
GLOBAL OPTIMIZATION OF LOCAL WORKFLOW
MANAGERS USING THE EXAMPLE

OF AIRPORT HAMBURG
Yousef Farschtschi1, Marc Widemann1, Jochen Wittmann2, Dietmar P. F. Möller1

1University of Hamburg, Faculty of Informatics,
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany

2University of Applied Sciences, Faculty of Ecological Informatics,
Wilhelminenhofstr. 75A, 12459 Berlin, Germany

farschtschi@informatik.uni-hamburg.de (Yousef Farschtschi)

Abstract

We present an approach on global optimization of interdependent workflows.
The goal was first to create a concept and than a prototype that optimizes these
interdependent workflows in any area with its requirements. The requirements
for the prototype will be presented in this contribution by using the airport
context. The main goal of the optimization is to improve the economic
efficiency in these areas like optimizing the time to decrease the costs.
Workflow is a term that can be found in different branches of commerce for
example in logistic areas like airports. Therefore this contribution will use the
context of the airport Hamburg to present the concept and the prototype of this
contribution. The prototype will present in an exemplary way the global
optimization of the ground handling workflows in the airport. These are for
example the transit of the passengers on the apron, the dispatching of the
luggage, the catering of an aeroplane and the refuelling. These ground handling
workflows contain local optimizers.
The prototype contains a simple GUI (graphic user interface) for the
representation. Because of the quick access the interface of the prototype is
based on a local database. Furthermore the access to the real existing workflows
was not possible. Unfortunately this is a great hurdle and will be justified in this
contribution.

Keywords: Workflow, Optimization, Module, Scenario.

Presenting Author’s biography

Yousef Farschtschi. He studied computer science at the University of
Hamburg and achieved his diploma in 2009 [1] in the field of airport
optimization and workflow optimization. On the basis of his experience
in the airport area, he has made more research activities in this context
see e.g. [2, 3]). Now he is working in the University of Hamburg in the
Faculty of Informatics as an employee and Ph.D. student.

1 Introduction

The concept and prototype of this contribution will
present the global optimization of interdependent
workflows. They will be adoptable in areas with their
requirements. The requirements of the prototype are
structured in the used data base and will be
exemplarily presented in section 6. Other logistic
areas can be adapted on this concept by a user. We
will use the airport example to present the approach.

For this example we concentrate on the ground-
handling in the airport of Hamburg. The optimization
of a single workflow of the airport Hamburg, the
luggage transport is presented in [3]. Luggage
transport is one of many possible service-providers
which are responsible for the ground-handling of an
aeroplane in the airport of Hamburg. A service-
provider has to discharge their tasks in an allowed
time. For example the luggage transport has to deliver
the first luggage of the business class on the luggage
carousel at least in 7 minutes after the shut-down of
the engines. This is a contractually established
agreement.

The next section will discuss the basic problem of the
global optimization. Afterwards the used terms will be
explained. Then the optimization task for the concept
will be described and the prototype will be introduced.

2 Basic structure of the problem

The main instance is the global optimizer that
executes a task. This task can execute any number of
subtasks. The concept has a hierarchical workflows
and a task could be a subtask. The hierarchical
structure of the workflows is a result of their
properties like priority and interdependency.
Therefore two terms will be introduced module and
scenario. In a nutshell modules present subprograms
like the different ground handling workflows and a
scenario is an optional number of these modules or
accordingly ground handling workflows with their
interdependency. They will be explained in the next
sections.

The technical challenge is the modular concept of the
prototype. The prototype should be deployable in any
logistic area like an airport with its requirements. The
prototype works as a higher ranked instance for the
chosen modules like the different ground handling
workflows. Because of the deregulation of the
airports, the service-providers are independent
subcontractors. The deregulation had an impact on the
competition, but these subcontractors have to open
their interfaces to higher ranked managing software to
implement this concept. Because of their data privacy
this intention was blocked. This problem affects, that
the prototype works exemplary data for the modules
or accordingly ground handling workflows.
Furthermore there is regrettably no connection to a
real service provider and its workflow.

3 Term definition

A local optimizer like the one in [3] is used by the
equivalent terms “service provider workflow” and
“ground handling workflow”. If a local optimizer
works as a subtask for the global optimizer the term
module can be used.

