
AN APPROACH FOR COMBINED SIMULATION

BASED PARAMETER AND STRUCTURE

OPTIMIZATION USING EVOLUTIONARY

ALGORITHMS

Olaf Hagendorf
1
, Thorsten Pawletta

1
, Christina Deatcu

1
, Roland Larek

2

1
Hochschule Wismar, University of Applied Sciences: Technology, Business and Design

2
Foundation Institute of Materials Science, Bremen

olaf.hagendorf@hs-wismar.de (Olaf Hagendorf)

Abstract

Modeling and simulation with integrated parameter optimization is used

routinely to improve system performance. In this established technique model

structure is considered to be fixed as the relationships between model elements

are defined during model development. As model performance is optimized it

may be necessary to redesign the model structure. The redesign is normally

carried out manually.

Evolutionary Algorithms are a subtopic of Artificial Intelligence that are

involved in combinatorial optimization problems. These algorithms are based on

ideas inspired by biological evolution: reproduction and selection, mutation and

recombination. They often perform well for many problem types because they

do not make assumption about the problem specific search space.

The research reported in this paper details an approach providing optimization

through automatic reconfiguration of both: model structure and model

parameters. An evolutionary algorithm based optimization method is assisted by

model management using a meta-modeling method. It searches for an optimal

solution with repeated, combined model parameter and model structure changes

resulting in a combined parameter and structure optimized model. Therefore the

model management provides algorithms to join an evolutionary algorithm with

model generation and simulation.

Keywords: DEVS, Structure Optimization, Evolutionary Algorithm, Parallel Computing.

Presenting Author’s biography

Olaf Hagendorf studied electrical engineering with the specialization

computer engineering at Universities Wismar and Rostock. After finishing his

study in 1997 he set up a company, among other specialized in automation

system and machine control development for the photofinishing industries.

His company dealt with orders mainly in Middle and Northern Europe.

Parallel to his business he started with a PhD project at Liverpool John

Moores University and successfully finished it at 2009. Currently he is a

research assistant at University Wismar.

1 Introduction

Modeling and simulation with integrated optimization

is a well established technique in engineering

applications. Such techniques are used for system

design, real time planning and to control production

systems. With increasingly complex, flexible

production systems the requirements for modeling and

simulation tools are growing. Existing applications

using simulation based optimization are restricted to

parameter optimizations. The user has to change

model structure manually and repeat optimizations

until a suitable solution is found. With increasing

production system flexibility the number of possible

structure variants increases and the potential benefit of

automatic model structure optimization becomes

significant.

The focus of this paper is the description of a

methodology for a combined parameter and structure

optimization for modular, hierarchical discrete event

systems. In contrast to current modeling and

simulation environments with integrated optimization

the model structure is variable and thus it is open to

optimization as well. The variations of model structure

and model parameter values are controlled by a super

ordinate optimization module. To support the

optimization method appropriate modeling, model

management/generation and simulation methods are

necessary.

As a basis for model management and generation the

System Entity Structure/Model Base (SES/MB)

formalism, introduced by Rozenblit, Zeigler et al [7]

[11] [12], is employed. The SES formalism is a

generic, knowledge base framework consisting of a

tree like entity structure and a model base. With its

features the framework is able to define a set of

modular, hierarchical models and to generate specific

model structures. The modeling and simulation

method is based on the Discrete Event System

Specification (DEVS) formalism introduced by

Zeigler [11] and some of its extensions [1], [3], [5]

and [10].

Section 2 provides a short optimization and simulation

based optimization overview, the new approach using

a combined, simulation based structure and parameter

optimization method is presented and the requirements

for the optimization environment are defined. Section

3 briefly introduces the established SES formalism as

a model set organization and model generating meta-

modeling method. In section 4 the principles and

prerequisites of evolutionary algorithms are discussed.

The synthesis of the three elements, optimization,

model generation and simulation, to perform a

combined structure and parameter optimization, is

presented in section 5. Finally an application to prove

the concept is described in section 6.

2 Simulation Based Optimization

Simulation experiments can be of different

complexity. The least complex ones are ordinary

simulation runs, shown in figure 1a. After examining

simulation results the user manually changes the

model parameter values and/or structure and starts the

simulation again. These steps are repeated until a

suitable solution is found. A more complex approach

is simulation based parameter optimization, described

in figure 1b.

a

b

Real System

Model

Executable Model

Modeling

Programming

Simulation

Result

OK?

Yes

No

Components Steps

m
a

n
u

e
l

C
h

a
n

g
e

s

Solution

Objective

Function Parameter

Changes

Optimization

Method

Modeling

Programming

Simulation

Result

OK?

Yes

No

Parameter Optimized Model

Real System

Model

Executable Model

No

Yes

Solution

O
p

ti
m

iz
a

ti
o

n

L
o

o
p

Result

OK?
m

a
n

u
a

l
M

o
d

e
l
S

tr
u

c
tu

re
 C

h
a

n
g

e
s

Model

Fittness

Simulation
Results

manual step

nonmanual step

Fig. 1 Principles of (a) simulation and (b) simulation

based parameter optimization

Mathematical optimization generally means

establishing a function minimum or maximum.

