
EXPLOITING STRUCTURAL DYNAMISM IN
FUNCTIONAL HYBRID MODELLING FOR

SIMULATION OF IDEAL DIODES
Henrik Nilsson1, George Giorgidze1

1School of Computer Science, University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB

United Kingdom

nhn@cs.nott.ac.uk(Henrik Nilsson)

Abstract

Current main-stream non-casual modelling and simulation languages, like Mod-
elica, are designed and implemented on the assumption that model causality re-
mains fixed during simulation. This simplifies the language design and facilitates
the generation of efficient simulation code. In particular,simulation code can be
generated once and for all, at compile time. However, for hybrid models, the as-
sumption of fixed causality is very limiting: there are many examples, including
simple ones, that cannot be simulated. A half-wave rectifierwith an ideal diode
and an in-line inductor is one such example. Functional Hybrid Modelling is a new
approach to non-causal modelling where models are first-class entities and struc-
tural dynamism is supported by switching among model configurations. Fixed
causality is thusnot assumed. Continuous simulation remains efficient thanks to
just-in-time generation of simulation code at structural changes and the use of
a standard, industrial-strength solver. Re-generation ofcode at each structural
change of course incurs an overhead, but this is typically modest. In this paper
we demonstrate how Functional Hybrid Modelling makes it possible to simulate
electrical circuits with ideal diodes in a straightforwardmanner. We consider both
a half-wave rectifier and a significantly more challenging full-wave rectifier.

Keywords: Non-causal Modelling and Simulation, Structurally Dynamic Systems, Just-
In-Time Compilation

Presenting Author’s Biography

Dr. Henrik Nilsson is a Lecturer at the School of Computer Science,
University of Nottingham. He holds a PhD in Computer Sciencefrom
Linköping University, Sweden. Prior to taking up his current post, he held
a position as Associate Research Scientist at the Department of Computer
Science, Yale University. His research interests include functional pro-
gramming and programming language design and implementation, specif-
ically domain-specific ones. At present, his research is focused on non-
causal modelling languages supporting structurally dynamic systems.

i

R2

D

G

uAC

uD

C

R1L

(a) Circuit

i

R2

D

G

uAC

uD

C

R1L

(b) Circuit modelled using an ideal diode model

Fig. 1 Half-wave rectifier with in-line inductor.

1 Introduction

The support offered by current, main-stream, non-
casual modelling and simulation languages like Mod-
elica [1] for handling structurally dynamic models, or
structural dynamism, is quite limited [2, 3, 4]. One rea-
son is that this kind of language tends to be designed
and implemented on the assumption that the causality
of the model does not change during simulation. This
assumption simplifies the language design and facili-
tates the generation of efficient simulation code. In par-
ticular, the causality can be analysed and code can be
generated once and for all, at compile time, paving the
way for using a fast, explicit solver for simulation.

However, from a modelling perspective, the assumption
of fixed causality is quite restricting: there are many ex-
amples, even of quite simple systems, where a straight-
forward, non-causal model violates this assumption.
One such example is that of a breaking pendulum as dis-
cussed in the Modelica tutorial [5, pp. 31–33], where a
causal reformulation is suggested as a workaround. An-
other example, from Cellier’s and Kofman’s bookCon-
tinuous System Simulation[6, pp. 439-443], is that of a
half-wave rectifier with an in-line inductor as illustrated
in Fig. 1(a).

Consider modelling this circuit using an ideal model of
the diode; i.e., a switch controlled by the polarity of the
voltage and current through it, as illustrated in Fig. 1(b).
This can bemodelledeasily enough in languages like
Modelica. However, any attempt tosimulatethis model
assuming fixed causality, as current main-stream non-
causal language implementations tend to, will fail as
the causalised model will lead to a division by zero
when the switch is open: there simply is no one fixed-
causality model that is valid both when the switch is
open and closed.

One common solution to this problem is to avoid the
ideal model and opt for a slightly more realisticleaky
diode model instead. This works, but often leads to very

stiff equations. Thus, if an ideal model would suffice for
the purpose at hand, that would many times be prefer-
able [6, p. 443].

