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Abstract  

Modeling and simulation with integrated parameter optimization is used 

routinely to improve system performance. In this established technique model 

structure is considered to be fixed as the relationships between model elements 

are defined during model development. As model performance is optimized it 

may be necessary to redesign the model structure. The redesign is normally 

carried out manually. 

Evolutionary Algorithms are a subtopic of Artificial Intelligence that are 

involved in combinatorial optimization problems. These algorithms are based on 

ideas inspired by biological evolution: reproduction and selection, mutation and 

recombination. They often perform well for many problem types because they 

do not make assumption about the problem specific search space.  

The research reported in this paper details an approach providing optimization 

through automatic reconfiguration of both: model structure and model 

parameters. An evolutionary algorithm based optimization method is assisted by 

model management using a meta-modeling method. It searches for an optimal 

solution with repeated, combined model parameter and model structure changes 

resulting in a combined parameter and structure optimized model. Therefore the 

model management provides algorithms to join an evolutionary algorithm with 

model generation and simulation.  
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1 Introduction 

Modeling and simulation with integrated optimization 

is a well established technique in engineering 

applications. Such techniques are used for system 

design, real time planning and to control production 

systems. With increasingly complex, flexible 

production systems the requirements for modeling and 

simulation tools are growing. Existing applications 

using simulation based optimization are restricted to 

parameter optimizations. The user has to change 

model structure manually and repeat optimizations 

until a suitable solution is found. With increasing 

production system flexibility the number of possible 

structure variants increases and the potential benefit of 

automatic model structure optimization becomes 

significant. 

The focus of this paper is the description of a 

methodology for a combined parameter and structure 

optimization for modular, hierarchical discrete event 

systems. In contrast to current modeling and 

simulation environments with integrated optimization 

the model structure is variable and thus it is open to 

optimization as well. The variations of model structure 

and model parameter values are controlled by a super 

ordinate optimization module. To support the 

optimization method appropriate modeling, model 

management/generation and simulation methods are 

necessary. 

As a basis for model management and generation the 

System Entity Structure/Model Base (SES/MB) 

formalism, introduced by Rozenblit, Zeigler et al [7] 

[11] [12], is employed. The SES formalism is a 

generic, knowledge base framework consisting of a 

tree like entity structure and a model base. With its 

features the framework is able to define a set of 

modular, hierarchical models and to generate specific 

model structures. The modeling and simulation 

method is based on the Discrete Event System 

Specification (DEVS) formalism introduced by 

Zeigler [11] and some of its extensions [1], [3], [5] 

and [10].  

Section 2 provides a short optimization and simulation 

based optimization overview, the new approach using 

a combined, simulation based structure and parameter 

optimization method is presented and the requirements 

for the optimization environment are defined. Section 

3 briefly introduces the established SES formalism as 

a model set organization and model generating meta-

modeling method. In section 4 the principles and 

prerequisites of evolutionary algorithms are discussed. 

The synthesis of the three elements, optimization, 

model generation and simulation, to perform a 

combined structure and parameter optimization, is 

presented in section 5. Finally an application to prove 

the concept is described in section 6. 

2 Simulation Based Optimization 

Simulation experiments can be of different 

complexity. The least complex ones are ordinary 

simulation runs, shown in figure 1a. After examining 

simulation results the user manually changes the 

model parameter values and/or structure and starts the 

simulation again. These steps are repeated until a 

suitable solution is found. A more complex approach 

is simulation based parameter optimization, described 

in figure 1b. 
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Fig. 1 Principles of (a) simulation and (b) simulation 

based parameter optimization 

Mathematical optimization generally means 

establishing a function minimum or maximum. 

Simulation based parameter optimization means 

finding the optimal model input parameter value set 

by optimizing a function of output variables, named 

objective function and estimated with a simulation 

method [9]. The optimization method alters model 

parameter values to improve the result of the objective 

function until a stop criterion is fulfilled. The result is 

a parameter optimized model. Structure changes are 

carried out manually by a user followed by a repetition 

of the automated parameter optimization. 

