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Abstract  

The Discrete Event System (DEVS) Formalism is based on systems theory and provides an 
extensive framework for modeling and simulation of discrete event and hybrid systems. This 
paper investigates the suitability of Parallel DEVS (PDEVS), a general DEVS extension, and 
of the specific Real-Time DEVS (RT-DEVS) extension for a throughout simulation-based 
development of discrete event controls. The research is based on the V-Model that generally 
describes the control development process, whereas main focus is set to the Rapid Control 
Prototyping (RCP) concept. As a result the PDEVS and RT-DEVS specifications are 
integrated to form an extended DEVS specification called PDEVS-RCP. Finally, the usage 
and functionality of PDEVS-RCP is demonstrated using a robot control application. 
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1 Introduction 

Following [1], all steps of the development process for 
complex controls in the field of automation are 
summarized in the V-Model: 

• Conceptual formulation, requirement specification, 
functional specification 

• Analyzing and modeling of technical processes 

• Development of control algorithms 

• Coding and implementation of algorithms on 
destination hardware 

• Successive placing into operation of controls 

• Bringing into service of the complete control 

Today a large number of software environments exist 
for nearly all steps in the V-Model. In particular the 
interfaces between different software environments or 
rather the users of this software are important weak 
points in the whole development process. Often 
different software environments are not compatible 
among each other. In addition, a loss or a 
misinterpretation of information can take place during 
the information exchange between several users. 
Reasons may be different methods or the large amount 
of different software tools used in the development 
process at all. 

The objective of the Rapid Control Prototyping (RCP) 
approach is to shorten, to simplify and to reduce the 
error probability of the entire development process. 
Hence, a continuous usage of compatible software 
tools and model-based development methods based on 
a well defined theoretical background are central 
elements of the RCP approach, particularly to avoid 
unnecessary re-implementations. The continuous 
usage of compatible software tools from early 
planning-phases till placing into operation is called 
Tool-Chain. A common representative of such a Tool-
Chain is the scientific and technical computational 
environment Matlab/Simulink with its additional 
toolboxes. Matlab/Simulink offers several simulation 
tools for system and control design and tools for 
automatic code generation for specific programmable 
controllers. An alternative approach to the usage of 
specific programmable controllers is the so called 
Software in the Loop (SiL) concept. Here conventional 
PCs or industry PCs are used during the operation 
phase. For this purpose appropriate process-interfaces 
have to be implemented. This specific kind of 
communication with real processes is also called 
implicit code generation. One specific type of the SiL 
concept is the Simulation-based control approach 
(SBC) according to [3, 4, 5]. It is based on simulation 
models which are stepwise enhanced during the 
design and automation phase to a full control system 
using the implicit code generation approach. 
Moreover, the SBC approach allows performing 

additional state calculations and process optimizations 
during real-time operation, because the control system 
contains a detailed process model [3].  

Up to now research to the Simulation-based control 
approach and to the RCP concept is mostly based on 
the conventional Matlab/Simulink tools. This paper 
investigates the Simulation-based control approach 
following the Discrete Event System (DEVS) 
formalism introduced by Zeigler [6] and its extensions 
Parallel DEVS (PDEVS) [7] and Real-Time DEVS 
(RT-DEVS) [2, 6]. A main goal is to reinforce the 
theoretical background of the Simulation-based 
control approach. Therefore the DEVS formalism is 
shortly introduced on the basis of the Parallel DEVS 
(PDEVS) specification and important extensions of 
RT-DEVS are discussed and analyzed with regard to 
general requirements of the RCP concept. Then the 
paper gives detailed proposals how PDEVS and RT-
DEVS can be integrated to fulfill the RCP 
requirements using the Simulation-based control 
approach. Finally, the new ideas are illustrated by a 
robot control application. 

2 Specification and dynamic behavior of 
Parallel DEVS 

The Discrete EVent System (DEVS) formalism was 
introduced by Zeigler in 1976. It provides a 
comprehensive framework for modeling and 
simulation based on systems theory. The formalism 
includes on the one hand detailed model specifications 
and on the other hand corresponding simulation 
algorithms. Besides, modeling is based on a modular, 
hierarchical specification. The dynamic behavior is 
specified in atomic DEVS systems. Furthermore, there 
are coupled DEVS systems, which are used for 
composing atomic DEVS and coupled DEVS 
respectively. Every coupled DEVS can be a part of 
any other coupled DEVS. Following the classic DEVS 
approach coupled DEVS systems specify only a 
system structure and do not contain a separate 
dynamic description. For the simulation phase a 
simulator is assigned to any atomic DEVS and a 
coordinator to any coupled DEVS as execution 
controller. Moreover, there is one root coordinator 
above all simulators and coordinators, which controls 
the outermost coordinator and increases the simulation 
time until any stop criterion will be reached. The 
whole simulation process is event-based and all 
simulators and coordinators communicate during 
simulation phase with several messages with each 
other. 