Another solution in this particular case, as the structural
change actually is not very drastic (the number of equa-
tions and variables stays the same), would be to avoid
causalising the equations and use an implicit solver for
simulation. However, explicit solvers are more efficient,
and the applicability of this approach is limited as struc-
tural changes in general can be rather more profound
(even the simple aforementioned breaking pendulum
model is an example of this).

In this paper, we explore an alternative approach to
modelling ideal diodes offered bynot assuming fixed
causality. This means that drastic changes to the config-
uration of a model, such as changing the number equa-
tions or variables, become possible.

The setting for our work is Functional Hybrid Mod-
elling (FHM) [7, 8, 9], a novel approach to purely
declarative, non-causal modelling where models are
first class entities and support is provided for mod-
elling highly structurally dynamic systems. Obviating
the need to assume fixed causality and support for
highly dynamic systems are both achieved by gener-
ating new equations whenever switching causes the
model configuration, ormode, to change. Generation of
equations on demand, as new modes are entered, also
means that systems with arbitrarily many modes can be
handled. For example, the fact that the number of pos-
sible modes of a circuit involving ideal diodes grows
exponentially with the number of diodes is notin itself
a show-stopper in this setting. Of course, there may be
other difficulties, such as state transfer and initialisa-
tion. We discuss our current approach in section 2.2,
but we acknowledge that these problem in general are
hard.

Continuous simulation remains efficient in our present
FHM implementation, calledHydra, thanks to just-in-
time (JIT) compilation of the equations to native code at
each change of the configuration (using the Low Level
Virtual Machine (LLVM) [10]) and the use of a stan-
dard, industrial-strength solver (the SUNDIALS suite
http://www.llnl.gov/casc/sundials/).
Re-generation of equations and compilation of them
into native code at the point of each structural change
of course incurs an overhead, but this overhead
is usually modest [9]. Hydra is implemented as a
domain-specific language embedded in the functional
language Haskell. At present, Hydra is very much
work in progress. The latest version of the source code
can be obtained via the second author’s web page
(http://www.cs.nott.ac.uk/˜ggg).

The flexibility of FHM makes it possible to simulate
electrical circuits with ideal diodes in a very straightfor-
ward manner. We demonstrate this in the following us-
ing Hydra, our present FHM implementation. We con-
sider both the half-wave rectifier from Fig. 1(b) and a
significantly more challenging full-wave rectifier.

Other structurally dynamic models that we have sim-

ulated successfully, using a non-causal model formu-
lation, include the breaking pendulum and a switched
engine model due to Zimmer [4]. The point of the latter
is to replace a detailed engine model by a simpler one
some time after the simulation start for efficiency pur-
poses. Neither of these examples can be simulated if the
causality is assumed to be fixed.

In a wider perspective, the key ideas put forward in this
paper are not tied to FHM, but should be applicable to
other equation-based modelling languages offering sup-
port for (highly) structurally dynamic systems, such as
Sol [4] and, as long as the structural modes are not too
many, MOSILAB [11]. This paper can thus be seen as
a case study illustrating some benefits of a more flexi-
ble support for structural dynamism in future versions
of equation-based languages like Modelica in general.

Moreover, many of the ideas could also be applicable in
acausalsetting. The conceptual design of FHM, in par-
ticular the first-class treatment of models and the sup-
port for structural dynamism, originated in the work on
Functional Reactive Programming (FRP) [12, 13, 14].
From a modelling perspective, FRP can be viewed as a
causal (or block-oriented) modelling language, distin-
guished by its support for structural dynamism. While
the numerical sophistication of current FRP implemen-
tations typically is not adequate for serious simulation
work, the conceptual similarity between FHM and FRP
suggests that the implementation techniques used for
FHM also could be used for supporting structural dy-
namism in a setting of causal modelling and simula-
tion, or, indeed, as a basis for combined causal and non-
causal languages.

The rest of this paper is organised as follows. Section 2
provides some further background on FHM and Hydra.
However, it is not intended as an in-depth introduction:
for that, the interested reader is referred to earlier pa-
pers on FHM [7, 8, 9]. We then consider modelling and
simulation of the half-wave rectifier in section 3 and
the full-wave rectifier in section 4. Related work is dis-
cussed in section 5. Finally, section 6 considers future
work and provides some concluding remarks.

