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Abstract

Deadlocks are undesirable states in resource allocation systems (RAS). Their
avoiding presents a major issue in control of RAS. Out of extensive theory on this
topic, we focus on comparison of two deadlock avoidance methods for sequential
RAS: Banker’s algorithm and C/D-RUN deadlock avoidance policy (DAP). We
present their impact on a system of automated-guided vehicles (AGV system),
modelled and analyzed by coloured Petri nets.
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1 Introduction
Deadlock state is a state of a system, where two or more
system processes are blocked in their execution by wait-
ing for resources that are occupied at the same time by
the processes in the waiting list (example in Fig. 2). The
waiting processes thus block and are blocked. Unblock-
ing this state is possible only by an exceptional opera-
tion.

The deadlock states are undesirable in any system since
they attack system effectiveness. They occur as a result
of allocation of resources to processes in certain situa-
tions. Formalism used for analysis of this problem is
called Resource Allocation System (RAS).

For the problem solving, a large variety of methods can
be found in literature. We pick two of them for com-
parison: Banker’s algorithm (BA) [1, 2] and C/D-RUN
deadlock avoidance policy [3, 4]. The first one has
been demonstrated to work on complex RAS with non-
sequential processes with flexible routing and use of re-
sources of multiple types at once [5, 6, 7]. The second
one is a deadlock avoidance policy for a simpler sys-
tem, sequential RAS with use of resources of multiple
types at once, but without flexible routing of processes,
and it is based on the formalism of Petri nets.

Both deadlock avoidance methods have been compared
on an example of a system of automated guided vehi-
cles (AGV) that is described e.g. in [8]. Model of the
example has been implemented by means of coloured
Petri nets [9] in CPN Tools [10].

In the following section, we introduce the sample AGV
system used in the work. Sections 3 and 4 describe
used formalisms for modelling and methods for dead-
lock avoiding. Section 5 provides some details about
model construction, followed by results of our experi-
ments and conclusion.

2 Example of AGV System

Fig. 1: AGV net used in example with docking station
DS and 4 working stations Wi, i = 1..4.

As an example, we use the automated guided vehicle
(AGV) system from [8] (network in Fig. 1) that can
be used in modern factories or warehouses. The vehi-

cles are stored in the docking station DS (its capacity
is enough for all vehicles in the system) and they make
trips to work stations Wi, i = 1..4 (every workstation
accepts no more than one vehicle). A trip consisting
of at least two work stations and starting and terminat-
ing in DS will be called mission. In our example, we
use the following missions: DS − W1 − W3 − DS,
DS−W2−W4−DS, DS−W1−W2−DS. Every
network section can be occupied by at most one vehicle.
For executing each mission, the vehicle is supposed to
use a minimal number of network sections. If there are
several routes available to reach the next destination, it
selects one option arbitrarily. To keep the model simple,
we accept a limitation that vehicles cannot be assigned
new missions before coming back to docking station.

An example of a deadlock state in such a model is
in Fig. 2.

Fig. 2: Example of deadlock state in an AGV system:
three vehicles approaching the intersection B occupy
all network sections leading to it and wait for a section
to be free to continue their mission.

3 Formalisms for Modelling
To compare the deadlock avoidance methods on a
model of an AGV system, we have chosen resource al-
location system implemented by means of hierarchical
coloured Petri net.

Resource allocation system (RAS) is a system consist-
ing of concurrently running processes that in certain
stages, in order to get successfully completed, require
exclusive use of certain number of system resources
[11]. Resources are limited and re-usable as their allo-
cation and de-allocation changes neither their character
nor quantity. Main purpose of RAS is to solve prob-
lems arising from allocation of resources to processes.
Based on properties of involved processes, a concrete
RAS falls into a certain category [12] that decides on
methods to be used for deadlock solving.

