
SIMULATION-BASED DEVELOPMENT AND
OPERATION OF CONTROLS ON THE BASIS OF

THE DEVS FORMALISM1
Tobias Schwatinski1, Thorsten Pawletta1, Sven Pawletta1, Christian Kaiser2

1Hochschule Wismar – University of Applied Sciences: Technology, Business and Design
Research Group Computational Engineering and Automation

2TLK-Thermo GmbH Braunschweig

{tobias.schwatinski, thorsten.pawletta, sven.pawletta} @ hs-wismar.de

Abstract

The Discrete Event System (DEVS) Formalism is based on systems theory and provides an
extensive framework for modeling and simulation of discrete event and hybrid systems. This
paper investigates the suitability of Parallel DEVS (PDEVS), a general DEVS extension, and
of the specific Real-Time DEVS (RT-DEVS) extension for a throughout simulation-based
development of discrete event controls. The research is based on the V-Model that generally
describes the control development process, whereas main focus is set to the Rapid Control
Prototyping (RCP) concept. As a result the PDEVS and RT-DEVS specifications are
integrated to form an extended DEVS specification called PDEVS-RCP. Finally, the usage
and functionality of PDEVS-RCP is demonstrated using a robot control application.

Keywords: discrete event simulation, discrete event control, DEVS, RCP, robot controls.

Presenting Author’s biograph

1 This work is supported by the German Federal Ministry of Education and Research (support code 1747X08).

Tobias Schwatinski has studied mechanical engineering at Wismar University
and received his Master degree in January 2010. Currently he is working on new
approaches in the field of cooperative robot controls.

1 Introduction

Following [1], all steps of the development process for
complex controls in the field of automation are
summarized in the V-Model:

• Conceptual formulation, requirement specification,
functional specification

• Analyzing and modeling of technical processes

• Development of control algorithms

• Coding and implementation of algorithms on
destination hardware

• Successive placing into operation of controls

• Bringing into service of the complete control

Today a large number of software environments exist
for nearly all steps in the V-Model. In particular the
interfaces between different software environments or
rather the users of this software are important weak
points in the whole development process. Often
different software environments are not compatible
among each other. In addition, a loss or a
misinterpretation of information can take place during
the information exchange between several users.
Reasons may be different methods or the large amount
of different software tools used in the development
process at all.

The objective of the Rapid Control Prototyping (RCP)
approach is to shorten, to simplify and to reduce the
error probability of the entire development process.
Hence, a continuous usage of compatible software
tools and model-based development methods based on
a well defined theoretical background are central
elements of the RCP approach, particularly to avoid
unnecessary re-implementations. The continuous
usage of compatible software tools from early
planning-phases till placing into operation is called
Tool-Chain. A common representative of such a Tool-
Chain is the scientific and technical computational
environment Matlab/Simulink with its additional
toolboxes. Matlab/Simulink offers several simulation
tools for system and control design and tools for
automatic code generation for specific programmable
controllers. An alternative approach to the usage of
specific programmable controllers is the so called
Software in the Loop (SiL) concept. Here conventional
PCs or industry PCs are used during the operation
phase. For this purpose appropriate process-interfaces
have to be implemented. This specific kind of
communication with real processes is also called
implicit code generation. One specific type of the SiL
concept is the Simulation-based control approach
(SBC) according to [3, 4, 5]. It is based on simulation
models which are stepwise enhanced during the
design and automation phase to a full control system
using the implicit code generation approach.
Moreover, the SBC approach allows performing

additional state calculations and process optimizations
during real-time operation, because the control system
contains a detailed process model [3].

Up to now research to the Simulation-based control
approach and to the RCP concept is mostly based on
the conventional Matlab/Simulink tools. This paper
investigates the Simulation-based control approach
following the Discrete Event System (DEVS)
formalism introduced by Zeigler [6] and its extensions
Parallel DEVS (PDEVS) [7] and Real-Time DEVS
(RT-DEVS) [2, 6]. A main goal is to reinforce the
theoretical background of the Simulation-based
control approach. Therefore the DEVS formalism is
shortly introduced on the basis of the Parallel DEVS
(PDEVS) specification and important extensions of
RT-DEVS are discussed and analyzed with regard to
general requirements of the RCP concept. Then the
paper gives detailed proposals how PDEVS and RT-
DEVS can be integrated to fulfill the RCP
requirements using the Simulation-based control
approach. Finally, the new ideas are illustrated by a
robot control application.

