and minima preservation with no spurious peaks
calculated) algorithm simplicity, and a small number of
calculations per time step. Various methods were de-
veloped to meet one or more properties, however the
trade-off was required. Bott [3] suggested one of the
algorithm that yielded the many of the desirable prop-
erties, however, it is complicate to implement. Walcek
followed their research and proposed an algorithm that
satisfies the properties and is relatively easy to imple-
ment.

2.1 Walcek’s method

For many applications, fluid density is not constant,
i.e. when advection is calculated in two- or three-
dimensional flows. Therefore, the mixing ratios are
used instead of concentrations:

δ(qρ)

δt
= −

δ(V ρq)

δx
(2)

whereq = c/ρ is the mixing ratio andρ is the fluid
density. The mixing ratio of a substance in grid cell ”i”
at timet+δt can be initially estimated using a forward-
time approximation to the ”t” derivative in equation 2,
and evaluating the spatial derivative at the initial time:

qguessi =

[

qtiDd−1 −
Fi+1/2

δxi
+

Fi−1/2

δxi

]

/

Dd (3)

where theDd−1 andDd terms are the dimensionally
dependent fluid densities at the beginning and end of
the time step or dimensional step in a multi-dimensional
calculation.

Simple upwind schemes assume that concentrations
within each grid cell are constant, however the reason-
able distribution of the mixing ratios between grid cells
can be supposed. The higher order polynomials were
succesfully used to prevent artificial numerical diffu-
sion [4]. In Walcek scheme the dual-linear functions
are used to approximate the distributions inside each
cell, which leads to the less complicated scheme in op-
posite to schemes preserving the advantages of higher
order polynomials schemes.

It is reasonable to limit the concentration at edges
of neighbouring cells to prevent unrealistic concentra-
tions. The concentration at the edge of two cells must
be in range of concentration of each of them. It is phys-
ically impossible to gain another level of concentration.
Since the Walcek scheme assumes the Courant number
Cour = V∆x/∆t less than1 due to the method sta-
bility, the next limitation type can be set. The mixing
ratio in the cell where the fluid is advected into must
be less than the highest mixing ratio in the upwind cell
initially.



Fig. 1 Rotating test results performed to cone (left), cylindrical (middle) and slotted cylindrical (right) initial
conditions. The exact solution is red, the result of the Walcek method is green and the ELLAM is blue.

2.2 ELLAM framework

ELLAM method is based on a philosophy of algebraic
theory by Herrera [5]. In this theory, the test functions
are used to define the weak form of the governing equa-
tion. To develop the ELLAM framework, the follow-
ing advection-diffusion equation in one space dimen-
sion will be used as a model:

∂c

∂t
+ V

∂c

∂x
−D

∂2c

∂x2
= f(x, t),

0 < x < L, t > 0, (4)

wherec is the concentration,V is the wind,D is the
diffusion andλ is the retardation coefficient.f(x, t) is
a source term. For simplicity, it is assumed that the co-
efficients are constants. The ELLAM idea uses general
concepts of localized adjoint methods [28,29] to define
test functions based on specific solutions to the homo-
geneous adjoint equation associated with the governing
equation 4. The following weak form of the governing
equation is further used [6]:
∫

Ωt

∫

Ωx

(

∂c

∂t
+ V

∂c

∂x
−D

∂2c

∂x2

)

w(x, t)dxdt =

∫

Ωt

∫

Ωx

f(x, t)w(x, t)dxdt. (5)

Thew(x, t) is the test function. The problem is to find
the solution such as the equation 5 holds. The advan-
tage is that we can choose the test function freely. In-
tegration by parts in both space and time yields the ad-
joint operator, and the test function is chosen to satisfy
the homogeneous version of the adjoint equation:

−
∂w

∂t
− V

∂w

∂x
−D

∂2c

∂x2
= 0. (6)

The test functionw(x, t) that satisfy the equation 6 is
[6]:

wn+1
i (x, t) =











































x−xi−1
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0, all otherx, t,

(7)

wherex∗

i−1, x∗

i a x∗

i+1 are space positions of points
xi−1, xi a xi+1 in time tn lying on a characteristics
curve dx

dt = V . The property of the weak form of equa-
tion is that it can be divided into parts by integrating
by parts. Then the terms are dealt with separately. The
advantage of the ELLAM framework is its ability to in-
tegrate the boundary conditions. They simply appear as
other integral terms in the equation.

The important part of the ELLAM scheme is the ac-
curate characteristics tracking of the points. The prob-
lem of characteristics tracking is described by the or-
dinary differential equations, thus the solution can be
obtained by various numerical methods. The crucial is
to set the size of integration step and together the speed
of calculation. In our case we choose the tracking by
Runge-Kutta 4th order method with the constant step
size. The tests showed us that it turned out to be the
proper method among others like Euler or lower order
R-K methods.

3 The performed experiments

The experiments come out from these presented by
Walcek and they refer to the advection part of the gov-
erning equation 4. In case of ELLAM the diffusion co-
efficient was set nearly to zero to simulate the advection
equation only. The test were performed in two dimen-
sions, where the rotating and divergent wind fields were
used.

The experiment settings was as follows. All tests were
done in a squared space which was divided into 100
x 100 points. The diameters of the initial shapes was
set to 15 points for all tests. The time steps were set
such as the Courant number would be less than one in
case of Walcek algorithm. On the other hand the time
step was set to8th and24th multiple of Walcek setting
in case of ELLAM. The step size of ELLAM algorithm
was choose in this way to reach the approximately same
calculation time as in case of Walcek scheme.