According to [9], a simulation based parameter 

optimization problem O with a set of m input 



parameters X = {x1, ... xm} can be formally described 

as follows: 

 The parameter set X = {x1, ... xm} with the domain 

set D = {d1 … dm}. 

 The multidimensional (one for each parameter) 

search space S defined by S = {s = {(x1,v1) . . . 

(xm,vm)} | vi  di} 

 The output set Y is defined by Y = {y1 . . . yn} = 

Y(X) and estimated by simulation. 

 The objective function F establishes a single 

stochastic value from output set Y :  F = F(Y(X)) 

 + which is a measure of the current model 

performance 

 Because of the stochastic nature of Y and 

consequently of F an estimation function R, the 

simulation response function, defined by R(X) = 

E(F(Y(X))), is optimized 

Each parameter value set Xi  S can be seen as a 

possible solution of O. The optimizer has to search the 

search space S to find the parameter value set Xopt  S 

with E(F(Y(Xopt))) ≤  E(F(Y(Xi))) XiS. The resulting 

parameter value set Xopt is considered the global 

optimum of O. 

It is important to note that automatic structure changes 

during optimization are not possible with this 

approach. Instead, structure changes are carried out 

manually by a user and each manual structure change 

requires a repetition of the automated parameter 

optimization. The idea behind this paper is the 

extension of the optimization method with the ability 

to change the model structure thus improving the 

objective function result. The effect of this extension 

is a simulation based structure and parameter 

optimization. Figure 2 presents the approach in 

principle. In contrast to the established approach: 

1. This approach combines three methods: (i) a 

meta-model framework for model management, 

(ii) a modeling and simulation environment and 

(iii) an optimization method. 

2. The optimization method controls both: the model 

parameter values and the model structure, 

changing both until a stop criterion is fulfilled. 

The result of this process is a combined parameter 

and structure optimized model. 

3. The user has to organize a set of models. One 

possibility is to define a model which describes a 

set of model variants instead of one single model 

of the real system. Such models that define the 

creation and interpretation of a set of models are 

named meta-models. Through this inclusion of 

the meta-model based automatic model 

generating element the optimizer can additionally 

control model structure changes to find an 

optimized solution.  

The extension of the formal description of a 

simulation based parameter optimization problem O to 

a combined simulation based structure and parameter 

optimization leads to O
*
: 

 The model parameter set XP and its domain set 

DP, above defined as X and D, are extended by 

structure parameter set XS and its domain set DS. 

The extended set definitions are: X
*
 = XP  XS = 

{xP1 . . . xPm, xS1 . . . xSn} and D
*
 = DP  DS = {dP1 

. . . dPm, dS1 . . . dSn} with m model parameters in 

set XP and n structure parameters in set XS. The 

sets XP and DP are defined by the current model. 

The model management has to provide the sets XS 

and DS by analyzing the meta-model. 
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Fig. 2 Principle of a structure and simulation based 

parameter optimization 

 The multi-dimensional (one for each parameter) 

search space S = SP  SS is spanned by sets of 

model parameter and structure variants. 

 The objective function F
*
 is defined by 

F
*
(Y(X

*
),P(XS)) with simulation results 

Y(X
*
)=Y(XS  XP) and results based on structure 

related variables P(XS) which are established 

during the model selection. Because of the 

stochastic nature of the simulation results Y(X
*
) 

an estimation function R, the simulation response 

function, is calculated. The results based on 

structure related variables P(XS) are not 

stochastic. Hence, the simulation response 

function is defined by R(Y(X
*
)) and subsequently 

the objective function by F
*
(R(Y(X

*
)), P(XS)). 

Crucial parts and algorithms of this approach are 

described in the next chapters. 



3 Specification of Model Sets with 

SES/MB 

As an appropriate meta-modeling framework the 

System Entity Structure/Model Base (SES/MB) 

formalism was determined. This formalism is a 

general, knowledge based framework. With its key 

feature to depict the three relationships (i) 

decomposition, (ii) taxonomy and (iii) coupling it is 

capable of defining a set of modular, hierarchical 

models [7] [11] [12]. Decomposition means that the 

formalism is able to decompose an object into sub-

objects. Taxonomy means the ability to represent 

several, possible variants of an entity. Composition of 

an entity from sub-entities is done by coupling. This is 

the meaning of a coupling relationship. 