The DEVS formalism has been extended and adapted 
for different purposes. An important modification is 
the Parallel DEVS (PDEVS) approach from Chow [7]. 
This one eased the specification of simultaneous 
events and provides a real concurrent execution of 
DEVS models by modifying the classical simulator 
and coordinator algorithms.  



A Parallel atomic DEVS is specified by [6] as follows: 

     PDEVSatomic = {X, Y, S, δext, δint, δconf, λ, ta} 

where X is the set of input values, S is the set of 
sequential states, Y is the set of output values, δext is 
the external transition function, δint is the internal 
transition function, δconf is the confluent function used 
for simultaneous external and internal events, λ is the 
output function and ta is the time advance function 
used for calculating the logical time advance. The 
dynamic behavior of a Parallel atomic DEVS is shown 
in Fig. 1 (a) and (b). 

 

 

Fig. 1 Dynamic behavior of a Parallel atomic DEVS 
according to [6] 

Following Fig. 1 (a) every atomic DEVS has an 
internal state s∈S. By the mean of the time advance 
function ta(s) the time step till the next internal event 
is calculated on the basis of the internal state s. After 
having expired this time period the output function 
λ(s) is carried out and as a result all output events y∈Y 
at the output port are calculated on the basis of the 
internal state s. In the following the internal transition 
function δint(s) is carried out, which calculates the next 
state s'∈S on the basis of the current state s. If external 
events x∈X occur at the input port the external 
transition function δext(s,e,x) will be executed. This 
function calculates the next state s'∈S on the basis of 
the current state s and the elapsed time e since the last 
event and the current external events x∈X. At the end 
the logical time advance for the next internal event is 
calculated by the time advance function ta(s). 

Fig. 2 (b) shows the dynamic behavior of a Parallel 
atomic DEVS if internal and external events occur 
simultaneously. At first output events y∈Y at the 

output port are calculated by the output function λ(s) 
and at second the next internal state s'∈S is calculated 
by the confluent function δcon(s,e,x). The processing of 
simultaneous events is handled with the confluent 
function δcon by any atomic DEVS on its own. That’s 
why all atomic DEVS are able to operate concurrently 
and independently from each other. 

A Parallel coupled DEVS is specified by [6] as 
follows: 

     PDEVScoupled = {X, Y, D, {Md | d∈D}, Zi,d} 

where X is the set of input values, Y is the set of 
output values, D is the set of the component names, 
Md is the DEVS system of component name d∈D of 
the coupled DEVS. Zi,d defines the coupling relations 
of internal components with each other or to any 
output / input ports of the coupled DEVS based on 
output / input relations (i→d). 

3 Specification and dynamic behavior of 
Real-Time DEVS 

Real-Time DEVS (RT-DEVS) extends the classic 
DEVS Theory. It is introduced for DEVS models, 
which should be simulated in real-time and it supports 
interaction with a hardware environment. Following 
[2] every RT-DEVS model is directly simulated in 
real-time by an appropriate real-time-simulator. An 
atomic RT-DEVS system is specified by [6] as 
follows: 

     RT-DEVSatomic = {X, S, Y, δext, δint, λ, ti, ψ, A} 

Here X, S, Y, δint and λ have the same definition as for 
Parallel atomic DEVS. In contrast to Parallel DEVS 
the definition of the external transition function δext is 
slightly modified2. In addition, a set of executable 
activities A including any constrains, a time interval 
function ti and an activity mapping function ψ are 
defined. The dynamic behavior of an atomic RT-
DEVS is shown in Fig. 2. 