Simulation based parameter optimization means

finding the optimal model input parameter value set

by optimizing a function of output variables, named

objective function and estimated with a simulation

method [9]. The optimization method alters model

parameter values to improve the result of the objective

function until a stop criterion is fulfilled. The result is

a parameter optimized model. Structure changes are

carried out manually by a user followed by a repetition

of the automated parameter optimization.

According to [9], a simulation based parameter

optimization problem O with a set of m input

parameters X = {x1, ... xm} can be formally described

as follows:

 The parameter set X = {x1, ... xm} with the domain

set D = {d1 … dm}.

 The multidimensional (one for each parameter)

search space S defined by S = {s = {(x1,v1) . . .

(xm,vm)} | vi di}

 The output set Y is defined by Y = {y1 . . . yn} =

Y(X) and estimated by simulation.

 The objective function F establishes a single

stochastic value from output set Y : F = F(Y(X))

 + which is a measure of the current model

performance

 Because of the stochastic nature of Y and

consequently of F an estimation function R, the

simulation response function, defined by R(X) =

E(F(Y(X))), is optimized

Each parameter value set Xi S can be seen as a

possible solution of O. The optimizer has to search the

search space S to find the parameter value set Xopt S

with E(F(Y(Xopt))) ≤ E(F(Y(Xi))) XiS. The resulting

parameter value set Xopt is considered the global

optimum of O.

It is important to note that automatic structure changes

during optimization are not possible with this

approach. Instead, structure changes are carried out

manually by a user and each manual structure change

requires a repetition of the automated parameter

optimization. The idea behind this paper is the

extension of the optimization method with the ability

to change the model structure thus improving the

objective function result. The effect of this extension

is a simulation based structure and parameter

optimization. Figure 2 presents the approach in

principle. In contrast to the established approach:

1. This approach combines three methods: (i) a

meta-model framework for model management,

(ii) a modeling and simulation environment and

(iii) an optimization method.

2. The optimization method controls both: the model

parameter values and the model structure,

changing both until a stop criterion is fulfilled.

The result of this process is a combined parameter

and structure optimized model.

3. The user has to organize a set of models. One

possibility is to define a model which describes a

set of model variants instead of one single model

of the real system. Such models that define the

creation and interpretation of a set of models are

named meta-models. Through this inclusion of

the meta-model based automatic model

generating element the optimizer can additionally

control model structure changes to find an

optimized solution.

The extension of the formal description of a

simulation based parameter optimization problem O to

a combined simulation based structure and parameter

optimization leads to O
*
:

 The model parameter set XP and its domain set

DP, above defined as X and D, are extended by

structure parameter set XS and its domain set DS.

The extended set definitions are: X
*
 = XP XS =

{xP1 . . . xPm, xS1 . . . xSn} and D
*
 = DP DS = {dP1

. . . dPm, dS1 . . . dSn} with m model parameters in

set XP and n structure parameters in set XS. The

sets XP and DP are defined by the current model.

The model management has to provide the sets XS

and DS by analyzing the meta-model.

Objective

Function Parameter

Changes

Optimization

Method

Metamodel

Modeling

Model Selection

Simulation

Solution:

Parameter&Structure Optimized Model

Real System

Model

Management

Model Generator

No

Yes

Components Steps

Result

OK?

Structure

Changes

manual step

nonmanual step

S
tr

u
c
tu

re
 S

e
le

c
ti
o

n

V
a

lu
e

s

S
e

a
rc

h
 R

o
o

m
 I
n

fo
rm

a
ti
o

n
Model

Generation

S
tr

u
c
tu

re

In
fo

rm
a

ti
o

n
Simulation

Results

Performance
Measurement

Result

P
a

ra
m

e
te

r

V
a

lu
e

s

Optimization

Loop

Fig. 2 Principle of a structure and simulation based

parameter optimization

 The multi-dimensional (one for each parameter)

search space S = SP SS is spanned by sets of

model parameter and structure variants.

 The objective function F
*
 is defined by

F
*
(Y(X

*
),P(XS)) with simulation results

Y(X
*
)=Y(XS XP) and results based on structure

related variables P(XS) which are established

during the model selection. Because of the

stochastic nature of the simulation results Y(X
*
)

an estimation function R, the simulation response

function, is calculated. The results based on

structure related variables P(XS) are not

stochastic. Hence, the simulation response

function is defined by R(Y(X
*
)) and subsequently

the objective function by F
*
(R(Y(X

*
)), P(XS)).

Crucial parts and algorithms of this approach are

described in the next chapters.