A SES/MB consist of two major parts: (i) a system 

entity structure (SES) and (ii) a model base (MB). The 

SES is a tree like structure which contains invariable 

and variable branches. To create one structure variant 

the entity structure is pruned, resulting in a pruned 

entity structure (PES) which is the basis of a 

composition tree. The composition tree in 

combination with the model base contains all 

information to create a hierarchical model.  

Figure 3 depicts a SES, represented by a tree structure 

containing alternative edges starting at decision nodes. 

With the aid of different edge types and decision 

nodes a set of different model variants can be defined. 

To choose a specific design and to create a specific 

model variant the SES has to be pruned. The pruning 

process decides at decision nodes which alternative(s) 

to chose. The result of this process is a Pruned Entity 

Structure (PES) that defines one model variant. 
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 Fig. 3 Node types of a SES tree 

The SES formalism differentiates four types of nodes: 

(i) entity, (ii) specialization, (iii) aspect and (iv) multi-

aspect. An entity node represents a system object. 

There are two subtypes of entity nodes – (ia) atomic 

entity and (ib) composite entity. An atomic entity 

(figure 3 (ia)) cannot be broken down into sub-entities. 

The model base contains a corresponding model for 

each atomic entity. A composite entity (figure 3 (ib)) is 

defined in terms of other entities, which can be of type 

atomic or composite entity. Thus, the root node of a 

tree is always of type composite entity, while all leaf 

nodes are always of type atomic entity. The root node 

and each composite entity node of the tree has at least 

one successor node of type - specialization (figure 3 

(ii)), aspect (figure 3 (iii)) or multiple-aspect (figure 3 

(iv)). The definition of the different node types can be 

briefly summarized as follows:  

 A specialization node is indicated by a double 

line edge. The node defines the taxonomy of a 

predecessor entity node and specifies how the 

entity can be categorized into specialized entities. 

The entity Aspec in figure 3 has 2 specializations 

A1 and A2.  

 An aspect node is indicated by a single line edge. 

The aspects are variants of decompositions like 

specializations are kinds of classifications. The 

decomposition entity B in figure 3 has two aspect 

nodes Bdec1 and Bdec2.  

 A multiple aspect node is indicated by a triple line 

edge. The variable number of its sub-entities is 

defined by an attached property. The multiple 

aspect node Cmaspec in figure 3 defines variants 

with one, two or three atomic entities L.  

A node can have additional properties: 

 Coupling Information added to an aspect entity – 

used during the composition of a model structure 

 Attached Variables added to an entity, e.g. p1, p2, 

p3 in figure 3 – used for a structure evaluation and 

as properties for the model 

 Domain Properties – multiple aspect nodes have 

attached the possible number of entities. 

4 Evolutionary Algorithms 

Evolutionary Algorithms (EA) are optimization and 

search methods that have the biological evolution, 

mechanics of natural selection and natural genetics, as 

an archetype. They combine the principle of survival 

of the fittest among mathematical structures with a 

randomized information exchange to synthesize a 

search algorithm. At the beginning of the 60s several 

research groups modeled the principle of the evolution 

in mathematical algorithms to develop efficient 

optimization algorithms: John H. Holland and David 

E. Goldberg - Genetic Algorithms (GA) [4], Lawrence 

J. Fogel - Evolutionary Programming (EP) [2], Hans-

Paul Schwefel and Ingo Rechenberg - evolution 

strategy algorithms (ES) [6]. These algorithms are 

combined under the general term evolutionary 

algorithms. 

The advantages and disadvantages of EAs can be 

described as follows: 

 They model a parallel search in a population of 

possible solutions. 

 They need only marginal knowledge about the 

problem, e.g. gradient information is not 

necessary. Hence they can be applied to solve 

discontinues problems.  