3.1 Terms in the airport context

The usage of the airport example was a result of the
participation in the WFF-Project (in German “Wett-
bewerbsfähiger Flughafen”/ in English “competitive
airport”). As mentioned before the paper [3] gives a
general view of the activities and the approach. In a
nutshell an optimizer was implemented for the
luggage transport of the subcontractor GROUND-
STARS [4]. This local optimizer creates automatically
tasks for the luggage cars by checking their status
(like proposed, free or failure) and the path length.

The ground handling of an aeroplane is subdivided
into several workflows. These are for example:
boarding and accordingly deboarding of the
passengers, cleaning of the cabin, catering, loading
and accordingly unloading of the luggage, waste and
portable water service and refuelling. The prototype
uses exemplary four workflows: passengers, luggage,
catering and refuelling.

3.2 Module and scenario definition

The mentioned service-provider workflows were
considered as modules. The module concept was first
published by Parnas [5]. A module is a complete
component of software. It contains a chain of pass.
Because of the separation of interface and
implementation, modules allow casing. A module is a
subprogram and delivers after a pass the result to the
higher instance. This could be a module like the
luggage transport that optimize its single workflow
and delivers its task start times and task end times to
the global instance. There are different reasons using
modules:
 The program logic is reusable without creating

redundant code
 They can be compiled separately in different

programming languages and can be allocated as
libraries of programs; for example different
service provider use different program languages
for the optimization of their single workflow

 Complex programs can be arranged by modules
and functionalities can be included by the
modular conception

 Different developers are able to edit and test
independently some modules

The used term “scenario” is a description of an event
or series of actions and events. It comprises an
environment with a specific state. Today there are a
lot of areas of application like economic or society
based areas, in which this term finds usage:
 Preparation of decisions

 Orientation concerning future deployment
 Creating and checking of strategies

In our context a scenario can be described as an
environment in which our modules are interdependent
and have to be run in a specific time. Every scenario
has an own environment and can be run any time.

The next section will give a closer definition by using
the airport example.

4 Module and scenario administration

The different ground handling workflows on an
airport could be seen as modules, if they use a global
instance. Any numbers of modules can be combined
in a scenario. The prototype is responsible for the
optimization of the chosen modules in the scenario.

4.1 Module administration

To keep the complexity of the first prototype on a
lower level and as mentioned because of the difficulty
to retrieve a connection to the interface of the service-
provider workflows, the decision was made to use a
local data base as data input for the modules. The
prototype uses exemplary four ground handling
workflows: the transit of the passengers on the apron,
the dispatching of the luggage, the catering of an
aeroplane and the refuelling. For each of these
different service provider workflows a table in the
data base was created. The following data is used for
the optimization. It is statically kept in the database
table, except for the priorities, which may be
dynamically altered.
 priority: every module or ground handling

workflow has its own priority in the chain of the
global workflow; a lower number is a higher
priority

 common dimension: the event of the optimization
needs a common dimension; for example the
aeroplane Id in the airport context; this is
important for the connection of the data set of the
different modules

 resource: every module has its own resources; for
example the resources Ids of the passenger
transport are busses and of the refuelling are tank
lorries

 start and end time: this describes the start- and
end-time of a task in one workflow

Due to the fact that modules work as subprograms, the
module data have to be saved locally to ensure the
consistency. The following data will be saved on the
hard disk after the creation of a module: module name,
priority, database name, task table name, common
dimension column name, resource column, task start
time column name and task end time column.

Section 6 will show the procedure of the module
creation by using an example.

4.2 Scenario administration

The scenarios are in the context of the prototype
responsible for interdependence of the modules. This
can be set by a user and will be exemplary introduced
in section 6. For creating a scenario the prototype
requires the following information.

 Chosen modules: describes chosen modules for
this scenario

 Time frame: the length of a scenario is defined by
the start and end times of the modules and either
they run simultaneously or not; the timeframe
defines the time limit for a scenario (in minutes)

 Module combination: describes the interdepen-
dence of the modules; there can be chosen at least
one or none

The consistency of a scenario has to be ensured.
Therefore the scenario data will be saved locally, too.
It contains the same field as before: “chosen
modules”, “timeframe” and “module combinations”.

4.3 Adaptation in the airport context

These terms now will be concretized in the airport
context.