2 Functional Hybrid Modelling

At the heart of Functional Hybrid Modelling (FHM) is
the notion of aSignal Relation. A signal relation is sim-
ply an encapsulated (fragment of a) system of Differen-
tial Algebraic Equations (DAE): it has an interface, con-
sisting of a number of variables, and the encapsulated
equations expresses relations among these variables (or
equivalently, constraints on them). As we are concerned
with DAEs, the variables will in general stand for time-
varying entities, orsignals. Hence signal relation.

A signal relation is thus in many ways like aclass
in object-oriented, non-causal languages like Model-
ica. However, unlike an object-oriented modelling lan-
guage, there is no inheritance. Reuse is instead achieved
by defining new signal relations in terms of others,
much like a procedure can be defined in terms of other
procedures by calling them. Furthermore, signal rela-

i

R1 R2

C L

G

uL

i2

uR2

uC

i1

R1u

uAC

Fig. 2 A simple electrical circuit.

tions arefirst-class entitiesin FHM. This means they
can be manipulated programmatically (past as argu-
ments to functions, returned as results of functions,
etc.), just like any other type of value such as integers or
Booleans. This is sometimes referred to ashigher-order
modelling[15] (Here,higher-orderis used analogously
to the use in functional programming, where a function
operating on functions is referred to as a higher-order
function. Not to be confused with other meanings of
higher-order.)

Higher-order modelling, with just a minimum of addi-
tional language constructs, lends itself very well toex-
pressinghighly structurally dynamic systems: all that
is needed is the means to allow new model fragments
to be computed not only before simulation starts, but
alsoduring simulation, at events, and to be integrated
into the simulated system at those points. This is the
approach taken by FHM. Indeed, the ease by which
higher-order modelling can express structural dynam-
ics was partly what motivated our research into FHM in
the first place [7].

2.1 A Simple Electrical Circuit in Hydra

To illustrate the basic ideas of FHM, we model the elec-
trical circuit in Fig. 2 (adapted from [5]) in Hydra. To
avoid introducing too many aspects at once, our initial
example has an entirely static structure; we return to
structural dynamism in the next subsection. As Hydra is
work in progress, and to prevent minor syntactic details
from getting in the way of the presentation, we adopt a
somewhat idealised Hydra syntax in the following.

We start by modelling a generic electrical component
with two pins, capturing the aspects that are common to
all such components through two equations:

twoPin :: SR (Pin ,Pin ,Voltage)
twoPin = sigrel (p,n, u) where

p.v − n.v = u
p.i + n.i = 0

The symbol:: is pronounced “has type” and is used to
declare the type of defined entities.SR is the type con-
structor for signal relations. The signal relationtwoPin
is thus notionally a relation between three signals: two
of typePin and one of typeVoltage. However, the type
Pin is a record type describing an electrical connection.
It has fieldsv for voltage andi for current. The name

Pin is perhaps a bit misleading since it just represents a
pair of physical quantities,not a physical “pin compo-
nent”. The signal relationtwoPin is thus actually a re-
lation amongfivephysical quantities: the potentialp.v
at the positive pinp, the currentp.i into the positive
pin p, the potentialn.v at the negative pinn, the cur-
rentn.i into the negative pinn, and the voltageu across
the component.

Specific electrical two-pin components can now be de-
fined as extensions of thetwoPin model. Unlike object-
oriented modelling languages like Modelica, this is not
accomplished through a class-based inheritance mech-
anism. FHM instead takes advantage of the first-class
status of signal relations and uses a more direct ap-
proach based onsignal relation application, denoted by
⋄. The idea is simple: the equations describing the ap-
plied signal relation is simply copied into the context
of the application, substituting the expressions the rela-
tion was applied to for its formal arguments (renaming
as needed to avoid name clashes). Additional equations
for describing component-specific behaviour are then
added. For example, a resistor, an inductor, and a ca-
pacitor can be defined as follows:

resistor :: Resistance → SR (Pin ,Pin)
resistor r = sigrel (p,n) where

twoPin ⋄ (p,n, u)
r ∗ p.i = u

inductor :: Inductance → SR (Pin ,Pin)
inductor l = sigrel (p,n) where

twoPin ⋄ (p,n, u)
l ∗ der p.i = u

capacitor :: Capacitance → SR (Pin ,Pin)
capacitor c = sigrel (p,n) where

twoPin ⋄ (p,n, u)
c ∗ der u = p.i

Note that the above definitions exploit the first-class sta-
tus of signal relations in another way as well: in order
to parametrise the component models on the component
values, the components are modelled byfunctionsthat
return signal relations when applied to some specific
component value. For example,resistor is a function
that when applied to a specific resistance will return a
signal relation defined by three equations: two that orig-
inates fromtwoPin , and one which is Ohm’s law in-
stantiated with a specific value of the resistance. Since
the parameters (e.g.r of resistor) are normal func-
tion arguments,notvariables denoting signals (likeu or
p.i), their values remain unchanged throughout the life-
time of the returned relations. (In Modelica terms, they
areparameter-variables.) As signal relations are first
class entities, signal relations can even be parametrised
on other signal relations in the same way.

To assemble these components into the full model, a
Modelica-inspiredconnect-notation is used as a con-
venient abbreviation for connection equations. In FHM,
this is just syntactic sugar that is expanded to basic
equations: equality constraints for connected potential
quantities and a sum-to-zero equation for connected
flow quantities. In the following,connect is only ap-

plied toPin records, where the voltage field is declared
as a potential quantity whereas the current field is de-
clared as a flow quantity.

We assume that a voltage source modelvSourceAC
and a ground modelground are available in addition to
the component models defined above. We are only in-
terested in the total current through the circuit. This is
specified in a monitor construct. As there are no model
inputs or outputs, the model becomes anullary signal
relation:

simpleCircuit :: SR ()
simpleCircuit = sigrel () where

resistor 1000 ⋄ (r1p, r1n)
resistor 2200 ⋄ (r2p, r2n)
capacitor 0.00047 ⋄ (cp, cn)
inductor 0.01 ⋄ (lp, ln)
vSourceAC 12 ⋄ (acp, acn)
ground ⋄ gp
connect acp r1p r2p
connect r1n cp
connect r2n lp
connect acn cn ln gp
monitor r1p.i + r2p.i as "i"

There is no need to declare variables liker1p, r1n: their
types are inferred. Note the signal relation expressions
like resistor 1000 to the left of the signal relation ap-
plication operators⋄.

As an illustration of signal relation application, let us
expandresistor 1000⋄ (r1p, r1n) using the definitions
of twoPin and resistor . The following are the three
resulting equations, whereu1 is a fresh name to avoid
the name clash that would have ensued had the original
nameu been retained throughout:

r1p.n − r1n .v = u1
r1p.i + r1n.i = 0
1000 ∗ r1p.i = u1

2.2 Dynamic Structure

To express structurally dynamic systems, FHM em-
ploys a switch construct that allows equations to be
brought into and removed from a model as needed.
Again, for illustrative purposes, we use an idealised
syntax in the following as, at present, only the core
switching primitive is implemented in Hydra, and us-
ing it directly is a little involved:

initially;when condition1 ⇒

equations1

when condition2 ⇒

equations
2

The idea here is that only the equations from exactly
one branch, what follows a⇒, are active at any one
point in time. The equations of a branch are switched in
whenever the condition guarding the branchbecomes
true, at which point the equations from the branch that
was active previously are switched out. The special
keywordinitially designates the branch that initially

should be active. There can be any number of branches,
exactly one of which must be designated as the initially
active one, and each branch can be guarded by any num-
ber of conditions.

Whenever a switch occurs, continuous simulation stops,
a new system of equations is generated, this is turned
into simulation code, and continuous simulation can
then resume. However, to resume simulation, the new
system of equations must be properly initialised. This
is a hard problem in general, and Hydra does not at-
tempt to provide any generic, automatic solution. In-
stead, Hydra provides a couple of simple language con-
structs,initialisation andreinitialisation equations, that
allow the modeller to explicitly express the modelling
intent. While likely overly simplistic, these constructs
have sufficed for our purposes thus far. We leave im-
provements as future work.