 They belong to the group of stochastic search 

methods. For this reason they can be applied to 

solve problems where other, traditional methods 



e.g. calculus or gradient based approaches are not 

usable. 

 EAs cannot guaranty to find the global optimum.  

 EAs consume often a huge amount of computing 

time and shouldn’t be used when a specialized 

method exists. However because of the parallel 

search in a population the EAs are parallelizable 

very well with an almost linear speedup. 

In general an EA can be described by the following 

pseudo code: 

t = 0 

Initialize P(0) 

Repeat until stop-criterion is fulfilled 

 Evaluate all individual in P(t) 

 Select P'(t) from P(t) 

 Recombine P'(t) 

 Mutate P'(t) 

 P(t+1) = P'(t) 

 t = t+1 

Finish 

P = population with n individuals 

Stop criteria can be: 

 Fitness change between P(t-1) and P(t) less than a 

specific tolerance 

 Fitness value below a specific value 

 Maximum number of populations, search time, … 

reached 

Another difference to other optimization algorithms is: 

An EA does not use the parameter set directly, a 

specific coding to a finite-length string over a finite 

alphabet is used instead. In the introduced framework 

the EA has to optimize a parameter set consisting of 

two parts: (i) model parameters which are a set of 

numbers and therefore typical parameters for an EA, 

(ii) structure parameters defined in the SES tree. For 

the later an algorithm has to transform the tree-coded 

information to a suitable representation. Both parts 

together are coded to the finite-length string necessary 

for the EA. The next section describes among others 

the tree transformation. 

5 A Framework for Modeling, 

Simulation and Optimization 

The fundamental parts of this approach are the 

interface and method definitions, depicted in figure 4. 

They bind the established modules: model 

management, optimization and simulation together to 

synthesize the framework of a simulation based 

structure and parameter optimization.  

Before an optimization can be carried out, information 

about the search space, in particular its dimensions, is 

necessary. In this approach the search space is defined 

by the set of model structure variants established by 

analyzing the SES and the set of model parameters, 

defined by each model structure. During the 

optimization process several points in the search space 

are examined. Each point defines one single model 

structure to be generated through the model generator 

with one parameter value set.  

On closer examination of the framework it is crucial to 

divide an optimization experiment into two phases:  

1. Initialization phase: The model management 

reads and analyzes a meta-model. Results of the 

analysis are information about the 

multidimensional search space (XS, XP, DS, DP). 

The optimization module is initialized with this 

information.  

2. Optimization phase: During the optimization 

phase the optimization method explores the 

search space within a loop. Each examined search 

space point, i.e. an ordered set of values (   
    

) 

is delivered to the model management module. 

This module starts up the processes: structure 

synthesis, model generation, model simulation 

and performance estimation. The optimization 

loop ends when a stop criterion is fulfilled.  
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Fig. 4 Structure of the framework 

The simulation based optimization framework is 

segmented into the following modules, methods and 

interfaces as depicted in figure 4 ((1) … (7)): 

1. Model Management Module: meta-model 

specification: A meta-model definition is read and 

interpreted by the model management during the 

initialization phase. The result of this step is a 

data structure with an SES tree and references to a 

MB. 

2. Interface Model Management Module – 

Optimization Module (meta-model analysis): In a 

second step during the initialization phase the 

model management module analyses the SES tree 

and establishes the search space. The search space 

is defined by a set of variables with their domains. 

These sets XS, DS, XP and DP are sent to the 

optimization module.  

3. Interface Optimization Module – Model 

Management Module (transformation of a search 



space points into a model configuration): The 

model management module receives a search 

space point (   
    

) within the optimization 

loop. The sets    
 and    

 are used to prune the 

SES, to synthesize the model structure and to 

parameterize the model. The selected model 

structure and model parameters are sent to a 

model generator as platform and implementation 

independent XML files. 

4. Model Generation Method: Based on the received 

XML file with model structure information and 

references to basic components the model 

generator creates an executable model.  

5. Simulation Method: The model is executed by a 

simulator. In this research the modeling and 

simulation method is based on the Dynamic 

Structure DEVS (DSDEVS) formalism [3]. 