Every ground handling workflow can be represented
by a module and every module uses a local optimizer.
These modules have to be synchronized by a global
instance.

A scenario presents a number of modules and their
interdependency. Some service-providers are not able
to work their task concurrently. Therefore the user has
to define which module is able to run concurrently
with another. The used time frame ensures the
observance of time in a scenario. After the execution
of a scenario by the global optimizer the data of the
modules will be connected by using the common
dimension ID. The optimization task will be described
in the next section.

5 Optimization task

This section will describe the target of the
optimization of the concept. Some of the now
described properties of the concept are not
implemented in the prototype. This will be discussed
later.

5.1 Optimization

Now the optimization procedure of the concept will be
discussed.

The goal of this contribution is the optimization of
interdependent workflows. After the creation of some
modules, any number of them has to be bundled in a
scenario. All modules have a common dimension and
this has to have a unique Id. This is an important
requirement for the adaptation in other contexts. On
this condition the procedure of the optimization can be
started.

The global optimizer will first upload the start and end
times from all modules and sort them by the common
dimension. It can now choose the start time for each
common dimension by searching the earliest one.

The modules have a priority and interdependence.
Both properties are important for the optimization. A
higher ranked module has to be started earlier, even
though the interdependence does not allow a
concurrent start with other modules. The time frame is
the constraint of the optimization. If the time frame
passes over and the global optimizer does not found
another constellation, because of the priorities and
specially the interdependence of the modules, the
modules have to be advised. The modules now have to
adjust the periods of time to the changes of the global
optimizer. If a resource of a module finishes a task, it
will inform the module and the new optimized times
will be proposed to the global optimizer. The modules
are responsible for the optimization of the available
resources by using the time constraints of the global
optimizer. The real-time requirements are the
untroubled transmission of the data between the
modules and the global optimizer. The global
optimizer now has to restart the optimization. There is
a constant exchange between the modules and the
global optimizer. After the optimization task of the
global instance the modules will be shown in an
optimal order.

The adaptation in the airport context will be shown in
the next section. An example will also show the
optimized procedure and the non optimized procedure.

5.2 Interface

This concept emerged assuming that the modules were
created interdependently. Therefore an interface has to
be created that is compatible with different systems.
Two possibilities for the implementation will now be
represented. The first one is to implement for the
global optimizer an interface to each module and the
second one is to implement for each module an
interface to the global optimizer. These two options
depend on the factors time and cost and have to be
decided by the module creators or the creators of the
global optimizer. The experiences at the airport
showed us that the handling with such data streams
can be handled by using data local bases for modules.

As mentioned the adaptation in the airport context
uses a local database with test data, too.

6 Implementation

After defining and explaining the terms and the
concept of this contribution the prototype now will be
specified.

6.1 Prototype

As mentioned before the prototype should be
deployable in any area of commerce. The first
decision was to use a platform independent

programme language. Java achieves this condition and
delivers an expandable object-oriented platform. The
prototype uses a simple GUI (graphic user interface)
for the interaction. It contains the wizard principle for
creating the modules and scenarios. This principle
ensures the usability of the prototype. The module and
scenario creation requires several data and these steps
are shown in the figures 1 and 4. This will be
discussed in subsection 3.

6.2 Algorithm

While implementing the prototype the attention was to
the algorithm. It is based in parts on the “mergesort”-
algorithm [6, 7]. The algorithm of the prototype is
complex and the following marks few important steps
for the better understanding:

1. Modules and a scenario have to be created. The
priority and interdependence have to be set and
chosen.

2. After the start of a scenario the modules will be
sorted by the common dimension

3. The earliest start time for each common
dimension will be searched

4. All chosen modules will be sorted by their
priority. A lower value is a higher priority.

5. The interdependence of the modules will be
compared. Considering the priorities, the module
combinations with the lowest duration will be
picked.

6. Changes concerning the start and end time will be
made, if

a. the interdependence of two or more
modules enforce it.

b. the resource of one module in task chain
is used in the next task chain of the same
module and the buffer time does not
suffice.

7. If the time frame is exceeded a message will be
shown in the specified row.

8. Create a list of the synchronized modules.

6.3 Example

An example in the airport context will now show the
creation of the modules and scenarios but also the
result of the optimization by using the prototype
components and diagrams. Material data for the
modules was caught from the work in [3].