 

Fig. 2 Dynamic behavior of an atomic RT-DEVS 

                                                           
2 PDEVSatomic δext: Q×X → S with Q={(s,e) | s∈S, 0 ≤ e ≤ ta(s)} 
RT-DEVSatomic δext: Q×X → S with Q={(s,e) | s∈S, 0 ≤ e ≤ ti(s)max} 
with ti(s)max as a maximum of the execution time of an activity a∈A 
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Every state s∈S is related by the activity mapping 
function ψ(s) with one activity a∈A and with a 
minimal and maximal execution time by the time 
interval function ti(s). Each activity a can be seen as 
an executable function that is not allowed to receive or 
send events or to change internal states. The minimal 
and maximal execution time is calculated by 
ti(s)=[comp_time - ε, comp_time + ε]  and provides 
upper and lower bounds within an activity a should be 
completely processed. In this context ε is the 
allowable tolerance of an estimated execution time 
comp_time. An internal event occurs if a currently 
executed activity a ends within the time interval ti(s). 
In analogy to the behavior of a Parallel atomic DEVS 
at first λ(s) is carried out and all output events y∈Y at 
the output port are calculated and at second the 
internal transition function δint(s) is carried out, which 
calculates the next state s'∈S. After that the new 
activity a'∈A and the new time interval ti(s') are 
calculated. If external events x∈X occur at the input 
port at first the currently executed activity a is aborted 
and at second the next state s'∈S is calculated by the 
external transition function δext(s,e,x). Moreover, the 
new activity a'∈A is calculated by the activity 
mapping function ψ(s') and the new time interval ti(s') 
is determined. 

The specification of coupled DEVS is the same as for 
Parallel DEVS. In the simulation phase a simulator is 
assigned to any atomic RT-DEVS and a coordinator 
to any coupled DEVS as execution controller. But this 
time the time advance during simulation is based on 
real-time and not on a logical time. Especially this fact 
and the described differences in the system 
specification and the dynamic behavior lead to 
simulator- and coordinator algorithms that differ 
strongly from Parallel DEVS. 

4 Analyzing the suitability of both DEVS 
formalisms concerning the RCP concept 

Following Abel [1] the most important aspects of the 
Rapid Control Prototyping (RCP) approach are the 
continuous and model-based development of 
applications using a compatible Tool-Chain. Within 
the design phase any technical process is modeled in a 
so called process model. On the basis of these process 
models different control algorithms can be 
implemented as control models and tested using 
simulation. In the next step selected control models 
should be transformed without manual re-
implementation to real control software. This code 
transformation can be realized by an explicit code 
generation for specific target platforms using specific 
compilers or by an implicit code generation following 
the Software in the Loop (SiL) concept using 
appropriate process interfaces. In the SiL approach 
development PCs or any common industrial PCs are 
directly used as control hardware. A specific type of 
SiL is   the  Simulation-based  control  approach   by 

[3, 4, 5]. Here, process models and selected control 
models from the design phase are stepwise enhanced 
by using the implicit code generation and finally they 
are used as control software for the real process. On 
the one hand this procedure increases the safety of the 
entire system and on the other hand it reduces the 
costs of development because of avoiding manual re-
implementations. Moreover, the integration of process 
models into the control phase allows additional state 
calculations, increases the quality of the control 
application and it could reduce hardware costs by e.g. 
using less sensors. 

Fig. 3 shows schematically a comparison of the 
general Simulation-based control (SBC) approach and 
its implementation using the former introduced DEVS 
formalisms. 

 

Fig. 3 Comparison of the general Simulation-based 
control (SBC) approach and its implementation with 
DEVS formalisms 

On the one hand Parallel DEVS fulfills all 
requirements for simulation models in design phase, 
whereas the requirements of control software in 
operation phase are fulfilled by the RT-DEVS 
approach. However, there is no way to successively 
enhance PDEVS models from design phase to RT-
DEVS models for operation phase, because their 
atomic system specifications and their simulation 
algorithms strongly differ from each other. 
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5 Integration of PDEVS and RT-DEVS 
to PDEVS-RCP 

A useful approach to overcome the previously 
discussed deficits is to integrate both DEVS 
formalisms with the aim to fulfill the requirements of 
the design and operation phase respectively. In the 
following such integration is described by extending 
the Parallel DEVS formalism. The extension is called 
PDEVS-RCP. An atomic PDEVS-RCP system is 
specified as follows: 

PDEVS-RCPatomic = {X, S, Y, A, δext, δint, δcon λ, ta} 

S, Y, δext, δint, δcon, ta        are analog to atomic PDEVS 

A              set of executable activities 

X = {Xmodel, Xclock}            set of input events 

    with Xmodel        set of system specific input events 

Xclock         set of real-time values of an extern  

                 Real-Time Clock (RTC) 

λ:   S → Y × A   combined output and activity  

   mapping function 

Thereby S, Y, δext, δint, δcon and ta are defined in 
accordance with PDEVS. Following RT-DEVS, A 
contains the set of executable activities. The set of 
input events X consists on the one hand of system 
specific input events Xmodel that correspond to the set X 
of an atomic PDEVS or an RT-DEVS respectively and 
on the other hand of real-time values Xclock. The latter 
are generated by a real-time clock (RTC) that takes 
influence on any PDEVS-RCP by external events. The 
combined output and activity mapping function λ 
defines analog PDEVS the generation of output events 
y∈Y. In addition, this function defines similar to a 
DEVS extension in [8] the state based mapping of 
activities a∈A according to the activity mapping 
function ψ of RT-DEVS specification. In contrast to 
RT-DEVS there exists no special function for the 
calculation of minimal and maximal execution times 
of activities according to the time interval function ti 
of RT-DEVS. 