Principally the approach requires a hierarchical 

modeling method, DEVS is not obligatory. 

6. Interface Model Management and Simulator – 

Objective Function: The objective function gets 

both simulation results from the simulator and 

model structure selection results from the model 

management module to establish the performance 

of the current model structure and parameter set. 

7. Optimization Method: The optimization method 

establishes the next search space points to 

examine in a loop until the stop criterion is 

fulfilled. The search space points are chosen 

based on the search space definition and chosen 

optimization algorithm. 

5.1 Interface: Optimization Module – Model 

Management Module 

Crucial parts of this research are the interfaces (2) and 

(3), SES tree analysis during initialization phase and 

transformation search point + SES → PES during 

optimization phase. 

Within the first interface the Model Management 

Module has to analyze the SES tree to transform 

formal meta-model structure information into 

numerical data useable by the Optimization Module. 

This is done by a tree analysis starting at the root 

node, traversing the tree in a defined direction, namely 

depth-first and breadth-first analysis, and considering 

every node. If a node is a decision node, i.e. it is a 

specialization node, multiple aspect node or composite 

entity node with alternative successor nodes, a 

structure parameter xSi is added to the structure 

parameter set XS and a corresponding domain dSi is 

added to the domain set DS. The domains of 

specialization node and composite entity node are {1, 

...,n} with n number of variants. The domain of a 

multiple aspect node is defined by its attached number 

range property. Figure 5 illustrates the algorithm for 

creating structure parameter set XS and the 

corresponding domain set DS based on SES tree 

information using a breadth-first analysis. The steps 

and XS, DS set build-up order is marked with small 

sequence numbers. 

The breadth-first analysis starts at the root node A, a 

non-decision node. Next nodes are non-decision nodes 

Adec and B. The composite entity node C is the first 

decision node. It has two alternative successors. A 

first parameter xS1 is added to set XS with the domain 

dS1 = {1, 2}. The next examined nodes are Bdec, Cdec1, 

Cdec2, D, E, F, G, H and I - they are non-decision 

nodes. The next node, the multiple aspect node Dmaspec 

is a decision node. The value of its number range 

property is {2, 3, 4}. A second parameter xS2 is added 

to XS with the domain dS2 = {2, 3, 4}. The next node, 

the specialization node Espec, is again a decision node. 

It has three alternative successor nodes. A third 

parameter xS3 is added to XS with the domain dS3= {1, 

2, 3}. The last nodes analyzed K, E1, E2 and E3 are 

non-decision nodes. Thus, the example SES has three 

decision nodes. The resulting structure parameter set 

is XS = {xS1, xS2, xS3} with the corresponding domain 

set DS = {dS1, dS2, dS3} with the above determined 

domains. On the basis of the combination of these sets 

XS, DS, the model parameter set XP and its 

corresponding domain set DP the optimization method 

is able to search the search space. Additional SES tree 

information, e.g. the structure condition at node A and 

the attached variables p1 and p2i, are irrelevant during 

the initialization phase. 
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Fig. 5 Transformation SES → sets XS + DS 

The second transformation is the reverse of the first. 

The Model Management Module receives a point in 

the search space from the Optimization Module i.e. 

the numerical data set   
           , where set     

codes a specific model structure and set     codes its 

model parameters. It has to synthesize the 

corresponding model structure and has to infer the 

model parameters. The transformation has to traverse 

the tree in the same direction as during the first 

transformation in the initialization phase. At each 

decision node the next element of current structure 

parameter set     is used to decide: (i) which 

successor of a composite entity node with alternative 

successors nodes is chosen, (ii) which specialization 

of a specialization node is chosen or (iii) how many 

successors of a multiple aspect node are incorporated 



into the PES. After pruning, the model structure is 

verified with the evaluation of all structure conditions. 

If a structure is invalid, the specific set   
  will be 

refused and this information is sent to the 

Optimization Module. It marks this point in the search 

space as prohibited and determines a new one. Figure 

6 illustrates the principle of the second transformation. 