2 Specification and dynamic behavior of
Parallel DEVS

The Discrete EVent System (DEVS) formalism was
introduced by Zeigler in 1976. It provides a
comprehensive framework for modeling and
simulation based on systems theory. The formalism
includes on the one hand detailed model specifications
and on the other hand corresponding simulation
algorithms. Besides, modeling is based on a modular,
hierarchical specification. The dynamic behavior is
specified in atomic DEVS systems. Furthermore, there
are coupled DEVS systems, which are used for
composing atomic DEVS and coupled DEVS
respectively. Every coupled DEVS can be a part of
any other coupled DEVS. Following the classic DEVS
approach coupled DEVS systems specify only a
system structure and do not contain a separate
dynamic description. For the simulation phase a
simulator is assigned to any atomic DEVS and a
coordinator to any coupled DEVS as execution
controller. Moreover, there is one root coordinator
above all simulators and coordinators, which controls
the outermost coordinator and increases the simulation
time until any stop criterion will be reached. The
whole simulation process is event-based and all
simulators and coordinators communicate during
simulation phase with several messages with each
other.

The DEVS formalism has been extended and adapted
for different purposes. An important modification is
the Parallel DEVS (PDEVS) approach from Chow [7].
This one eased the specification of simultaneous
events and provides a real concurrent execution of
DEVS models by modifying the classical simulator
and coordinator algorithms.

A Parallel atomic DEVS is specified by [6] as follows:

 PDEVSatomic = {X, Y, S, δext, δint, δconf, λ, ta}

where X is the set of input values, S is the set of
sequential states, Y is the set of output values, δext is
the external transition function, δint is the internal
transition function, δconf is the confluent function used
for simultaneous external and internal events, λ is the
output function and ta is the time advance function
used for calculating the logical time advance. The
dynamic behavior of a Parallel atomic DEVS is shown
in Fig. 1 (a) and (b).

Fig. 1 Dynamic behavior of a Parallel atomic DEVS
according to [6]

Following Fig. 1 (a) every atomic DEVS has an
internal state s∈S. By the mean of the time advance
function ta(s) the time step till the next internal event
is calculated on the basis of the internal state s. After
having expired this time period the output function
λ(s) is carried out and as a result all output events y∈Y
at the output port are calculated on the basis of the
internal state s. In the following the internal transition
function δint(s) is carried out, which calculates the next
state s'∈S on the basis of the current state s. If external
events x∈X occur at the input port the external
transition function δext(s,e,x) will be executed. This
function calculates the next state s'∈S on the basis of
the current state s and the elapsed time e since the last
event and the current external events x∈X. At the end
the logical time advance for the next internal event is
calculated by the time advance function ta(s).

Fig. 2 (b) shows the dynamic behavior of a Parallel
atomic DEVS if internal and external events occur
simultaneously. At first output events y∈Y at the

output port are calculated by the output function λ(s)
and at second the next internal state s'∈S is calculated
by the confluent function δcon(s,e,x). The processing of
simultaneous events is handled with the confluent
function δcon by any atomic DEVS on its own. That’s
why all atomic DEVS are able to operate concurrently
and independently from each other.

A Parallel coupled DEVS is specified by [6] as
follows:

 PDEVScoupled = {X, Y, D, {Md | d∈D}, Zi,d}

where X is the set of input values, Y is the set of
output values, D is the set of the component names,
Md is the DEVS system of component name d∈D of
the coupled DEVS. Zi,d defines the coupling relations
of internal components with each other or to any
output / input ports of the coupled DEVS based on
output / input relations (i→d).