3 Specification of Model Sets with

SES/MB

As an appropriate meta-modeling framework the

System Entity Structure/Model Base (SES/MB)

formalism was determined. This formalism is a

general, knowledge based framework. With its key

feature to depict the three relationships (i)

decomposition, (ii) taxonomy and (iii) coupling it is

capable of defining a set of modular, hierarchical

models [7] [11] [12]. Decomposition means that the

formalism is able to decompose an object into sub-

objects. Taxonomy means the ability to represent

several, possible variants of an entity. Composition of

an entity from sub-entities is done by coupling. This is

the meaning of a coupling relationship.

A SES/MB consist of two major parts: (i) a system

entity structure (SES) and (ii) a model base (MB). The

SES is a tree like structure which contains invariable

and variable branches. To create one structure variant

the entity structure is pruned, resulting in a pruned

entity structure (PES) which is the basis of a

composition tree. The composition tree in

combination with the model base contains all

information to create a hierarchical model.

Figure 3 depicts a SES, represented by a tree structure

containing alternative edges starting at decision nodes.

With the aid of different edge types and decision

nodes a set of different model variants can be defined.

To choose a specific design and to create a specific

model variant the SES has to be pruned. The pruning

process decides at decision nodes which alternative(s)

to chose. The result of this process is a Pruned Entity

Structure (PES) that defines one model variant.

Aspec

A1 A2

B

Bdec1 Bdec2

D E F H K

Cmaspec

L

{1,3}

{p1 = 2} {p1 = 3} {p2 = 3} {p3i = 3}

A C

Root

Rootdec

{p2 = 1}

{couplings}

{couplings}{couplings} {couplings}{selection rules}

(ib)

(iii)

(ib) (ib)(ib)

(ii)

(ia) (ia)

(iii)

(ia) (ia) (ia)

(iv)

(ia)(ia)(ia)

(iii)

 Fig. 3 Node types of a SES tree

The SES formalism differentiates four types of nodes:

(i) entity, (ii) specialization, (iii) aspect and (iv) multi-

aspect. An entity node represents a system object.

There are two subtypes of entity nodes – (ia) atomic

entity and (ib) composite entity. An atomic entity

(figure 3 (ia)) cannot be broken down into sub-entities.

The model base contains a corresponding model for

each atomic entity. A composite entity (figure 3 (ib)) is

defined in terms of other entities, which can be of type

atomic or composite entity. Thus, the root node of a

tree is always of type composite entity, while all leaf

nodes are always of type atomic entity. The root node

and each composite entity node of the tree has at least

one successor node of type - specialization (figure 3

(ii)), aspect (figure 3 (iii)) or multiple-aspect (figure 3

(iv)). The definition of the different node types can be

briefly summarized as follows:

 A specialization node is indicated by a double

line edge. The node defines the taxonomy of a

predecessor entity node and specifies how the

entity can be categorized into specialized entities.

The entity Aspec in figure 3 has 2 specializations

A1 and A2.

 An aspect node is indicated by a single line edge.

The aspects are variants of decompositions like

specializations are kinds of classifications. The

decomposition entity B in figure 3 has two aspect

nodes Bdec1 and Bdec2.

 A multiple aspect node is indicated by a triple line

edge. The variable number of its sub-entities is

defined by an attached property. The multiple

aspect node Cmaspec in figure 3 defines variants

with one, two or three atomic entities L.

A node can have additional properties:

 Coupling Information added to an aspect entity –

used during the composition of a model structure

 Attached Variables added to an entity, e.g. p1, p2,

p3 in figure 3 – used for a structure evaluation and

as properties for the model

 Domain Properties – multiple aspect nodes have

attached the possible number of entities.

4 Evolutionary Algorithms

Evolutionary Algorithms (EA) are optimization and

search methods that have the biological evolution,

mechanics of natural selection and natural genetics, as

an archetype. They combine the principle of survival

of the fittest among mathematical structures with a

randomized information exchange to synthesize a

search algorithm. At the beginning of the 60s several

research groups modeled the principle of the evolution

in mathematical algorithms to develop efficient

optimization algorithms: John H. Holland and David

E. Goldberg - Genetic Algorithms (GA) [4], Lawrence

J. Fogel - Evolutionary Programming (EP) [2], Hans-

Paul Schwefel and Ingo Rechenberg - evolution

strategy algorithms (ES) [6]. These algorithms are

combined under the general term evolutionary

algorithms.

The advantages and disadvantages of EAs can be

described as follows:

 They model a parallel search in a population of

possible solutions.

 They need only marginal knowledge about the

problem, e.g. gradient information is not

necessary. Hence they can be applied to solve

discontinues problems.

 They belong to the group of stochastic search

methods. For this reason they can be applied to

solve problems where other, traditional methods

e.g. calculus or gradient based approaches are not

usable.

 EAs cannot guaranty to find the global optimum.

 EAs consume often a huge amount of computing

time and shouldn’t be used when a specialized

method exists. However because of the parallel

search in a population the EAs are parallelizable

very well with an almost linear speedup.