The analysis and pruning order is marked with 

sequence numbers. 
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 Fig. 6 Transformation XSi + SES → PES 

The breadth-first analysis starts at the root node A and 

continues as already described before. The first 

decision node of the SES tree in figure 6 is 

composition entity node C. The first element in XSi is 

xS1=1, i.e. the first aspect node Cdec1 is chosen for the 

PES. The next decision node is the multiple aspect 

node Dmaspec and the corresponding set element is 

xS2=4, i.e. the PES contains four nodes K. The last 

decision node is specialization node Espec and the 

corresponding set element is xS3=2, i.e. the PES 

contains the second specialization E2 of node Espec. 

After pruning, the attached variables are calculated 

and the PES is verified by evaluating the relevant 

structure conditions. In the example in figure 6, the 

aspect node Cdec1, E2 and four atomic entity nodes K 

were chosen. Therefore, the structure condition at 

node A is evaluated as follows: p1 + åp2i = 4 + 8 

< 13. Hence, the PES is valid.  

The objective function estimates the performance of 

the current model configuration. The function has two 

input sources: (i) simulation results and (ii) 

information calculated during model generation based 

on additional attached variables. In figure 6 entities 

Cdec1, Cdec2 and D has attached variables p1 and p2i, 

both can be used as additional objective function 

parameters. After pruning the values of p1 and p2 are 

calculated:                 .  

5.2 Algorithmic Summary of the Framework 

As described in the preceding sections, the proposed 

simulation based parameter and structure optimization 

framework is composed of different methods that 

form a uniform optimization approach. The following 

algorithm, based on the general description in [8], 

summarizes the fundamental operations using a GA as 

optimization method. 

Initialization Phase: 

1. Analyze the SES and establish X
*
 = XP  XS  

and D
*
= DP  DS  

2. Initialize a population of  individuals 

(generation 0) with different   
  = XPi  XSi  

Optimization Phase (repeat until stop criterion is 

fulfilled): 

1. Estimate the fitness of all individuals of the 

current generation 

Repeat for each individual 

1.1. Prune SES with XSi 

1.2. If structure condition is valid, 

establish Pi(XSi) or otherwise mark 

current individual as invalid and 

continue with next individual 

1.3. Generate model 

1.4. Simulate model and get result Yi(XSi, 

XPi)  

1.5. Evaluate the simulation response 

function R(Yi(XSi, XPi)) by repeating 

step 1.4 

1.6. Evaluate the objective function 

F
*
(R(Yi), Pi) 

2. Select pairs with m individuals and create 

descendants using crossover 

3. Mutate the descendants 

4. Exchange individuals of the current generation 

with descendants based on a substitution 

schema to create a new generation 

A disadvantage of a conventional GA is the missing 

memory. It is possible that in different generations the 

same individual is repeatedly examined. Because of 

the time consuming fitness estimation of one 

individual in simulation based optimization, the 

addition of a memory method is vitally important. It 

has to store already examined individuals with their 

resulting F
*
(R(Yi), Pi). This extension leads to the 

following, final algorithm summarizing the 

fundamental operations of the simulation based 

parameter and structure optimization approach using a 

GA as optimization method:  

Initialization Phase: 

1. Analyze the SES and establish X
*
 = XP  XS  

and D
*
= DP  DS  

2. Initialize a population of  individuals 

(generation 0) with different   
     

    
 

Optimization Phase: 

1. Estimate the fitness of all individuals of the 

current generation 

Repeat for each individual 

1.1. Check memory if current individual is 

known. In case of ‘true’: continue with 



next individual 

1.2. Prune SES with XSi 

1.3. If structure condition is valid, establish 

Pi(XSi) or otherwise mark current 

individual as invalid and continue with 

next individual 

1.4. Generate model 

1.5. Simulate model and get result Yi(XSi, 

XPi)  

1.6. Evaluate the simulation response 

function R(Yi(XSi, XPi)) by repeating step 

1.5 

1.7. Evaluate the objective function 

F
*
(R(Yi), Pi) 

1.8. Store   
  and F

*
(R(Yi), Pi) in memory 

2. Select pairs with m individuals and create 

descendants using crossover 

3. Mutate the descendants 

4. Exchange individuals of the current generation 

with descendants based on a substitution 

schema to create a new generation 

To prove this algorithm, section 6 describes an 

industrial application. 