RAS for AGV system (denoted as AGV RAS) has ve-
hicle missions as processes and network sections as
resources. Vehicle has to traverse a sequence of net-
work sections to fulfill a mission and to visit its defined
points. Since a network section can be occupied by one
vehicle at most, it is a resource allocated to the process
exclusively. Because two network sections have at most



one common endpoint, they represent resources of dif-
ferent types. As a vehicle occupies only one section at a
time (if it is not in DS), such an AGV RAS falls into the
simplest category: sequential RAS of sequential pro-
cesses with flexible routing and use of single resource
unit at once by a process instance.

Petri net (PN) is a formalism used for modelling and
analysis of systems with concurrent processes. It has
graphical notation, precise mathematical language and
analysis methods for specifying the system behaviour.
Basic construction elements of PN are places, tran-
sitions, directed arcs and tokens. Places and transi-
tions are two types of nodes in the net. Directed arcs
link places with transitions, while no pair of nodes
of the same type can be connected. Tokens are ele-
ments that move in the created network between places
through arcs and transitions. Principal difference be-
tween places (drawn as circles) and transitions (rectan-
gles) lies in their relation to tokens (black dots). Places
can be marked with tokens. The number of tokens and
their distribution in places represent the state of the net.
Transitions take tokens from input places (i.e. places
from which directed arcs lead to a transition) and send
tokens to output places (i.e. places to which directed
arcs lead from the transition). This process is called fir-
ing - it performs an action in the net, changing its state.
In this way, it is also possible to change the overall num-
ber of tokens in the net. More details about Petri nets
can be found in [13].

The basic PN formalism, called Place/Transition (P/T)
Petri net, is often enriched or restricted to obtain en-
hancements or subclasses of PN. In this paper, we deal
with hierarchical coloured Petri net (CPN), as it is in-
troduced in [9]. Hierarchy allows dividing of a com-
plex PN model into modules called sub-pages that are
interconnected through special kind of nodes (substitu-
tion transitions, port, socket and fusion places). Colour
is a symbolic name for value added to a token in the
CPN, what distinguishes individual tokens (they are not
black dots anymore). This requires additional specifi-
cation for places, transitions and arcs, and thus allows
construction of models with simpler net structure and
added description, while keeping the same modelling
power as would be with basic P/T PN.

CPN Tools [1] is a widely used tool for editing, sim-
ulation and analysis of hierarchical coloured Petri nets.
Inscriptions are made in CPN ML, adjacent language to
net structure in the CPN Tools. More on the tool can be
found in [10].

For modelling of AGV RAS, the Petri net formalism
is suitable to be used. A PN (non-coloured one) mod-
elling AGV RAS has been called System of Simple
Sequential Processes with General Resource Require-
ments (S3PGR2) in [14]. We extend this to the envi-
ronment of CPN and use colours, when suitable.

In such a CPN, subnets of two types are found: pro-
cess and resource subnets. A process subnet consists
of places, transitions and arcs in a structure starting by
an initial transition and ending with a final transition

and describing causal relations between stages of a pro-
cess. A stage (a task) in the process corresponds to a
place and beginning and ending events of a task cor-
respond to transitions. Together with a place for idle
processes (let’s denote it P0), which connects the fi-
nal transition with the initial transition of the process
description, it makes a strongly connected component.
The variants of flexible routing in the process descrip-
tion are created, when at least one place has at least
two output transitions (conflict in Petri net, like in state
machines) and another place has at least two input tran-
sitions, while all possible routes in the process subnet
contain the place P0. A resource subnet consists of one
place and adjacent arcs. Content of the place represents
actually free resources and arcs express their allocation
and de-allocation to and from stages of processes. Typ-
ically, there are several process subnets, one for each
modelled process, and one resource subnet in a RAS
model.

For a description of the system’s dynamic behaviour,
we’ll distinguish between process types and process in-
stances. The process type is an abstract description of
a process. The process instance is a concrete occur-
rence of a process according to a process type. In the
CPN, the process type is modelled by the process sub-
net and the process instance by one or more tokens of
one colour. A position of a token in a place of the pro-
cess subnet represents a stage of the process. Similarly,
there are resource types and resource instances. The
former modelled by colours of a colour set for all re-
sources (one resource type corresponds to one colour)
and the latter by individual coloured tokens (number of
tokens of a colour corresponds to number of resources
of the respective resource type).