In general an EA can be described by the following

pseudo code:

t = 0

Initialize P(0)

Repeat until stop-criterion is fulfilled

 Evaluate all individual in P(t)

 Select P'(t) from P(t)

 Recombine P'(t)

 Mutate P'(t)

 P(t+1) = P'(t)

 t = t+1

Finish

P = population with n individuals

Stop criteria can be:

 Fitness change between P(t-1) and P(t) less than a

specific tolerance

 Fitness value below a specific value

 Maximum number of populations, search time, …

reached

Another difference to other optimization algorithms is:

An EA does not use the parameter set directly, a

specific coding to a finite-length string over a finite

alphabet is used instead. In the introduced framework

the EA has to optimize a parameter set consisting of

two parts: (i) model parameters which are a set of

numbers and therefore typical parameters for an EA,

(ii) structure parameters defined in the SES tree. For

the later an algorithm has to transform the tree-coded

information to a suitable representation. Both parts

together are coded to the finite-length string necessary

for the EA. The next section describes among others

the tree transformation.

5 A Framework for Modeling,

Simulation and Optimization

The fundamental parts of this approach are the

interface and method definitions, depicted in figure 4.

They bind the established modules: model

management, optimization and simulation together to

synthesize the framework of a simulation based

structure and parameter optimization.

Before an optimization can be carried out, information

about the search space, in particular its dimensions, is

necessary. In this approach the search space is defined

by the set of model structure variants established by

analyzing the SES and the set of model parameters,

defined by each model structure. During the

optimization process several points in the search space

are examined. Each point defines one single model

structure to be generated through the model generator

with one parameter value set.

On closer examination of the framework it is crucial to

divide an optimization experiment into two phases:

1. Initialization phase: The model management

reads and analyzes a meta-model. Results of the

analysis are information about the

multidimensional search space (XS, XP, DS, DP).

The optimization module is initialized with this

information.

2. Optimization phase: During the optimization

phase the optimization method explores the

search space within a loop. Each examined search

space point, i.e. an ordered set of values (

)

is delivered to the model management module.

This module starts up the processes: structure

synthesis, model generation, model simulation

and performance estimation. The optimization

loop ends when a stop criterion is fulfilled.

Optimization

Module

Computer Model

(Model+Simulator)

Objective

Function

Optimization

Method

Model Selection

Model Generator

Model Selection Results

Pi(XSi)

Modeling &

Simulation Module

Model Management Module

Simulation Results

R(Yi (XSi,XPi))

Meta-Model Analysis

Executable Model

XS DS XP DP
Model Structure &

Parameters Information

XSi XPi XSi

XPi
Model Structure

Information

F*(R(Yi), Pi)

Optimization Phase

Initialization Phase Meta-Model and Model

Parameter Definition

1

2

3

4

5

6

7

Fig. 4 Structure of the framework

The simulation based optimization framework is

segmented into the following modules, methods and

interfaces as depicted in figure 4 ((1) … (7)):

1. Model Management Module: meta-model

specification: A meta-model definition is read and

interpreted by the model management during the

initialization phase. The result of this step is a

data structure with an SES tree and references to a

MB.

2. Interface Model Management Module –

Optimization Module (meta-model analysis): In a

second step during the initialization phase the

model management module analyses the SES tree

and establishes the search space. The search space

is defined by a set of variables with their domains.

These sets XS, DS, XP and DP are sent to the

optimization module.

3. Interface Optimization Module – Model

Management Module (transformation of a search

space points into a model configuration): The

model management module receives a search

space point (

) within the optimization

loop. The sets
 and

 are used to prune the

SES, to synthesize the model structure and to

parameterize the model. The selected model

structure and model parameters are sent to a

model generator as platform and implementation

independent XML files.

4. Model Generation Method: Based on the received

XML file with model structure information and

references to basic components the model

generator creates an executable model.

5. Simulation Method: The model is executed by a

simulator. In this research the modeling and

simulation method is based on the Dynamic

Structure DEVS (DSDEVS) formalism [3].

Principally the approach requires a hierarchical

modeling method, DEVS is not obligatory.

6. Interface Model Management and Simulator –

Objective Function: The objective function gets

both simulation results from the simulator and

model structure selection results from the model

management module to establish the performance

of the current model structure and parameter set.

7. Optimization Method: The optimization method

establishes the next search space points to

examine in a loop until the stop criterion is

fulfilled. The search space points are chosen

based on the search space definition and chosen

optimization algorithm.

5.1 Interface: Optimization Module – Model

Management Module

Crucial parts of this research are the interfaces (2) and

(3), SES tree analysis during initialization phase and

transformation search point + SES → PES during

optimization phase.

Within the first interface the Model Management

Module has to analyze the SES tree to transform

formal meta-model structure information into

numerical data useable by the Optimization Module.