6 Parameter and Structure 

Optimization of a Manufacturing System 

To validate the key concept the following application 

uses developments and problems in the photofinishing 

industry and investigates a production process. The 

photofinishing industry specializes in high volume 

production of thousands to millions of pictures per day 

but has nevertheless a relatively broad range of 

different products. As a consequence of significant 

changes in the photography market, notably the 

increase of digital orders during recent years, a mix of 

analogue and digital production facilities are used.  

Figure 7 shows general structure and product flow 

through the different departments of a typical 

photofinishing laboratory. It is possible to differentiate 

between three main production departments to depict 

the production flow analogue film/digital image – 

photographic picture/end product: 

I. The material arrives at the login department. After 

sorting the product mixes, several single orders are 

combined into batches. Each batch contains only 

material for one product type, e.g. specific paper 

width/surface. The batch creation is done with 

different machine types: (i) splicers combine 

undeveloped film rolls onto a film reel, (ii) 

universal reorder stations (URS) combine analogue 

reorders to a strap of film strips, (iii) digital URS 

scan analogue reorders and create digital batches, 

(iv) digital splicers handle digital data carriers 

(CDs, flash cards etc.) and (v) software 

applications combine digital images. Steps (i)/(ii) 

create analogue and steps (iii)...(v) digital batches. 

II. Undeveloped analogue batches have to be 

developed. Analogue material can be scanned for 

the next steps which could be digital printing. As 

an alternative, the analogue batches are printed at 

analogue printers. The result of both ways is a 

huge reel of exposed photographic paper.  

III. After the development of a photographic paper reel 

the final step is cutting. Regarding paper cutting 

both cutter and digital cutter are comparable. A 

DigiCutter is specialized for paper cutting without 

a film cutter. Finally, items are packed and 

identified for delivery to customers. 

Login

In sorter 

(manuell/automatic)

Splicer URS DigiSplicer
Software Application for 

Internet orders

orders (analogue/digital):

  from dealer, post, internet

Develop

Scanner

DigiURS 

DigiPrinter
Analogue 

Printer

Cutter DigiCutter

Out sorter

Postage

analogue material

digital data

Develop

Universal Reorder 

Station
URS

other material 

e.g. paper

CD Production

analogue machine

digital machine

I

II

III

Fig. 7 General product flows of a photofinishing lab 

The product flow splicer/URS – analogue printer – 

cutter was the common production flow before the 

digital era and is a typical serial manufacturing 

system. Nowadays there are several possible material 

routes through production with the same end product 

but different processing time, machine and operator 

requirements and costs i.e. a photofinishing lab now 

appears more as a job scheduling system. It is possible 

to employ fewer operators than available workstations 

and produce on time if an appropriate production 

structure and effective organization method are used 

to manage production.  

For this application the product paths of analogue film 

material are considered: sorter – splicer – analogue – 

printer - analogue cutter and sorter – splicer - digital 

printer - digital cutter. The model has the following 

structure parameters: 

 Automatic and/or manual sorting 

 Number of splicer 

 Organization strategy login/splicer department 

 Organization strategy printer/cutter department 

The model has the following model parameter: 

 Number of operator in login/splicer department 

 Number of operators in printer/cutter department 
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Sorting, splicing, printing and cutting of a defined 

amount of orders takes a production time depending 

on type and number of machines, number of operators 

and organization strategies. The production time is 

estimated by simulation. A production system causes 

costs. In this case study the costs depends on the 

number of operators. 

For a performance measurement the production of a 

defined number of orders are simulated. The 

simulation output of a single run delivers the 

production time and cost Y = {yproduction time, ycosts} of 

the current model variant. The objective function is 

defined by the term: 

F = F(Y) = 1 * r1 *  productiontime + 2 * r2 *  costs 

The factors 1 and 2 normalize the values of the 

variables,  production time and  costs. The factors r1 and r2 

define the relevance of the variables,  production time and 

 costs. With the factors 1=1/max_production_time, 

2=1/max_costs, r1=1 and r2=1 both variables are 

within the range between 0 and 1 and have the same 

relevance. The maximal value of the production time 

can be calculated with a minimal production system. 

