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Abstract  

Use of biomass in industrial boilers requires more efficient control systems. In 
order to keep constant and undisturbed technological steam production for large 
changes in the operating conditions more process knowledge must be 
incorporated into the system. Control of the biomass steam boiler system often 
needs an experience operator intervention. In the particular case the operator 
based on presented process data manually controls the supply of the biomass and 
change primary air temperature and flow in to the combustion chamber. Local 
control loops increase the degree of automation and assure safety technological 
steam production. In order to minimize operator intervention and to stabilize 
technological steam production a Fuzzy controller seems to be ideal solution. 
The paper shows an implementation of the Fuzzy control system that improves 
and optimizes a technological steam production of the biomass steam boiler 
system. The analysis and identification of real process data give promising 
mathematical model that was used for the development of an appropriate control 
algorithm in simulations. Recurrent auto-associative neural network model 
improves state space model in wider range of measured data. After small 
adjustments a Fuzzy controller was successfully implemented on real Biomass 
Steam Boiler System. 
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1 Introduction 

Use of biomass in industrial boilers requires more 
efficient control systems. In order to keep constant 
and undisturbed technological steam production for 
large changes in the operating conditions more 
process knowledge must be incorporated into the 
system. Control of the biomass steam boiler system 
often needs an experience operator intervention [1]. In 
the particular case the operator based on presented 
process data manually controls the supply of the 
biomass and change primary air temperature and flow 
in to the combustion chamber. Local control loops 
increase the degree of automation and assure safety 
technological steam production. In order to minimize 
operator intervention and to stabilize technological 
steam production a Fuzzy controller seems to be ideal 
solution [2]. 

The development and adaptation of an appropriate 
fuzzy control algorithm can’t be done directly while 
production is running. For this purpose the 
mathematical model of technological steam 
production is needed. Based on measurement data and 
appropriate system identification techniques black box 
models may describe the system well in specific 
operating conditions. 

2 Steam Boiler System 

A steam boiler system basic data:  

Steam: 

• power ~ 15MW,  
• production ~ 20t/h,  
• pressure ~ 450 kPa and 
• temperature ~ 435 °C. 

Fuel: 

• wood lignin, 
• wood biomass, 
• sawdust and  
• polymer. 

 
Fig. 1 shows SCADA snapshot as it appears in real 
technological steam production. Operator manually 
controls speed of fuel supply CV1 [Hz], desired 
temperature of primary air CV2 [°C] and primary air 
flow speed CV3 [Hz] while monitoring combustion 
chamber temperatures Tu1, Tu2, Td1, Td2 [°C] and 
technological steam production flow Qs [t/h]. The 
automatic control of the secondary air flow is needed 
to control the combustion chamber wall temperature. 
There is also automatic control of steam pressure and 
negative air pressure inside the chamber.  

3 System Identification 

The system identification is based on real process 
measured data. We made small step changes of all 

control values in the process and also closed loop 
measurements. 

 

Fig. 1 SCADA snapshot of fuel feed system, 
combustion chamber and steam boiler system. 

3.1 Real time measurements 

All needed measurement data has been imported and 
normalized from SCADA Historian. Fig. 2 , Fig. 3 and 
Fig. 4 shows imported normalized combustion 
chamber temperature and normalized steam 
production changes during manual and automatic 
control of steam boiler system.  
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Fig. 2 Normalized combustion chamber temperature 
and steam output based on fuel dosage step changes. 
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Fig. 3 Normalized combustion chamber temperature 
and steam production output based on step fuel dosage 

changes, step primary air flow changes and primary 
air temperature changes. 
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Fig. 4 Normalized combustion chamber temperature 
and normalized steam production in normal operation. 

All measurement data obtained by Historian has been 
analyzed and passed through the identification 
procedure to obtain a model. 

3.2 Identification of state space linear model 

The linear mathematical model of a steam boiler 
system has four input and two output variables as 
depicted in Fig. 5. 

 

Fig. 5 Steam production model with corresponding 
inputs and outputs, 

Input variables:  
• Frequency of the fuel dosage motor Fd [Hz], 
• Primary air temperature Tp [°C], 
• Primary air flow Qp [m3/h] and  
• Frequency of the motor for the secondary air 

flow supply Fs [Hz]. 