This is done by a tree analysis starting at the root

node, traversing the tree in a defined direction, namely

depth-first and breadth-first analysis, and considering

every node. If a node is a decision node, i.e. it is a

specialization node, multiple aspect node or composite

entity node with alternative successor nodes, a

structure parameter xSi is added to the structure

parameter set XS and a corresponding domain dSi is

added to the domain set DS. The domains of

specialization node and composite entity node are {1,

...,n} with n number of variants. The domain of a

multiple aspect node is defined by its attached number

range property. Figure 5 illustrates the algorithm for

creating structure parameter set XS and the

corresponding domain set DS based on SES tree

information using a breadth-first analysis. The steps

and XS, DS set build-up order is marked with small

sequence numbers.

The breadth-first analysis starts at the root node A, a

non-decision node. Next nodes are non-decision nodes

Adec and B. The composite entity node C is the first

decision node. It has two alternative successors. A

first parameter xS1 is added to set XS with the domain

dS1 = {1, 2}. The next examined nodes are Bdec, Cdec1,

Cdec2, D, E, F, G, H and I - they are non-decision

nodes. The next node, the multiple aspect node Dmaspec

is a decision node. The value of its number range

property is {2, 3, 4}. A second parameter xS2 is added

to XS with the domain dS2 = {2, 3, 4}. The next node,

the specialization node Espec, is again a decision node.

It has three alternative successor nodes. A third

parameter xS3 is added to XS with the domain dS3= {1,

2, 3}. The last nodes analyzed K, E1, E2 and E3 are

non-decision nodes. Thus, the example SES has three

decision nodes. The resulting structure parameter set

is XS = {xS1, xS2, xS3} with the corresponding domain

set DS = {dS1, dS2, dS3} with the above determined

domains. On the basis of the combination of these sets

XS, DS, the model parameter set XP and its

corresponding domain set DP the optimization method

is able to search the search space. Additional SES tree

information, e.g. the structure condition at node A and

the attached variables p1 and p2i, are irrelevant during

the initialization phase.

C => xS1,dS1={1,2}

Dmaspec => xS2,dS2={2,3,4}

Espec => xS3,dS3={1,2,3}
X S= {xS1,xS2,xS3}

D S= {dS1,dS2,dS3}

A
structure condition:

{p1+ p2i<13}

(4)

(14)

(15)

Adec

B C

Dmaspec Espec

E1 E2 E3

Cdec1 Cdec2

{2,3,4}

D

{p2i = 2}

{p1=4}

F G H I

decision node

Bdec

{p1=8}

E

K

(1)

(2)

(10)

(3) (4)

(5) (6) (7)

(8) (9) (11) (12) (13)

(14) (15)

(16) (17)
(18)

(19)

SES

(1)...(19) analysis sequence

Fig. 5 Transformation SES → sets XS + DS

The second transformation is the reverse of the first.

The Model Management Module receives a point in

the search space from the Optimization Module i.e.

the numerical data set
 , where set

codes a specific model structure and set codes its

model parameters. It has to synthesize the

corresponding model structure and has to infer the

model parameters. The transformation has to traverse

the tree in the same direction as during the first

transformation in the initialization phase. At each

decision node the next element of current structure

parameter set is used to decide: (i) which

successor of a composite entity node with alternative

successors nodes is chosen, (ii) which specialization

of a specialization node is chosen or (iii) how many

successors of a multiple aspect node are incorporated

into the PES. After pruning, the model structure is

verified with the evaluation of all structure conditions.

If a structure is invalid, the specific set
 will be

refused and this information is sent to the

Optimization Module. It marks this point in the search

space as prohibited and determines a new one. Figure

6 illustrates the principle of the second transformation.

The analysis and pruning order is marked with

sequence numbers.

PES

Adec

B C

K1 E2

Cdec1

K2 K3 K4
{p21=2} {p23=2}{p22=2} {p24=2}

{p1=4}

Xsi = {1,4,2}

current model structure

parameter set

F G

p1=4

å p2i=8

A

xS1= 1 => Cdec1

xS2= 4 => K1,K2,K3,K4

xS3= 2 => E2

Bdec

evaluation of structure

conditions to validate the PES

p1+å p2i<13

structure is valid

A
structure condition:

{p1+ å p2i<13}
Adec

B C

Dmaspec Espec

E1 E2 E3

Cdec1 Cdec2

{2,3,4}

D

{p2i = 2}

{p1=4}

F G H I

Bdec

{p1=8}

E

K

(1)

(2)

(10)

(3) (4)

(5) (6) (7)

(8) (9) (11) (12) (13)

(14) (15)

(16) (17)
(18)

(19)

SES

selected node

(1)...(19) analysis sequence

 Fig. 6 Transformation XSi + SES → PES

The breadth-first analysis starts at the root node A and

continues as already described before. The first

decision node of the SES tree in figure 6 is

composition entity node C. The first element in XSi is

xS1=1, i.e. the first aspect node Cdec1 is chosen for the

PES. The next decision node is the multiple aspect

node Dmaspec and the corresponding set element is

xS2=4, i.e. the PES contains four nodes K. The last

decision node is specialization node Espec and the

corresponding set element is xS3=2, i.e. the PES

contains the second specialization E2 of node Espec.