The dynamic behavior of an atomic PDEVS-RCP 
under real-time conditions is shown in Fig. 4. The 
execution of simultaneous external and internal events 
using the confluent function δcon is not shown in figure 
4, because it is identical to atomic PDEVS. However, 
the real-time execution of an atomic PDEVS-RCP is 
based on the following conditions. 

• The state based minimal and maximal time 
interval ti = [comp_time - ε, comp_time + ε]  
of an activity a∈A has to be explicitly saved 
within the system state as real-time values. 
The update of ti has to be performed by the 
transition functions δint, δext or by the 
confluent function δcon. 

• An external real-time clock (RTC) 
component, implemented as an ordinary 
atomic PDEVS, has to send the real-time 
clock values as external events xclock∈Xclock to 
any atomic PDEVS-RCP, which stores the 
current real-time clock value as state value 
using its external transition function δext. The 
time interval between two xclock events has to 
be smaller or equal to the smallest logical 
time step min(ta(s)) of the whole model. 
From this it follows that any logical time step 
ta(s) till the next internal event of an atomic 
PDEVS-RCP can be either 0 or ∞. 

 

Fig. 4 Dynamic behavior of an atomic PDEVS-RCP3 

The basic dynamic behavior of an atomic PDEVS-
RCP is the same as of ordinary atomic PDEVS. 
Differences result from the introduced modeling 
extensions. Every atomic PDEVS-RCP has an internal 
state s∈S that is related to an activity a∈A. The 
minimal and maximal execution time [ti min , timax]  of 
the currently running activity a are saved as real-time 
values in the state s. The time advance function ta(s) 
calculates the logical time step till the next internal 
event according to the former described second 
condition. If the internal event occurs, at first the 
output function λ(s) is carried out. It generates on the 
basis of the internal state s the output events y∈Y at 
the output port, cancels the currently running activity 
a and initializes the next activity a’. At second, the 
internal transition function δint(s) is carried out. It 
calculates on the basis of the internal state s the next 
state s’ including the real-time values for the 
execution time boundaries [ti min , timax]  of the new 
activity a’. At third the logical time step ta(s’) till the 
next internal event is calculated. 

External events are subdivided in events from system 
specific DEVS systems xmodel∈Xmodel and events from 
the real-time clock xclock∈Xclock. If external events x∈X 
occur the external transition function δext(s,e,x) is 
carried out. This function calculates on the basis of the 
internal state s, the elapsed time e since the last event 

                                                           
3 The identifier ti(s) in Fig. 4 is not a time interval function. It is a 
state vector [ti min, timax] , which contains the execution boundaries in 
real time for the currently running activity a. 



and all input events x the next state s’. In addition, 
δext(s,e,x) checks on the basis of the real-time values 
saved in the internal state s if any external event takes 
place within the time interval [ti min , timax] . 

• If external events occur outside the interval 
[ti min , timax]  the next internal state s’ is 
computed including recalculated [ti min , timax]  
state values. Moreover, the logical time 
advance ta(s’) is calculated. 

• If external events occur within the interval 
[ti min , timax]  the next internal state s’ is 
computed. The next state s’ has to lead to 
ta(s’)=0 and provokes immediately an 
internal event without a further logical time 
step. 

The integration of real-time clock values by means of 
external events and the storage of a real-time interval 
ti in the system state are central elements of PDEVS-
RCP. Atomic PDEVS-RCP systems can be integrated 
in ordinary coupled DEVS as defined in the PDEVS 
formalism. Moreover, the execution algorithms of a 
simulator, coordinator and root-coordinator defined in  

 

 

 

the PDEVS formalism remain unchanged. That’s why 
any model including atomic PDEVS-RCP systems can 
be executed using the ordinary PDEVS algorithms 
within the design phase and the operation phase. 