3 Specification and dynamic behavior of
Real-Time DEVS

Real-Time DEVS (RT-DEVS) extends the classic
DEVS Theory. It is introduced for DEVS models,
which should be simulated in real-time and it supports
interaction with a hardware environment. Following
[2] every RT-DEVS model is directly simulated in
real-time by an appropriate real-time-simulator. An
atomic RT-DEVS system is specified by [6] as
follows:

 RT-DEVSatomic = {X, S, Y, δext, δint, λ, ti, ψ, A}

Here X, S, Y, δint and λ have the same definition as for
Parallel atomic DEVS. In contrast to Parallel DEVS
the definition of the external transition function δext is
slightly modified2. In addition, a set of executable
activities A including any constrains, a time interval
function ti and an activity mapping function ψ are
defined. The dynamic behavior of an atomic RT-
DEVS is shown in Fig. 2.

Fig. 2 Dynamic behavior of an atomic RT-DEVS

2 PDEVSatomic δext: Q×X → S with Q={(s,e) | s∈S, 0 ≤ e ≤ ta(s)}
RT-DEVSatomic δext: Q×X → S with Q={(s,e) | s∈S, 0 ≤ e ≤ ti(s)max}
with ti(s)max as a maximum of the execution time of an activity a∈A

ti(s)

y

λ(s)

s‘=δint(s)
a‘=ψ(s‘)

s

x

s‘= δext(s,e,x)
a‘=ψ(s‘)

a

a a

s' = δcon (s,e,x)

ta(s)
s

λ(s)

y x

(b)

s' = δext (s,e,x)

s' = δint (s)
ta(s)

s

λ(s)

y x

(a)

Every state s∈S is related by the activity mapping
function ψ(s) with one activity a∈A and with a
minimal and maximal execution time by the time
interval function ti(s). Each activity a can be seen as
an executable function that is not allowed to receive or
send events or to change internal states. The minimal
and maximal execution time is calculated by
ti(s)=[comp_time - ε, comp_time + ε] and provides
upper and lower bounds within an activity a should be
completely processed. In this context ε is the
allowable tolerance of an estimated execution time
comp_time. An internal event occurs if a currently
executed activity a ends within the time interval ti(s).
In analogy to the behavior of a Parallel atomic DEVS
at first λ(s) is carried out and all output events y∈Y at
the output port are calculated and at second the
internal transition function δint(s) is carried out, which
calculates the next state s'∈S. After that the new
activity a'∈A and the new time interval ti(s') are
calculated. If external events x∈X occur at the input
port at first the currently executed activity a is aborted
and at second the next state s'∈S is calculated by the
external transition function δext(s,e,x). Moreover, the
new activity a'∈A is calculated by the activity
mapping function ψ(s') and the new time interval ti(s')
is determined.

The specification of coupled DEVS is the same as for
Parallel DEVS. In the simulation phase a simulator is
assigned to any atomic RT-DEVS and a coordinator
to any coupled DEVS as execution controller. But this
time the time advance during simulation is based on
real-time and not on a logical time. Especially this fact
and the described differences in the system
specification and the dynamic behavior lead to
simulator- and coordinator algorithms that differ
strongly from Parallel DEVS.

4 Analyzing the suitability of both DEVS
formalisms concerning the RCP concept

Following Abel [1] the most important aspects of the
Rapid Control Prototyping (RCP) approach are the
continuous and model-based development of
applications using a compatible Tool-Chain. Within
the design phase any technical process is modeled in a
so called process model. On the basis of these process
models different control algorithms can be
implemented as control models and tested using
simulation. In the next step selected control models
should be transformed without manual re-
implementation to real control software. This code
transformation can be realized by an explicit code
generation for specific target platforms using specific
compilers or by an implicit code generation following
the Software in the Loop (SiL) concept using
appropriate process interfaces. In the SiL approach
development PCs or any common industrial PCs are
directly used as control hardware. A specific type of
SiL is the Simulation-based control approach by

[3, 4, 5]. Here, process models and selected control
models from the design phase are stepwise enhanced
by using the implicit code generation and finally they
are used as control software for the real process. On
the one hand this procedure increases the safety of the
entire system and on the other hand it reduces the
costs of development because of avoiding manual re-
implementations. Moreover, the integration of process
models into the control phase allows additional state
calculations, increases the quality of the control
application and it could reduce hardware costs by e.g.
using less sensors.

Fig. 3 shows schematically a comparison of the
general Simulation-based control (SBC) approach and
its implementation using the former introduced DEVS
formalisms.