After pruning, the attached variables are calculated

and the PES is verified by evaluating the relevant

structure conditions. In the example in figure 6, the

aspect node Cdec1, E2 and four atomic entity nodes K

were chosen. Therefore, the structure condition at

node A is evaluated as follows: p1 + åp2i = 4 + 8

< 13. Hence, the PES is valid.

The objective function estimates the performance of

the current model configuration. The function has two

input sources: (i) simulation results and (ii)

information calculated during model generation based

on additional attached variables. In figure 6 entities

Cdec1, Cdec2 and D has attached variables p1 and p2i,

both can be used as additional objective function

parameters. After pruning the values of p1 and p2 are

calculated: .

5.2 Algorithmic Summary of the Framework

As described in the preceding sections, the proposed

simulation based parameter and structure optimization

framework is composed of different methods that

form a uniform optimization approach. The following

algorithm, based on the general description in [8],

summarizes the fundamental operations using a GA as

optimization method.

Initialization Phase:

1. Analyze the SES and establish X
*
 = XP XS

and D
*
= DP DS

2. Initialize a population of individuals

(generation 0) with different
 = XPi XSi

Optimization Phase (repeat until stop criterion is

fulfilled):

1. Estimate the fitness of all individuals of the

current generation

Repeat for each individual

1.1. Prune SES with XSi

1.2. If structure condition is valid,

establish Pi(XSi) or otherwise mark

current individual as invalid and

continue with next individual

1.3. Generate model

1.4. Simulate model and get result Yi(XSi,

XPi)

1.5. Evaluate the simulation response

function R(Yi(XSi, XPi)) by repeating

step 1.4

1.6. Evaluate the objective function

F
*
(R(Yi), Pi)

2. Select pairs with m individuals and create

descendants using crossover

3. Mutate the descendants

4. Exchange individuals of the current generation

with descendants based on a substitution

schema to create a new generation

A disadvantage of a conventional GA is the missing

memory. It is possible that in different generations the

same individual is repeatedly examined. Because of

the time consuming fitness estimation of one

individual in simulation based optimization, the

addition of a memory method is vitally important. It

has to store already examined individuals with their

resulting F
*
(R(Yi), Pi). This extension leads to the

following, final algorithm summarizing the

fundamental operations of the simulation based

parameter and structure optimization approach using a

GA as optimization method:

Initialization Phase:

1. Analyze the SES and establish X
*
 = XP XS

and D
*
= DP DS

2. Initialize a population of individuals

(generation 0) with different

Optimization Phase:

1. Estimate the fitness of all individuals of the

current generation

Repeat for each individual

1.1. Check memory if current individual is

known. In case of ‘true’: continue with

next individual

1.2. Prune SES with XSi

1.3. If structure condition is valid, establish

Pi(XSi) or otherwise mark current

individual as invalid and continue with

next individual

1.4. Generate model

1.5. Simulate model and get result Yi(XSi,

XPi)

1.6. Evaluate the simulation response

function R(Yi(XSi, XPi)) by repeating step

1.5

1.7. Evaluate the objective function

F
*
(R(Yi), Pi)

1.8. Store
 and F

*
(R(Yi), Pi) in memory

2. Select pairs with m individuals and create

descendants using crossover

3. Mutate the descendants

4. Exchange individuals of the current generation

with descendants based on a substitution

schema to create a new generation

To prove this algorithm, section 6 describes an

industrial application.

6 Parameter and Structure

Optimization of a Manufacturing System

To validate the key concept the following application

uses developments and problems in the photofinishing

industry and investigates a production process. The

photofinishing industry specializes in high volume

production of thousands to millions of pictures per day

but has nevertheless a relatively broad range of

different products. As a consequence of significant

changes in the photography market, notably the

increase of digital orders during recent years, a mix of

analogue and digital production facilities are used.

Figure 7 shows general structure and product flow

through the different departments of a typical

photofinishing laboratory. It is possible to differentiate

between three main production departments to depict

the production flow analogue film/digital image –

photographic picture/end product:

I. The material arrives at the login department. After

sorting the product mixes, several single orders are

combined into batches. Each batch contains only

material for one product type, e.g. specific paper

width/surface. The batch creation is done with

different machine types: (i) splicers combine

undeveloped film rolls onto a film reel, (ii)

universal reorder stations (URS) combine analogue

reorders to a strap of film strips, (iii) digital URS

scan analogue reorders and create digital batches,

(iv) digital splicers handle digital data carriers

(CDs, flash cards etc.) and (v) software

applications combine digital images. Steps (i)/(ii)

create analogue and steps (iii)...(v) digital batches.