The semantics of initialisation and reinitialisation equa-
tions is as follows. An initialisation equation is only ac-
tive at the moment the signal relation containing it is
first instantiated. A reinitialisation equations becomes
active whenever an already active instance of the sig-
nal relation containing it needs to be reactivated after
a switch. Reinitialisation equations are typically used
to express continuity assumptions. For example, the
charge of a capacitor should persist across a switch, a
fact that can be expressed as a continuity assumption on
the voltage across it. Thus we get the following refined
model of a capacitor that behaves as desired at switches
and additionally can can be initialised:

iCapacitor :: Voltage → Capacitance
→ SR (Pin ,Pin)

iCapacitor u0 c = sigrel (p,n) where
init u = u0
reinit u = pre u
twoPin ⋄ (p,n, u)
c ∗ der u = p.i

The operatorpre is only defined in the context of
reinitialisation equations. Semantically, it stands for the
limit of a signal as time approaches the current point in
time from the left. Thus an equation likeu = pre u is
genuinely a statement of continuity (assuming continu-
ity to the right).

3 Simulation of the Half-Wave Rectifier
We are now in a position to define an ideal diode model
in Hydra. Let us define a varianticDiode that is initially
closed:

icDiode :: SR (Pin ,Pin)
icDiode = sigrel (p,n) where

twoPin ⋄ (p,n, u)
initially;when p.v − p.n > 0 ⇒

u = 0
when p.i < 0 ⇒

p.i = 0

Using the ideal diode modelicDiode , a model of the
circuit in Fig. 1(a) can be constructed as follows:

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0 1 2 3 4 5

L.i [A]

(a) Current through L

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 1 2 3 4 5

C.v [V]

(b) Voltage across C

Fig. 3 Simulation results for the half-wave rectifier with
in-line inductor.

halfWaveRectifier :: SR ()
halfWaveRectifier = sigrel () where

iInductor 0.0 1.0 ⋄ (lp, ln)
resistor 1.0 ⋄ (r1p, r1n)
resistor 1.0 ⋄ (r2p, r2n)
icDiode ⋄ (dp, dn)
iCapacitor 0.0 1.0 ⋄ (cp, cn)
vSourceAC 1.0 1.0 ⋄ (acp, acn)
ground ⋄ gp

connect acp lp
connect ln r1n
connect r1n dp
connect dn cp r2p
connect acn cn r2n gp

monitor lp.i as "L.i"
monitor cp.v as "C.v"
monitor ci .v as "C.i"

This model thus corresponds to Fig. 1(b).

The simulation of this model turned out to be entirely
straightforward. Fig. 3 shows the plots of the current
through the inductor and the voltage across the capaci-
tor for the first five seconds.

i

D1

R

G

uAC uR

D2 D3

D4uD1

uD2

uD4

uD3

C uC

(a) Circuit

i

D1

R

G

uAC uR

D2 D3

D4uD1

uD2

uD4

uD3

C uC

(b) Circuit modelled using an ideal diode model

Fig. 4 Full-wave rectifier

4 Simulation of the Full-Wave Rectifier

Simulation of the full-wave rectifier in Fig. 4(a) using
ideal diodes as per Fig. 4(b) is much more challenging
than simulating the half-wave rectifier. A key difficulty
is that the circuit breaks down into two isolated halves
when all diodes are open. The lack of a ground refer-
ence for the left part means the system becomesunder-
determinedand it cannot be simulated.

However, a more detailed analysis reveals that this is as
it should be as the model isincomplete: for the model
to make sense, there is further tacit modelling knowl-
edge that needs to be stated explicitly in the form of
additional equations. If the diodes are truly ideal, this
means that they are alsoidentical, which in turn im-
plies that the voltage drops over them are always going
to be pairwise equal, even when they are open. That this
must be so can be realised by replacing the diodes with
high-impedance resistors in the open mode, each with
the sameresistanceR, and then analysing the voltage
drops across them asR is taken towards infinity.