Fig. 3 Comparison of the general Simulation-based
control (SBC) approach and its implementation with
DEVS formalisms

On the one hand Parallel DEVS fulfills all
requirements for simulation models in design phase,
whereas the requirements of control software in
operation phase are fulfilled by the RT-DEVS
approach. However, there is no way to successively
enhance PDEVS models from design phase to RT-
DEVS models for operation phase, because their
atomic system specifications and their simulation
algorithms strongly differ from each other.

further development

simulation model

control model

process model

control software

control model

process model

process interface

process

simulation model

based on

Parallel DEVS

specification &
simulators /
coordinators

control software

based on

process interface

process

RT-DEVS

specification &
simulators /
coordinators

?

SBC DEVS

5 Integration of PDEVS and RT-DEVS
to PDEVS-RCP

A useful approach to overcome the previously
discussed deficits is to integrate both DEVS
formalisms with the aim to fulfill the requirements of
the design and operation phase respectively. In the
following such integration is described by extending
the Parallel DEVS formalism. The extension is called
PDEVS-RCP. An atomic PDEVS-RCP system is
specified as follows:

PDEVS-RCPatomic = {X, S, Y, A, δext, δint, δcon λ, ta}

S, Y, δext, δint, δcon, ta are analog to atomic PDEVS

A set of executable activities

X = {Xmodel, Xclock} set of input events

 with Xmodel set of system specific input events

Xclock set of real-time values of an extern

 Real-Time Clock (RTC)

λ: S → Y × A combined output and activity

 mapping function

Thereby S, Y, δext, δint, δcon and ta are defined in
accordance with PDEVS. Following RT-DEVS, A
contains the set of executable activities. The set of
input events X consists on the one hand of system
specific input events Xmodel that correspond to the set X
of an atomic PDEVS or an RT-DEVS respectively and
on the other hand of real-time values Xclock. The latter
are generated by a real-time clock (RTC) that takes
influence on any PDEVS-RCP by external events. The
combined output and activity mapping function λ
defines analog PDEVS the generation of output events
y∈Y. In addition, this function defines similar to a
DEVS extension in [8] the state based mapping of
activities a∈A according to the activity mapping
function ψ of RT-DEVS specification. In contrast to
RT-DEVS there exists no special function for the
calculation of minimal and maximal execution times
of activities according to the time interval function ti
of RT-DEVS.

The dynamic behavior of an atomic PDEVS-RCP
under real-time conditions is shown in Fig. 4. The
execution of simultaneous external and internal events
using the confluent function δcon is not shown in figure
4, because it is identical to atomic PDEVS. However,
the real-time execution of an atomic PDEVS-RCP is
based on the following conditions.

• The state based minimal and maximal time
interval ti = [comp_time - ε, comp_time + ε]
of an activity a∈A has to be explicitly saved
within the system state as real-time values.
The update of ti has to be performed by the
transition functions δint, δext or by the
confluent function δcon.

• An external real-time clock (RTC)
component, implemented as an ordinary
atomic PDEVS, has to send the real-time
clock values as external events xclock∈Xclock to
any atomic PDEVS-RCP, which stores the
current real-time clock value as state value
using its external transition function δext. The
time interval between two xclock events has to
be smaller or equal to the smallest logical
time step min(ta(s)) of the whole model.
From this it follows that any logical time step
ta(s) till the next internal event of an atomic
PDEVS-RCP can be either 0 or ∞.

Fig. 4 Dynamic behavior of an atomic PDEVS-RCP3

The basic dynamic behavior of an atomic PDEVS-
RCP is the same as of ordinary atomic PDEVS.
Differences result from the introduced modeling
extensions. Every atomic PDEVS-RCP has an internal
state s∈S that is related to an activity a∈A. The
minimal and maximal execution time [ti min , timax] of
the currently running activity a are saved as real-time
values in the state s. The time advance function ta(s)
calculates the logical time step till the next internal
event according to the former described second
condition. If the internal event occurs, at first the
output function λ(s) is carried out. It generates on the
basis of the internal state s the output events y∈Y at
the output port, cancels the currently running activity
a and initializes the next activity a’. At second, the
internal transition function δint(s) is carried out. It
calculates on the basis of the internal state s the next
state s’ including the real-time values for the
execution time boundaries [ti min , timax] of the new
activity a’. At third the logical time step ta(s’) till the
next internal event is calculated.