II. Undeveloped analogue batches have to be

developed. Analogue material can be scanned for

the next steps which could be digital printing. As

an alternative, the analogue batches are printed at

analogue printers. The result of both ways is a

huge reel of exposed photographic paper.

III. After the development of a photographic paper reel

the final step is cutting. Regarding paper cutting

both cutter and digital cutter are comparable. A

DigiCutter is specialized for paper cutting without

a film cutter. Finally, items are packed and

identified for delivery to customers.

Login

In sorter

(manuell/automatic)

Splicer URS DigiSplicer
Software Application for

Internet orders

orders (analogue/digital):

 from dealer, post, internet

Develop

Scanner

DigiURS

DigiPrinter
Analogue

Printer

Cutter DigiCutter

Out sorter

Postage

analogue material

digital data

Develop

Universal Reorder

Station
URS

other material

e.g. paper

CD Production

analogue machine

digital machine

I

II

III

Fig. 7 General product flows of a photofinishing lab

The product flow splicer/URS – analogue printer –

cutter was the common production flow before the

digital era and is a typical serial manufacturing

system. Nowadays there are several possible material

routes through production with the same end product

but different processing time, machine and operator

requirements and costs i.e. a photofinishing lab now

appears more as a job scheduling system. It is possible

to employ fewer operators than available workstations

and produce on time if an appropriate production

structure and effective organization method are used

to manage production.

For this application the product paths of analogue film

material are considered: sorter – splicer – analogue –

printer - analogue cutter and sorter – splicer - digital

printer - digital cutter. The model has the following

structure parameters:

 Automatic and/or manual sorting

 Number of splicer

 Organization strategy login/splicer department

 Organization strategy printer/cutter department

The model has the following model parameter:

 Number of operator in login/splicer department

 Number of operators in printer/cutter department

controller_lsspec

ctrl1 ctrl2

DEP_LOGINdec1 DEP_LOGINdec3

queue_

box2

queue_

batch
splicermaspec

splicer

{#_of_splicers

={1,…,6}}

DEP_LOGINdec2

ctrl3

DEP_SPLICERdec

MODELdec

queue_

order

queue_

box1

sorter_manu

sorter_manu

queue_

order

queue_

box1
sorter_auto

queue_

order
queue_

box1

sorter_auto

MODEL

DEP_SPLICERCONTROLLER_LSDEP_LOGIN

Model Parameter

#_of_operators_ls={1,6}

#_of_operators_pc={1,6}

filter={0, 0.2, … 0.8, 1}

structure conditions:

{max(manu_login+auto_login,#_of_splicers)<=#_of_operators

 AND

 (manu_login*6+auto_login*2+#_of_splicers)>=#_of_operators}

{auto_login=1}

{manu_login=1}

{auto_login=1}

{manu_login=1}

SES

controller_pcspec

ctrl1 ctrl2 ctrl3

CONTROLLER_PC

queue_

batch1

queue_

batch2
printer_analog

DEP_ANALOGdec

DEP_ANALOG

printer_analog cutter_analog

queue_

batch1

queue_

batch2
printer_digi

DEP_DIGITALdec

DEP_DIGITAL

printer_digi cutter_digi

filter

 Percentage of analogue/digital order handling

Sorting, splicing, printing and cutting of a defined

amount of orders takes a production time depending

on type and number of machines, number of operators

and organization strategies. The production time is

estimated by simulation. A production system causes

costs. In this case study the costs depends on the

number of operators.

For a performance measurement the production of a

defined number of orders are simulated. The

simulation output of a single run delivers the

production time and cost Y = {yproduction time, ycosts} of

the current model variant. The objective function is

defined by the term:

F = F(Y) = 1 * r1 * productiontime + 2 * r2 * costs

The factors 1 and 2 normalize the values of the

variables, production time and costs. The factors r1 and r2

define the relevance of the variables, production time and

 costs. With the factors 1=1/max_production_time,

2=1/max_costs, r1=1 and r2=1 both variables are

within the range between 0 and 1 and have the same

relevance. The maximal value of the production time

can be calculated with a minimal production system.

The maximal value of the costs is defined by the upper

bound of the parameter number of operators ls/pc.

The challenge for modelling is to minimize the

production time and the number of operators.

Figure 8 shows the SES, describing model

configurations. It defines 162 model structure variants.

Together with the three model parameters, the

combination results in 34992 model variants. Not all

model variants define useful model configurations,

e.g. a model with four operators and eight splicers

delivers the same result as a model with four operators

and four splicers since in both variants only four

splicers can be used. To exclude the useless variants,

the root node MODEL defines a structure condition

that reduces the number of model variants to 18145.