The model of an ideal diode therefore needs to be re-
fined to make the voltage drop across it part of its inter-
face. For example, for the initially closed diode model:

icDiode :: SR (Pin ,Pin ,Voltage)
icDiode = sigrel (p,n, u) where

twoPin ⋄ (p,n, u)
initially;when p.v − p.n > 0 ⇒

u = 0
when p.i < 0 ⇒

p.i = 0

Once this has been done, the model for the full circuit
can be described along the lines we saw in the previ-
ous section, except that two extra equations, stating the
pairwise equality of the voltages across the diodes, are
needed. That is:

uD1 = uD3 (1)

uD2 = uD4 (2)

However, adding Eq. (1) and Eq. (2) results in ad-
ditional complications for simulation as the system
now seemingly becomesover-determinedwhen some
diodes are closed. It turns out, though, that the sys-
tem is onlytrivially over-determined in that the extra
equations are mathematically equivalent to other equa-
tions in the system. This is easy to see: when a diode
is closed, there is an equation provided by the model of
the diode itself that states that the voltage across it is 0.
If, for example,D1 andD3 are closed, we have:

uD1 = 0 (3)

uD3 = 0 (4)

But, additionally,uD1 anduD2 are related by Eq. (1)
that is provided by model of the overall circuit.

In this case, a simple symbolic simplification pass suf-
fice to eliminate the redundant equations in the modes
where the diodes are pairwise closed. This simplifica-
tion essentially amounts to constant propagation: using
(3) and (4), (1) can be simplified to the trivially satis-
fied equation0 = 0 that then can be eliminated. After
this the model can be simulated without further issues.
Note that dynamic generation of equations followed by
symbolic processing, as provided by FHM, is crucial to
this approach to simulating ideal diodes. (At the time of
writing, the symbolic simplification has not been fully
integrated into the main branch of the Hydra implemen-
tation, meaning that some manual tweaking is still nec-
essary.)

Additionally, it should be pointed out that the switch
construct provides a bit of “inertia” in that the changes
induced by an instance of a switch only concern equa-
tions originating from that switch instance: all other
equations remain as they were. Thus, even though, in
the case of ideal diodes, a circuit withn diodes has
up to 2n distinct structural configurations or modes, it
is always entirely clear which mode to move to after
a switch; there is no need to search among the up to
2n possibilities for a consistent successor mode. As to
reinitialisation after switches, static continuity assump-
tions through the mechanism ofreinit equations suf-
ficed in this case.

As a result, we have obtained a model of an ideal full-
wave rectifier that is constructed modularly from in-
dividual, reusable components. The proper behaviour
emerges from simply assembling the components, with
just some minor additional guidance from the modeller
in the form of a couple of extra equations. There is no

need for any heavyweight, auxiliary mechanisms, such
as an explicit finite state machine, to control how the
model moves between structural configurations.

5 Related Work

Sol is a Modelica-like language [16, 4, 17]. It intro-
duces language constructs that enable the description
of systems where objects are dynamically created and
deleted, thus aiming at supporting modelling of highly
structurally dynamic systems. Sol is capable of han-
dling a range of structurally dynamic models, includ-
ing the ideal half-wave rectifier with an in-line inductor
[17]. However, the published work on Sol thus far does
not consider any full-wave rectifier. The Sol research
emphasis has been on the design of the language itself,
along with support for incremental dynamic recausali-
sation and dynamic handling of structural singularities.
An interpreter is used for simulation. The work on Sol
is thus complementary to ours: techniques for dynamic
compilation would be of interest in the context of Sol
to enable it to target high-end simulation tasks; con-
versely, algorithms for incremental recausalisation is of
interest to us to minimise the amount of work needed to
regenerate simulation code after structural changes.

MOSILAB is an extension of the Modelica language
that supports the description of structural changes us-
ing object-oriented statecharts [11]. This enables mod-
elling of structurally dynamic systems. It is a compiled
implementation. However, the statechart approach im-
plies that all structural modes must be explicitly speci-
fied in advance, meaning that MOSILAB does not sup-
port highly structurally dynamic systems. Even so, if
the number of possible configurations is large, tech-
niques like those we have investigated here might be
of interest also in the implementation of MOSILAB.