The prototype contains a wizard for each step to create
a module. This is mapped in figure 1. In the first step
(Figure 1a) the user has to enter the module name. The
next step (Figure 1b) there has to be chosen the
priority of the module. As mentioned a lower number
is a higher priority. The steps after (Figure 1c-e) are
caused by the test environment of the prototype. First
the data base has to be chosen and then the table and
at the end required values like: common dimension,
resource and start and end time.

For example there have been created four modules by
a user with the following priority:

 Passenger transport with the priority one
 Luggage transport with the priority one
 Catering with the priority two
 Refuelling with the priority three

Fig. 1 Module Wizard

Figure 2 shows the constellation before the
optimization for one common dimension.

Fig. 2 Modules before optimization

Fig. 3 Module data file for passengers

For each module a data file with the mentioned
requirements will be created. This is important
because of the reusability of a module. A module file
for the passenger transport is shown exemplarily in
figure 3.

For the scenario creation the prototype contains a
scenario wizard shown in Figure 4. There are four
steps to take.

Fig. 4 Scenario Wizard

First of all the name has to be entered (Figure 4a).
Then modules have to be chosen and the time frame of
the scenario has to be set (Figure 4b/c). Finally the
interdependence of the modules has to be chosen
(Figure 4d). Figure 5 shows a scenario data file for the
current example. This file contains all data for
execution. “notMod_Combo” will be created
automatically and describes the not chosen module
combinations. In this example the passenger transport
and luggage transport can be handled together.
Furthermore the luggage transport and catering can be
handled in parallel. The other combinations are not
allowed. The catering cannot be done during the
passenger transport. Because of the security the
refuelling has to be done after all other tasks. The start
window in the prototype allows the start of the created
scenarios shown in figure 6. The buffer time is set as a
buffer between the task chains. This can be described
by using the output table of table 1.

Fig. 5 Scenario data file

If the used resource is the same, at least the buffer
time has to be granted between the task “end time” of

a) module name b) priority

c) data base d) task table

a) scenario name b) choose the modules

c) timeframe d) timeframe

e) task values

CreatedModule = passenger
transport
Priority = 1
DB = Passenger
Table = tasks
CommonDim = TaskFlight
Resource = TaskVehicle
TaskStart = TaskStart
TaskEnd = TaskEnd

chosen_modules = passenger, luggage,
catering, refuelling
time_frame = 45
module_combo = passenger||luggage,
luggage||catering
notMod_combo = passenger||catering,
passenger||refuelling,
luggage||refuelling, catering||refuelling

Luggage transport

06:10 06:20 06:30 T/minute

Passenger transport

Refuelling

Catering

a module and the task “start time” of the same module
in the next row.

Fig. 6 Start window

The algorithm will now pre-sort the modules by their
priority. All possible combination will be built
depending on the interdependence. The time duration
of these combinations will be compared and the
shortest one will be chosen. Figure 7 shows the
constellation after the optimization for the first task
chain. The optimization is now done the prototype
shows the optimized modules in a simple table.

Fig. 7 Modules after optimization

This is exemplarily shown in table 1. Certainly the
other rows contain different task chains for the
following task. The prototype has a resource check
functionality to simulate the interface to a local
optimizer. It compares the resources of one module
with the resource of the same module in the next task
chain. If the same resource was used and the set buffer
time passes over the time difference of the two task
chains, the start time has to be changed. In a real
environment the local optimizer has to change the
resource of the following task chain.

Table 1 Output of main table

CommonID luggage passenger catering refuelling

D68D6B13 06:01-
06:13

06:01 -
06:10

06:13 -
06:22

06:22 -
06:29

A40326B4 06:23 -
06:35

06:23 -
06:32

06:35 -
06:54

06:54 -
07:01

94CF5424 06:13 -
06:28

06:13 -
06:20

06:28 -
06:48

06:48 -
06:54

4863A15B 07:32 -
07:41

07:32 -
07:40

07:41 -
07:58

07:58 -
08:04

Figure 8 shows another part of the main window with
the resource time change information.