3.1 Error measures

For the experiment evaluation the following error mea-
sures were chosen. The first one relates to law of mass
conservation. That is the final mass distribution of the
experiment should be the same as at the beginning.



The relative root mean square error (RMS) is the second
measure. The differences between the exact and calcu-
lated solution are normalized by the difference between
peak and minimum concentration levels. The result is
the number bigger or equal to zero where one means
100 percent error with respect to concentration interval
between initial peak and initial zero levels:

ErrRMS =

√

∑100

i=1

∑100

j=1
(Calci,j − exacti,j)2/1002

Peak0 −Min0

,

(8)
where i and j are indexes of points in the domain,
Calci,j and exacti,j is the calculated and exact con-
centration of point with coordinates[i, j], Peak0 and
Min0 is the peak and minimum concentration in the
initial time.

The next error measure is the peak error represented by
equation of the form:

Errpeak = 1−
Peakc −Minc

Peak0 −Min0

, (9)

wherePeakc andPeak0 is the calculated and initial
peak of the concentration,Minc andMin0 is the cal-
culated and initial minimum of the concentration level.

The last error measure is referred as mass distribution
ratio. It represents shape preservation without reference
to the advected shape. The algorithm can for example
nicely preserve shapes but it shift the position of the
shape to wrong position. Thus its RMS error would
be relatively high. On the other hand the distribution
error would be pretty smaller. The distribution error is
defined as:

Errdist = 1−

∑

i∈Ωi

∑

j∈Ωj
Calci,j

∑

i∈Ωi

∑

j∈Ωj
exacti,j

, (10)

where theΩi andΩj refers to domain whereCalci,j
andexacti,j differs fromMin0.

3.2 Rotating wind

The rotating wind fields serve as reference test where
the error can be easily measured. At the beginning the
concentrations distribution is set and it is used as ini-
tial conditions to the equation. Then the suitable time
steps are chosen and the time of the simulation is set to
multiples of the whole rotations.

The experiments were performed with three different
initial conditions. The shape of the distribution was set
to cone, cylinder and slotted cylinder. The results of the
60 rotations are shown in Fig. 1.

In Fig. 1 it is seen that the Walcek algorithm distorted
the solution slightly - it is obviously seen especially for
the cone case at the peak of the shape. The similar re-
sults are for the cylindrical shapes where the Walcek
algorithm gets the shape thinner - its mostly like a trun-
cated cone.

Fig. 2 The resulting mass mean error of rotating tests
of Walcek and ELLAM solutions. The cases of cone,
cylinder and slotted cylinder are shown.

Fig. 3 The resulting root mean square error of rotating
tests of Walcek and ELLAM solutions. The cases of
cone, cylinder and slotted cylinder are shown.

Fig. 4 The resulting peak error of rotating tests of Wal-
cek and ELLAM solutions. The cases of cone, cylinder
and slotted cylinder are shown.

Fig. 5 The resulting distribution error of rotating tests
of Walcek and ELLAM solutions. The cases of cone,
cylinder and slotted cylinder are shown.



Fig. 6 The mass mean error propagation during diver-
gent wind test of Walcek and ELLAM solutions.

In Fig. 2, 3, 4 and 5 one can see the error measurement
for the overall rotating wind tests that was performed.
The tests include the 1, 6 and 60 rotations, where the
first two cases represents the short term and the last
the long-term simulations. It is obvious that both al-
gorithms conserve mass, however, the ELLAM gained
less errors. RMS and distribution errors are much less
in case of ELLAM algorithm, which corresponds with
the images in Fig. 1. The only error in which the Wal-
cek algorithm dominates is the peak error. It is caused
by slight oscillations near the peak of concentration.

3.3 Divergent wind

The divergent wind test simulates the atmospheric non-
uniform wind field. In this case the space is divided into
several areas where the wind is rotating separately. The
initial non-zero concentration is placed between two
central areas. The expected result of long-term simu-
lation can be described as follows. The contaminant
concentration started to disperse to local wind areas.
Then it begins to follow the wind velocities. The fi-
nal distribution of concentration should be the uniform
concentration mostly in the two central areas.

The consecutive states of the simulation are shown in
Fig. 7. The concentration distributions of the particular
states agree for both Walcek and ELLAM algorithms.
However, in the final state of the simulation the distri-
bution is expected as uniform and the Walcek algorithm
calculated an uneven concentration top. In case of EL-
LAM the evenness is much higher. This agrees with the
final mass error, which is shown in Fig. 6.

4 Conclusion and future work

The preliminary tests were done for the use of ELLAM
scheme to ADR equation that describes the pollutant
behaviour in the atmosphere. From the performed ex-
periments it is obvious that the ELLAM successfully
past the tests and in majority of cases it overcame the
state of the art method for solution of the advection
equation.

The performed experiments dealt with the cases where
the wind fluid was artificially generated. The complex
wind experiments should come after. The advantage of
the ELLAM method is its natural ability to incorporate
boundary conditions. Therefore, the tests of different
deposition models that model the dispersion of the con-

Fig. 7 Divergent test results performed to cone placed
in the middle of the space. The result of the Walcek
method is green and the ELLAM is blue.



taminant near the ground should be considered. We are
planning both in the near future.
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