6 Example: A Robot control with DEVS 

This section discusses an example of a robot control 
on the basis of the Simulation-based control approach 
using the PDEVS-RCP extension. Fig. 5 shows the 
control structure of a robot taken from [9], which is 
able to perform asynchronous point to point (PTP) 
movements and to stop at any point in the workspace 
for a specified time period. 

The coupled DEVS RobotControl consists of two real-
time depending atomic PDEVS-RCP systems called 
Control and PInterface as well as two atomic PDEVS 
systems called Process and RTC. The component 
Control defines the real-time based control logic. 
Process specifies a process model of the robot and 
stores for example joint and gripper states. PInterface 
defines an “implicit” process interface to the robot 
controller that  directly  accesses  the robot  actors and  

 

 

 Fig. 5 Control structure of a robot on the basis of the Simulation-based control approach using PDEVS-RCP  



sensors. RTC acts as an interface to the real-time clock 
and sends real-time values as output events 
periodically. 

In the following, the operation of the control structure 
pictured in figure 5 is briefly described. Each 
subfigure pictures the logical time (simulation time) t 
and the event list of the topmost coupled DEVS 
RobotControl. For this example we assume that an 
internal event occurs for Control every 30 ± 0,2 s. 
Furthermore, an internal event occurs for PInterface 
every 1 ± 0,1 s, because control commands have to be 
sent to the execution controller of the robot and sensor 
values have to be received within function λ(s) 
periodically. RTC schedules its next internal event 
periodically with the logical time step ta=1 and sends 
the real-time treal as event to the real-time depending 
components Control and PInterface by λ(s). Fig. 5 (a) 
shows the event list of the coordinator at the 
simulation time t=3 and at the real-time treal=29.7. 
The next internal event occurs for RTC at the logical 
time t=4. According to Fig 5 (b) the simulation time is 
set to t=4 and RTC sends treal=29.7 as event to 
Control and PInterface. Both components check using 
their external transition function δext whether the 
transmitted real-time is within the time interval ti or 
not. In fact treal is not within ti and that’s why for both 
components ta=∞ is set and no internal event has been 
scheduled. RTC schedules its next internal event with 
ta=1. Hereupon, the next internal event occurs for 
RTC at logical time t=5. According to Fig 5 (c) the 
simulation time is set to t=5 and RTC sends treal=30 as 
event to Control and PInterface. Both components 
check again using their external transition function δext 
if treal=30 is inside their time interval ti - in fact this is 
the case. Thus, Control and PInterface schedule their 
next internal events with ta=0 at t=5 whereas RTC 
schedules its next internal event with ta=1 at t=6. 
Following Fig. 5 (d) an internal event take place for 
Control and PInterface at simulation time t=5. At first 
the λ-function of Control and PInterface is carried out 
and the output events (yC) and (yPI) are sent to 
Process. In addition, PInterface communicates with 
the robot execution controller by sending xRobo and 
receiving yRobo. At second both components carry out 
their internal transition function δint at t=5 and 
calculate amongst others their new time interval ti. At 
third PInterface and Control calculate their next 
internal event time advance with ta=∞. Concurrent 
Process receives its external events (yC) and (yPI) at 
simulation time t=5 and calculates using the external 
transition function δext its next internal state. 
Moreover, Process schedules with ta=0 immediately 
its next internal event that has to be executed at 
simulation time t=5. 

The control structure has been developed according to 
the RCP-concept successively. During this process the 
components Control and Process have been starting 
points for the control logic development. The 
components RTC and PInterface have been 

implemented afterwards. During the design phase the 
behavior of the real robot has been simulated and 
visualized by a separate component using the interface 
system PInterface. A detailed discussion of the robot 
application and other PDEVS-RCP examples can be 
found in [9]. 

7 Summary 

Our research shows that the integration of Parallel 
DEVS and Real-Time DEVS to PDEVS-RCP based 
on the Simulation-based control approach fulfils the 
requirements of the RCP-concept. The PDEVS-RCP 
specification allows a successive development of 
simulation models beginning in the design phase till 
the operation phase. In contrast to RT-DEVS models 
PDEVS-RCP models do not require any specific 
simulation algorithms and as a result they can be 
simulated with ordinary PDEVS simulator and 
coordinator implementations. In addition, this opens 
the opportunity to use special run-time optimized 
execution algorithms based on the model-flattening 
approach published in [6]. 

The introduced PDEVS-RCP approach has been 
prototypically implemented in the scientific 
computational environment Matlab and has been 
tested with several laboratory applications. Key issues 
of further research are the investigation of PDEVS-
RCP in the field of cooperative robot controls and its 
combination with the meta-modeling approach for re-
configurable controls published in [5]. 
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