Output variables:  
• Combustion chamber temperature Td2 [°C] 

and  
• Steam production Qs [t/h]. 

 
The Matlab identification procedure pem.m as 
prediction error estimate was used for the state space 
model estimation. Best identification result was 
achieved with measured data shown in Fig. 4 where 
normal operation of steam production was considered.  
 
Fig. 6 and Fig. 7 show step responses of an identified 
state space model simulation. Fig. 8 shows validation 
of identified state space model on measured data. The 
steam production model does not precisely match 
measured data but it has good dynamic behavior and 
precise static values according to a measured ones. 
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Fig. 6 Step responses of identified state space model. 
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Fig. 7 Simulation of combustion chamber temperature 

and steam production based on identified model of 
steam boiler system. 
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Fig. 8 Comparison of combustion chamber 

temperature and steam production based on identified 
model and measured data. 

 



3.3 Recurrent auto-associative neural network 
model 

In order to obtain a better dynamical model of the 
process neural networks were addressed. A special 
type of neural network can be used called an auto-
associative neural network (AANN) which is a feed-
forward neural network that performs identity 
mappings; network inputs are reproduced at the output 
layer. To obtain model of the process according to 
measured values a classic AANN can be used. 
However we wish to observe dynamic behavior of the 
process, therefore a use of recurrent AANN was 
suggested latter [3].  

The AANN normally consists of an input layer, three 
hidden layers, and an output layer. The input/output 
layers can have an identical number of neurons, but 
not necessarily. The first/third hidden layer is called 
mapping/demapping layer, respectively, and usually 
contains more neurons than input/output layer. The 
middle hidden layer is called the bottleneck layer with 
strictly less neurons than input/output layer. The 
transfer functions for the mappings/de-mappings are 
non-linear whereas the transfer function for the 
bottleneck and output layers can be linear or non-
linear. The number of hidden neurons in all three 
hidden layers of the network is very important as the 
compression role of the network reduces network’s 
accuracy and increases output error. 

The key feature of the AANN is its data 
compression/regeneration by the bottleneck layer. The 
input, mapping, and bottleneck layers compress the 
input information to a lower dimension, after which 
the de-mapping and output layers recover the main 
underlying features of the original information. The 
bottleneck layer can be used to extract generalized 
characteristics of the process, and can be treated as a 
method for extraction of nonlinear principal 
components. The main task is to select the proper 
number of neurons in the bottleneck layer, which 
represent the system behavior, and to observe model 
correlations between variables by using extracted 
nonlinear principal components. The AANN also has 
to be properly trained to produce desired outputs. In 
network training both input and target vectors are 
identical, where the objective function, mean squared 
error between the network outputs and inputs, is 
minimized.  

Several training procedures and neural network 
parameters settings were tested to obtain desired 
results. The sampling time used was 5s, due to 
reduced computational complexity of training and a 
large number of data samples from process 
measurements (fairly slow process changes). Network 
training was conducted upon different data pre-
processing methods. First case was the usual pre-
processing where output data is normalized to fit 
output range interval between -1 and 1. In the second 
case pre-processing was realized according to mean 

values and standard deviation, where values were 
defined upon input data specifics. After successful 
training, the AANN was defined by 15 neurons in 
mapping and de-mapping layer, bottleneck layer had 5 
neurons, and input/output layers were measured 
values of the process. 70% of measured data samples 
were used for modeling and 30% were used for 
validation. 

 

 

Fig. 9 Comparison of combustion chamber 
temperature and steam production based on identified 

model and measured data. 

Steady state model (Fig. 9) obtained by AANN 
structure is very accurate for a wide range of data, 
however it doesn’t describe dynamics of the process 
adequately as variables has changeable delays, 
sampling times, dynamics, etc. To incorporate 
dynamics into developed model of the process a 
recurrent AANN structure was suggested where 
outputs are taken back to the input layer. This has for 
the consequence that the neural network is not fully 
auto-associative because additional past inputs of the 
process are required and that vector of inputs is not 
necessary identical to the vector of outputs. However, 
the neural network is auto-associative with respect to 
the output variables. The number of neurons in the 
input and output layers is determined by the structure 
of the process model. 
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Fig. 10 A recurrent AANN with delayed input into the 
model to form dynamic behavior of the temperature 

Tk2. Similar goes for steam production output 
Q_45bar. 