The maximal value of the costs is defined by the upper 

bound of the parameter number of operators ls/pc. 

The challenge for modelling is to minimize the 

production time and the number of operators. 

Figure 8 shows the SES, describing model 

configurations. It defines 162 model structure variants. 

Together with the three model parameters, the 

combination results in 34992 model variants. Not all 

model variants define useful model configurations, 

e.g. a model with four operators and eight splicers 

delivers the same result as a model with four operators 

and four splicers since in both variants only four 

splicers can be used. To exclude the useless variants, 

the root node MODEL defines a structure condition 

that reduces the number of model variants to 18145. 

The search space has to be defined in terms of a 

structure parameter set, a model parameter set and 

their corresponding domain sets. Using the principle 

introduced in section 5 the structure parameter set and 

the corresponding domain set are defined by: 

XS = {xDEP_LOGIN, xcontroller_ls_spec, xsplicermaspec, 

xcontroller_pc_spec } 

DS = {dDEP_LOGIN, dcontroller_ls_spec, dsplicermaspec, 

dcontroller_pc_spec } with 

 dDEP_LOGIN = {1; 2; 3} 

 dcontroller_ls_spec = {1; 2; 3} 

 dsplicermaspec = {1; 2; 3; 4; 5; 6} 

 dcontroller_pc_spec = {1; 2; 3} 

The model parameter and domain set are defined by: 

XP={x#_of_operators_ls, x#_of_operators_pc, xfilter } 

DP={d#_of_operators, d#_of_operators_pc, dfilter } with  

 d#_of_operators_ls = {1; 2; 3; 4; 5; 6} 

 d#_of_operators_pc = {1; 2; 3; 4; 5; 6} 

 dfilter = {0; 0.2; 0.4; 0.6; 0.8; 1}. 

To validate the framework the global optimum 

estimated through simulation of all system variants is 

compared with the result of an optimization 

experiment. The simulation results of all variants are 

shown graphically in figure 9. The complete 

enumeration estimates 40 global optima with a fitness 

value 0.26 and 54 local optima with a fitness of 0.27 

(error less than 1%). The optimization experiment 

using the MATLAB GA toolbox has been repeated 

100 times. Table 1 shows the results. 

Tab. 1 Results of 100 optimization experiments 

Average number of investigated 

individuals to find an global optimum 
226,4 

Global optimum 47 

Near optimal results with max 1% error 26 

Results with 1 … 5% error 9 

Results with 5 … 10% error 18 

Fig. 8 Model parameter and SES of the application 



 

The results demonstrate the outstanding advantage of 

the GA based optimization: on average only 1.2% of 

the search space has to be examined. It shows also a 

disadvantage, the not guaranteed finding of the global 

optimum. But for practical usage the global optimum 

is not necessary every time, results in the near 

environment of the global optima are often sufficient. 

7 Conclusions and further work 

This paper has introduced a simulation based structure 

optimization method. The approach combines three 

established methods and extends optimization to the 

fundamental model structure to enable combined 

structure and parameter optimization. 

It has been shown that using a meta-model as a super 

ordinate method to define simulation models, 

parameter optimization can be extended to a combined 

structure and parameter optimization. Three main 

elements have been determined: (i) a model generating 

meta modeling technique based on SES/MB 

formalism, (ii) a DEVS based modeler and simulator, 

(iii) an optimization method.  

A prototype of the approach was implemented with 

the Scientific and technical Computing Environment 

Matlab. The implementation with the 

MatlabEDSDEVS toolbox [3], MatlabSES [3], 

implemented within the scope of this research, and 

Matlab Global Optimization and Parallel Computing 

Toolboxes by MATHWORKS has been successfully 

used to prove the approach. The results show that the 

approach can find an optimal model variant using 

significant less simulation runs than a complete 

simulation of all model variants. 
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