External events are subdivided in events from system
specific DEVS systems xmodel∈Xmodel and events from
the real-time clock xclock∈Xclock. If external events x∈X
occur the external transition function δext(s,e,x) is
carried out. This function calculates on the basis of the
internal state s, the elapsed time e since the last event

3 The identifier ti(s) in Fig. 4 is not a time interval function. It is a
state vector [ti min, timax] , which contains the execution boundaries in
real time for the currently running activity a.

and all input events x the next state s’. In addition,
δext(s,e,x) checks on the basis of the real-time values
saved in the internal state s if any external event takes
place within the time interval [ti min , timax] .

• If external events occur outside the interval
[ti min , timax] the next internal state s’ is
computed including recalculated [ti min , timax]
state values. Moreover, the logical time
advance ta(s’) is calculated.

• If external events occur within the interval
[ti min , timax] the next internal state s’ is
computed. The next state s’ has to lead to
ta(s’)=0 and provokes immediately an
internal event without a further logical time
step.

The integration of real-time clock values by means of
external events and the storage of a real-time interval
ti in the system state are central elements of PDEVS-
RCP. Atomic PDEVS-RCP systems can be integrated
in ordinary coupled DEVS as defined in the PDEVS
formalism. Moreover, the execution algorithms of a
simulator, coordinator and root-coordinator defined in

the PDEVS formalism remain unchanged. That’s why
any model including atomic PDEVS-RCP systems can
be executed using the ordinary PDEVS algorithms
within the design phase and the operation phase.

6 Example: A Robot control with DEVS

This section discusses an example of a robot control
on the basis of the Simulation-based control approach
using the PDEVS-RCP extension. Fig. 5 shows the
control structure of a robot taken from [9], which is
able to perform asynchronous point to point (PTP)
movements and to stop at any point in the workspace
for a specified time period.

The coupled DEVS RobotControl consists of two real-
time depending atomic PDEVS-RCP systems called
Control and PInterface as well as two atomic PDEVS
systems called Process and RTC. The component
Control defines the real-time based control logic.
Process specifies a process model of the robot and
stores for example joint and gripper states. PInterface
defines an “implicit” process interface to the robot
controller that directly accesses the robot actors and

 Fig. 5 Control structure of a robot on the basis of the Simulation-based control approach using PDEVS-RCP

sensors. RTC acts as an interface to the real-time clock
and sends real-time values as output events
periodically.

In the following, the operation of the control structure
pictured in figure 5 is briefly described. Each
subfigure pictures the logical time (simulation time) t
and the event list of the topmost coupled DEVS
RobotControl. For this example we assume that an
internal event occurs for Control every 30 ± 0,2 s.
Furthermore, an internal event occurs for PInterface
every 1 ± 0,1 s, because control commands have to be
sent to the execution controller of the robot and sensor
values have to be received within function λ(s)
periodically. RTC schedules its next internal event
periodically with the logical time step ta=1 and sends
the real-time treal as event to the real-time depending
components Control and PInterface by λ(s). Fig. 5 (a)
shows the event list of the coordinator at the
simulation time t=3 and at the real-time treal=29.7.
The next internal event occurs for RTC at the logical
time t=4. According to Fig 5 (b) the simulation time is
set to t=4 and RTC sends treal=29.7 as event to
Control and PInterface. Both components check using
their external transition function δext whether the
transmitted real-time is within the time interval ti or
not. In fact treal is not within ti and that’s why for both
components ta=∞ is set and no internal event has been
scheduled. RTC schedules its next internal event with
ta=1. Hereupon, the next internal event occurs for
RTC at logical time t=5. According to Fig 5 (c) the
simulation time is set to t=5 and RTC sends treal=30 as
event to Control and PInterface. Both components
check again using their external transition function δext
if treal=30 is inside their time interval ti - in fact this is
the case. Thus, Control and PInterface schedule their
next internal events with ta=0 at t=5 whereas RTC
schedules its next internal event with ta=1 at t=6.
Following Fig. 5 (d) an internal event take place for
Control and PInterface at simulation time t=5. At first
the λ-function of Control and PInterface is carried out
and the output events (yC) and (yPI) are sent to
Process. In addition, PInterface communicates with
the robot execution controller by sending xRobo and
receiving yRobo. At second both components carry out
their internal transition function δint at t=5 and
calculate amongst others their new time interval ti. At
third PInterface and Control calculate their next
internal event time advance with ta=∞. Concurrent
Process receives its external events (yC) and (yPI) at
simulation time t=5 and calculates using the external
transition function δext its next internal state.
Moreover, Process schedules with ta=0 immediately
its next internal event that has to be executed at
simulation time t=5.