The search space has to be defined in terms of a

structure parameter set, a model parameter set and

their corresponding domain sets. Using the principle

introduced in section 5 the structure parameter set and

the corresponding domain set are defined by:

XS = {xDEP_LOGIN, xcontroller_ls_spec, xsplicermaspec,

xcontroller_pc_spec }

DS = {dDEP_LOGIN, dcontroller_ls_spec, dsplicermaspec,

dcontroller_pc_spec } with

 dDEP_LOGIN = {1; 2; 3}

 dcontroller_ls_spec = {1; 2; 3}

 dsplicermaspec = {1; 2; 3; 4; 5; 6}

 dcontroller_pc_spec = {1; 2; 3}

The model parameter and domain set are defined by:

XP={x#_of_operators_ls, x#_of_operators_pc, xfilter }

DP={d#_of_operators, d#_of_operators_pc, dfilter } with

 d#_of_operators_ls = {1; 2; 3; 4; 5; 6}

 d#_of_operators_pc = {1; 2; 3; 4; 5; 6}

 dfilter = {0; 0.2; 0.4; 0.6; 0.8; 1}.

To validate the framework the global optimum

estimated through simulation of all system variants is

compared with the result of an optimization

experiment. The simulation results of all variants are

shown graphically in figure 9. The complete

enumeration estimates 40 global optima with a fitness

value 0.26 and 54 local optima with a fitness of 0.27

(error less than 1%). The optimization experiment

using the MATLAB GA toolbox has been repeated

100 times. Table 1 shows the results.

Tab. 1 Results of 100 optimization experiments

Average number of investigated

individuals to find an global optimum
226,4

Global optimum 47

Near optimal results with max 1% error 26

Results with 1 … 5% error 9

Results with 5 … 10% error 18

Fig. 8 Model parameter and SES of the application

The results demonstrate the outstanding advantage of

the GA based optimization: on average only 1.2% of

the search space has to be examined. It shows also a

disadvantage, the not guaranteed finding of the global

optimum. But for practical usage the global optimum

is not necessary every time, results in the near

environment of the global optima are often sufficient.

7 Conclusions and further work

This paper has introduced a simulation based structure

optimization method. The approach combines three

established methods and extends optimization to the

fundamental model structure to enable combined

structure and parameter optimization.

It has been shown that using a meta-model as a super

ordinate method to define simulation models,

parameter optimization can be extended to a combined

structure and parameter optimization. Three main

elements have been determined: (i) a model generating

meta modeling technique based on SES/MB

formalism, (ii) a DEVS based modeler and simulator,

(iii) an optimization method.

A prototype of the approach was implemented with

the Scientific and technical Computing Environment

Matlab. The implementation with the

MatlabEDSDEVS toolbox [3], MatlabSES [3],

implemented within the scope of this research, and

Matlab Global Optimization and Parallel Computing

Toolboxes by MATHWORKS has been successfully

used to prove the approach. The results show that the

approach can find an optimal model variant using

significant less simulation runs than a complete

simulation of all model variants.

[1] F.J. Barros. Modeling and Simulation of Dynamic

Structure Discrete Event Systems: A General Systems

Theory Approach. PhD thesis, University Coimbra,

1996

 [2] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial

intelligence through simulated evolution. John Wiley,

1996

[3] O. Hagendorf. Simulation Based Parameter and

Structure Optimisation of Discrete Event Systems.

PhD thesis, Liverpool John Moores University, 2009

[4] J. H. Holland. Adaptation in Natural and Artificial

Systems: An Introductory Analysis with Applications

to Biology, Control and Artificial Intelligence. The

University of Michigan Press, 1975

[5] T. Pawletta, C. Deatcu, S. Pawletta, O.

Hagendorf, and G. Colquhoun. DEVS-Based

Modeling and Simulation in Scientific and Technical

Computing Environments. DEVS/HPC/MMS 2006

Huntsville/Al USA, 2006

[6] I. Rechenberg. Evolutionsstrategie. (German)

Friedrich Frommann Verlag, 1972

[7] J.W. Rozenblit, and B.P. Zeigler. Concepts for

Knowledge-Based System Design Environments.

Proceedings of the 1985 Winter Simulation

Conference, 1985

[8] E: Schönberg, F. Heinzmann, and S. Feddersen.

Genetic Algorithms and Evolutionary Strategies.

(German) Addison-Wesley, 1994

[9] J.R. Swisher, and P.D. Hyden. A Survey of

Simulation Optimization Techniques and Procedures.

Proceedings of the 2000 Winter Simulation

Conference, 2000

[10] A.M. Uhrmacher, and R. Arnold. Distributing

and maintaining knowledge: Agents in variable

structure environment. 5th Annual Conference on AI,

Simulation and Planning of High Autonomy Systems,

1994

[11] B.P. Zeigler, and H. Praehofer, and T. G. Kim.

Theory of Modeling and Simulation. Academic Press,

2000

[12] G. Zhang, B.P. Zeigler. The system Entity

Structure: Knowledge Representation for Simulation

Modeling and Design. Artificial Intelligence,

Simulation, and Modeling, Widman L.E., Loparo

K.A., Nielsen N.R. (Ed.), John Wiley & Sons Inc,

1989

Fig. 9 Fitness values of all variants