The Modelling Kernel Language (MKL) [18, 15] is in-
tended to be a core language, with a formally defined
semantics, for non-causal modelling languages such as
Modelica. MKL takes a functional approach to non-
causal modelling, where both functions and non-causal
models are first-class entities. This enables higher-
order, non-causal modelling. There are thus many sim-
ilarities between MKL and FHM, leading to a similar
style of modelling in both settings. Thus far, the work
on MKL has not specifically considered support for
structural dynamism. However, if one wanted to do this,
the implementation techniques discussed in this paper
should be of interest.

6 Future Work and Concluding Remarks

This paper has demonstrated how the structural dy-
namism available in FHM can be exploited to simulate
ideal diodes in a straightforward manner. Both a half-
wave rectifier with an in-line inductor and a full-wave
rectifier were considered as test cases. To make the lat-
ter work, the diode model had to be somewhat refined to
make the consequences of the assumption of ideal and
thus identical diodes manifest. However, we believe this
is natural and reasonable: key modelling knowledge

should always be expressed explicitly. Thus, in both
cases, the models are essentially completely modular,
constructed from individual, reusable components and
with a behaviour that emerges from the way they are as-
sembled, with only minor additional guidance from the
modeller.

The adopted modelling approach did lead to a struc-
turally dynamic system of equations that in specific
modes was formally over-determined. But, as the ex-
tra equations essentially were copies of other equations
in the model, these redundant equations could be elim-
inated by symbolic simplification pass, a pass that is
useful in any case, for ensuring that the generated code
is as efficient as possible, and possibly for dealing with
other problems related to over-determined systems of
equations.

This said, it should be emphasised that what we have
presented is a preliminary investigation. Specifically:

• Our FHM implementation Hydra is currently be-
ing developed. While what we have described in
this paper has been tested and does work, a lot of
work remains to provide a palatable surface syn-
tax for Hydra and to properly integrate the various
techniques we have developed into a whole.

• The symbolic elimination of redundant equations
is somewhat opaque as exactly what kind of re-
dundant equations can be eliminated is not obvi-
ous. Ideally an exact characterisation of what kind
of redundant equations are going to be eliminated
should be developed. Maybe additional language
constructs should be introduced to make it mani-
fest what equations could become redundant.

• Proper, pairwise switching of the diodes in the
full-wave rectifier is currently predicated on the
quality of the simulation back-end: there is no
guaranteethat the diode pairs actually will switch
in synchrony, as they should under ideal circum-
stances, or that the configuration where all diodes
are closed, thus shorting the voltage source, will
not be entered. Language constructs that would
enable a modeller to explicitly express assump-
tions of discrete events occurring synchronously
could make models more robust. In effect, such
constructs would amount to equations expressing
temporalconstraints among switching conditions.

Acknowledgement
This work was supported by EPSRC grant
EP/D064554/1. The authors wish to thank the
anonymous referees for useful suggestions that helped
improve the paper.

7 References
[1] The Modelica Association.Modelica – A Uni-

fied Object-Oriented Language for Physical Sys-
tems Modeling: Language Specification Version
3.2, March 2010.

[2] Pieter J. Mosterman. An overview of hybrid simu-
lation phenomena and their support by simulation
packages. In Fritz W. Vaadrager and Jan H. van
Schuppen, editors,Hybrid Systems: Computation
and Control ’99, number 1569 in Lecture Notes in
Computer Science, pages 165–177, 1999.

[3] Günther Zauner, Daniel Leitner, and Felix Bre-
itenecker. Modelling structural-dynamics sys-
tems in Modelica/Dymola, Modelica/MOSILAB,
and AnyLogic. In Peter Fritzson, François Cel-
lier, and Christoph Nytsch-Geusen, editors,Pro-
ceedings of the 1st International Workshop on
Equation-Based Object-Oriented Languages and
Tools (EOOLT), number 24 in Linköping Elec-
tronic Conference Proceedings, pages 99–110,
Berlin, Germany, 2007. Linköping University
Electronic Press.