The control structure has been developed according to
the RCP-concept successively. During this process the
components Control and Process have been starting
points for the control logic development. The
components RTC and PInterface have been

implemented afterwards. During the design phase the
behavior of the real robot has been simulated and
visualized by a separate component using the interface
system PInterface. A detailed discussion of the robot
application and other PDEVS-RCP examples can be
found in [9].

7 Summary

Our research shows that the integration of Parallel
DEVS and Real-Time DEVS to PDEVS-RCP based
on the Simulation-based control approach fulfils the
requirements of the RCP-concept. The PDEVS-RCP
specification allows a successive development of
simulation models beginning in the design phase till
the operation phase. In contrast to RT-DEVS models
PDEVS-RCP models do not require any specific
simulation algorithms and as a result they can be
simulated with ordinary PDEVS simulator and
coordinator implementations. In addition, this opens
the opportunity to use special run-time optimized
execution algorithms based on the model-flattening
approach published in [6].

The introduced PDEVS-RCP approach has been
prototypically implemented in the scientific
computational environment Matlab and has been
tested with several laboratory applications. Key issues
of further research are the investigation of PDEVS-
RCP in the field of cooperative robot controls and its
combination with the meta-modeling approach for re-
configurable controls published in [5].

8 References

[1] Abel, D.; Bollig, A.: Rapid Control
Prototyping, Methoden und Anwendungen.
Berlin, Heidelberg: Springer Verlag, 2007

[2] Cho, S.M.; Kim, T.G.: Real time simulation
framework for RT-DEVS models. Transac-
tions of the Society for Computer Simulation
Int., San Diego/CA, USA, 18(2001)4, 203 -
215

[3] Kremp, M.; Pawletta, T.; Colquhoun, G.J.:
Simulation-Model-Based Process Control of
Discontinuous Production Processes. In:
Advances in Manufacturing Technology –
XX, 4th Int. Conf. on Manufacturing
Research (ICMR06), Liverpool, UK, Sept.
05-07, 2006, 49-54++

[4] Maletzki, M.; Pawletta, T.; Pawletta, S.;
Dünow, P.; Lampe, B.: Simulations-
modellbasiertes Rapid Prototyping von
komplexen Robotersteuerungen. atp-Automa-
tisierungstechnische Praxis, Oldenbourg
Verlag, München, 50(2008)8, 54 - 60

[5] Pawletta, T.; Pawletta, S.; Maletzki, G.:
Integrated Modeling, Simulation and
Operation of High Flexible Discrete Event
Controls. In: Proc. of Mathematical
Modelling MATHMOD' 09, Argesim Report
No. 35, Ed. I. Troch and F. Breitenecker,
Vienna, Austria, February 11-13, 2009, 13
pages

[6] Zeigler, B.P.; Prähofer, H.; Kim, T. G.:
Theorie of Modeling and Simulation Second
Edition: Integrating Discrete Event and
Continuous Complex Dynamic Systems. 2.
Aufl. San Diego, San Francisco, New York,
Boston, London, Sydney: Academic Press
2000

[7] Chow, A.C.-H.: ParallelDEVS: A parallel,
hierarchical, modular modeling formalism
and its distributed simulator. Transactions of
the Society for Computer Simulation
International, San Diego/CA, USA,
13(1996)2, 55 - 67

[8] Zeigler, B.P.; Kim, J.: Extending the DEVS-
Scheme knowledge-based simulation
environment for real time event-based
control. IEEE Trans. on Robotics and
Automation, 9(3), 1993, 351-356

[9] Schwatinski, T.: DEVS-based Control of
flexible Production and Robot Systems.
Wismar, University Wismar, Research Group
CEA, Master-Thesis, January 2010