Fig. 8 Resource behaviour

7 Results

The result of this contribution is the optimization of
any number of local optimized workflows. Using a
global optimizer would lead to the following situation:
after each optimization of the local instances the
global instance has to be started and vice versa. This
linking results a high rate of computation and
communication. To concretize this in the airport con-
text it will be exemplarily described. The experiences
of work in the airport Hamburg result in the statement
that each workflow has about 20 planned tasks and
our example uses 4 modules. A system that forces
each local optimizer after the synchronisation of a task
to optimization has to handle 100 optimization
procedures in a very short time (4 times 20 and adding
20 executions of the global optimizer; see also
equation 1). The implemented prototype handles only
5 optimization procedures. Figure 9 shows the number
of calculation steps depending on the number of
modules and task chains. Equation (1) shows how to
receive the calculation.

ݕ ൌ ݖሺݔ 1ሻ (1)

The main target of this contribution was to implement
an approach that can be used in different area.
Therefore there might be situations with for example
1000 task chains and by using ten modules 11000
calculation steps are required. This has to be handled
by the local optimizers and global optimizer. With an
exaggerated duration of one second for each step, the
procedure would need three hours.

Fig. 9 Optimization by higher utilization

12000

10000

8000

4000

2000
0

6000

12000

10000

8000

4000

2000

0

6000

0
2

4
6

8
10

0
200

400

800

1000

600

Y (calculation steps)

X (modules)

Z (task
chains)

Luggage transport

06:10 06:20 06:30 T/minute

Passenger transport

Refuelling

Catering

8 Conclusion and Outlook

The concept of the global workflow manager is to
make optimization of interdependent workflows
possible in different areas of commerce. The
procedure of the optimization was described for the
concept and the procedure. The prototype uses the
example of the airport Hamburg and gives an insight
of the concept. The prototype can be adopted in each
area with the mentioned requirements. This concept
could be established in logistic contexts to optimize
interdependent workflows. Our result shows the
problems.

The next step would be to build a connection to real
existing workflows. It would be desirable to establish
this system in the airport Hamburg and build a
connection to the existing local optimizers. Because of
liberalisation of the airport Hamburg, this is
regrettably not possible. This means that the
subcontractors, who are working for the airport, do not
want to open their interface for higher ranking
managing software. The reasons are as mentioned data
security, but also to save the company security. To
establish such a system, the structure at the airports
has to change. This is a decision that has to be made
by the airport operators. But there are other interesting
logistic areas in which this system would be useful:
harbours or hubs of logistic companies.

The upcoming goals are the research of solid data, the
adaption in other areas and the technical improvement
of the prototype. In the last section the problem of this
concept was discussed. This could be solved by
extensive simulation. The runtime of the global
optimizer and its local optimizers could be proved.
The adaptation in other logistic area would validate
the concept. The GUI based module and scenario
editing would improve the usability. The use of a bar
chart for the output like a histogram would improve
the visualisation.

9 Acknowledgments

This work is financially supported in part by the
BMBF via the Cluster of Excellence in Aviation
Hamburg project L3 and the University of Hamburg.
Any opinions, findings, and conclusions or recom-
mendations expressed in this paper are those of the
authors and do not necessarily reflect the views of the
funding bodies.

10 References

[1] Y. Farschtschi and M. Widemann. diploma
thesis. Modulares Workflow Management und
Optimierungssystem am Beispiel des ground
handling am Flughafen. Hamburg : s.n., 2009.

[2] Y. Farschtschi, K. Himstedt, J. Wittmann and
D. P. F. Möller et al. Macroscopic modelling of
passenger streams on the airport and its
adaptation in matlab simulink. EUROSIM 2010.
Mai 2010.

[3] M. Widemann, Y. Farschtschi, J. Wittmann and
D. P. F. Möller Workflow management of the
ground handling at the airport through modular
system optimizing. EUROSIM 2010. Mai 2010.

[4] GROUNDSTAR Ltd. [Online] 2010.
http://www.groundstars.de/e_index.html.

[5] D. Hoffman and D. Weiss. Software
fundamentals: collected papers by David L.
Parnas. s.l. : Addison-Wesley, 2001, pp. 9-28.

[6] R. H. Güting and S. Dieker. Datenstrukturen und
Algorithmen. 2004. 978-3519221210.

 [7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C.
Stein. Introducing to Algorithms(2nd ed.). 2001.
0-262-03293-7.