The architecture of the dynamic AANN is modified as 
presented in Fig. 10. The output of the network, 
delayed a number of times, is fed back to the input 
layer so that both process temporal and spatial patterns 
are incorporated in the structure of the recurrent 
AANN. For this case, the neural network is auto-
associative only for the current output variables, and 
obviously only the current measurements are 
processed at each sampling time. The recurrent 
AANN model structure was reduced to 10 neurons in 
mapping/demapping layer and in bottleneck layer 
were 5 neurons and due to the complexity and number 
of neurons the training procedure had to be repeated 
several times to achieve best results. For training 
algorithm a Levenberg-Marquardt back-propagation 
was used. Neurons of input and hidden layers were 
nonlinear “tansig” activation functions, while output 
layer had linear output.  

Properly trained AANN produced a fairly good 
dynamic model of the process. Comparison between 
final recurrent AANN model output and 
measurements is shown in Fig. 11. Dynamic 
properties are shown in Fig 12 where several input 
step changes were simulated and tested. 

 

Fig. 11 Comparison between recurrent AANN model 
output and measured combustion chamber 

temperature.  

 

 

Fig. 12 The top figure presents dynamic response of 
the model combustion chamber temperature upon the 
input step change where temperature of the primary 
air was raised for 10 °C. The lower figure presents 
dynamic response of the same variable upon step 

change of fuel injection (motor speed) into the furnace 
for 1 Hz. 

4 Fuzzy controller design 

Based on observations during normal operation and 
operator assistance the Fuzzy controller has been 
designed for both combustion chamber temperature 
control and steam production control. The Fuzzy 
control system has four input and three output 
variables.  
Input variables:  

• Combustion chamber temperature error ETd2 
[°C],  

• Combustion chamber temperature trend dTd2 
[°C/s], 

• Steam production deviation eQs[t/h] and 
• Steam production deviation dQs[t/hs]. 

Output variables:  
• Deviation of a fuel dosage motor frequency  
• dFd [Hz/s],  
• Deviation of the primary air flow motor 

frequency dFp [Hz/s] and  
• Deviation of the primary air temperature dTp 

[°C/s]. 

All input and output variables have three membership 
functions equally distributed. A Fuzzy inference 
engine consists of 21 rules that completely describe all 



operator assistance needed for successful control of 
steam production and temperature control (Fig. 13).  

 
Fig. 13 Fuzzy rules of steam production Fuzzy 

controller. 
 

 
Fig. 14 Simulation of combustion chamber 

temperature and steam production using Fuzzy steam 
production controller. 

 

 
Fig. 15 Real time results while using implemented 

Fuzzy steam production controller. 

Fig. 14 shows simulation results while using designed 
Fuzzy steam production controller. Simulation results 
show that designed Fuzzy steam controller may be 
implemented on real steam production system. For 
this purpose some fine adjustments of Fuzzy 
controller input and output gains have been done. Fig. 
15 shows real time results while using implemented 
Fuzzy steam production controller. Steam production 
has been automated and operator assistance has been 
minimized. 

5 Conclusions 

An implementation of Fuzzy control systems is very 
convenient for the industry where expert knowledge 
of the operator is needed. In order to avoid 
unnecessary interference during the production the 
design of the appropriate controller must be made in 
simulations. Therefore the identification of the 
mathematical model of an industrial process has to be 
done. This is sometime very difficult because of 
varying and non-linear behavior of the observed 
industrial process. The identification method used for 
the steam production system modeling gives good 
approximation of real steam production system only 
for specific operating conditions. Recurrent auto-
associative neural network model improves state space 
model in wider range of measured data. It has been 
shown that the design of a Fuzzy steam production 
controller do not need precise mathematical model of 
non-linear process. It is only important that dynamic 
changes shows right direction and static values mach 
measured ones. Input and output variables of the 
Fuzzy controller must be carefully selected and Fuzzy 
rules must imitate expert knowledge of the operator in 
order to achieve a desired control performance. 
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