[4] Dirk Zimmer. Introducing Sol: A general method-
ology for equation-based modeling of variable-
structure systems. InProceedings of the 6th In-
ternational Modelica Conference, pages 47–56,
Bielefeld, Germany, 2008.

[5] The Modelica Association.Modelica – A Unified
Object-Oriented Language for Physical Systems
Modeling: Tutorial version 1.4, December 2000.

[6] François E. Cellier and Ernesto Kofman.Contin-
uous System Simulation. Springer-Verlag, 2006.

[7] Henrik Nilsson, John Peterson, and Paul Hudak.
Functional hybrid modeling. InProceedings of
PADL’03: 5th International Workshop on Prac-
tical Aspects of Declarative Languages, volume
2562 ofLecture Notes in Computer Science, pages
376–390, New Orleans, Lousiana, USA, January
2003. Springer-Verlag.

[8] Henrik Nilsson, John Peterson, and Paul Hu-
dak. Functional hybrid modeling from an object-
oriented perspective.Simulation News Europe,
17(2):29–38, September 2007.

[9] George Giorgidze and Henrik Nilsson. Higher-
order non-causal modelling and simulation of
structurally dynamic systems. InProceedings
of the 7th International Modelica Conference,
Linköping Electronic Conference Proceedings,
pages 208–218, Como, Italy, September 2009.
Linköping University Electronic Press.

[10] Chris Lattner. LLVM: An infrastructure for multi-
stage optimization. Master’s thesis, Computer
Science Dept., University of Illinois at Urbana-
Champaign, Urbana, IL, December 2002. See
http://llvm.org .

[11] Christoph Nytsch-Geusen, Thilo Ernst, André
Nordwig, Peter Schwarz, Peter Schneider,
Matthias Vetter, Christof Wittwer, Thierry
Nouidui, Andreas Holm, Jürgen Leopold, Ger-
hard Schmidt, Alexander Mattes, and Ulrich
Doll. MOSILAB: Development of a Modelica-
based generic simulation tool supporting model
structural dynamics. InProceedings of the
4th International Modelica Conference, pages
527–535, Hamburg, Germany, 2005.

[12] Conal Elliott and Paul Hudak. Functional reac-
tive animation. InProceedings of ICFP’97: Inter-
national Conference on Functional Programming,
pages 163–173, June 1997.

[13] Zhanyong Wan and Paul Hudak. Functional re-
active programming from first principles. In
Proceedings of PLDI’01: Symposium on Pro-
gramming Language Design and Implementation,
pages 242–252, June 2000.

[14] Henrik Nilsson, Antony Courtney, and John Pe-
terson. Functional reactive programming, con-
tinued. In Proceedings of the 2002 ACM SIG-
PLAN Haskell Workshop (Haskell’02), pages 51–
64, Pittsburgh, Pennsylvania, USA, October 2002.
ACM Press.

[15] David Broman and Peter Fritzson. Higher-order
acausal models. In Peter Fritzson, Fran cois Cel-
lier, and David Broman, editors,Proceedings of
the 2nd International Workshop on Equation-
Based Object-Oriented Languages and Tools
(EOOLT), number 29 in Linköping Electronic
Conference Proceedings, pages 59–69, Paphos,
Cyprus, 2008. Linköping University Electronic
Press.

[16] Dirk Zimmer. Enhancing Modelica towards vari-
able structure systems. In Peter Fritzson, François
Cellier, and Christoph Nytsch-Geusen, editors,
Proceedings of the 1st International Workshop
on Equation-Based Object-Oriented Languages
and Tools (EOOLT), number 24 in Linköping
Electronic Conference Proceedings, pages 61–
70, Berlin, Germany, 2007. Linköping University
Electronic Press.

[17] Dirk Zimmer. Equation-Based Modeling of
Variable-Structure Systems. PhD thesis, Swiss
Federal Institute of Technology, Zürich, 2010.

[18] David Broman. Flow Lambda Calculus for declar-
ative physical connection semantics. Technical
Reports in Computer and Information Science 1,
Linköping University Electronic Press, 2007.