4 Solving Deadlock Problems

Deadlock problems in a system can be approached in
one of three ways: deadlock detection and recovery,
deadlock prevention and deadlock avoidance [11].

The deadlock detection and recovery approach lets the
system run and if it accounters a deadlock state, a recov-
ery procedure modifies the system back to a safe state,
i.e. a state, from which all processes can finish their ex-
ecution. It is suitable for systems with low probability
of deadlock occurrence and low recovery cost.

The deadlock prevention approach aims at breaking
at least one of four conditions of existence of dead-
lock, known as Conditions of Coffman [15]. It is suit-
able only for systems, where the necessary modification
does not lower the system effectiveness in an unaccept-
able extent.

The deadlock avoidance approach uses information on
current system state to decide whether it fulfills a re-
quirement for a resource allocation or not. It is used in
systems, where the previous two approaches are not ac-
ceptable. There is a large variety of methods for this ap-
proach, including the banker’s algorithm and C/D-RUN
deadlock avoidance policy.



4.1 Banker’s Algorithm

The banker’s algorithm (BA), first introduced in [1],
uses information about a current system state to de-
cide, whether a process allocation request can be ful-
filled. It is called every time, when an allocation re-
quest is made. It checks, if the allocation leads to a safe
state. If it does, the request can be fulfilled, otherwise,
the requesting process must wait until another process
returns resources. In order to decide about the state’s
safeness, the BA tries to order all active processes in
such a sequence, so that each of the processes can be
finished with resources that it currently occupies or that
are currently available in the system or that are already
returned from processes finished in the sequence prior
to the tested process. If it succeeds in finding such a se-
quence, we say that the state is ordered, and since every
ordered state is safe [2], the state is also safe. If it fails
to find the sequence, we say that the state is unordered,
which does not mean that the state is unsafe. However,
the allocation request cannot be fulfilled. This is due to
the suboptimality of the BA, while finding an optimal
algorithm for solving the question about state safeness
is a NP-hard problem.

Several modifications of banker’s algorithm exist. We
have chosen 3 modifications introduced in [2]: basic
version A producing ordered states, version B produc-
ing partially ordered states and version C for V1-ordered
states.

4.2 C/D-RUN

The C/D-RUN deadlock avoidance policy (DAP) has
been introduced in [2]. It is based on Petri net and its
liveness property and structural subnet called siphon.

The C/D-RUN DAP adds a specific subnet in the Petri
net model of the system that ensures avoiding states
leading to deadlock states. Structure of the added places
with initial tokens and their connection to existing tran-
sitions with arcs of given weight is calculated after solv-
ing a Mixed Integer Programming problem.

5 Model Construction
5.1 CPN Model of AGV RAS

The AGV RAS example has been implemented in the
form of a hierarchical coloured Petri net model, where
every mission is modelled in the form of process sub-
net. The subnets corresponding to three process types
P1, P2 and P3 are visible on the top page in the hier-
archy (Fig. 3). Each process type is further divided into
three parts according to partial transfers among given
destinations. Each of the partial transfers represented
as substitution transition on the top page, is further de-
fined on its sub-page. For instance, P1 is divided to
transfers DS − W1, W1 − W3 and W3 − DS, i.e.
three substitution transitions. There are eight sub-pages
altogether, since one sub-page (DS TO W1) is used in
two process types. That also indicates advantage of the
hierarchical approach in further extension of the AGV
RAS model, where partial transfers already defined in
sub-pages can be easily reused in new process subnets

on the top page.

Sub-pages specify vehicle movements by allocation and
de-allocation of network sections. Position of a vehicle
in a section is represented by a token in a place, a mo-
tion to another section by firing a transition - section
notation used in place and transition names reflects di-
rection of movement in the section (e.g. IB and BI
are opposite movements in the same section BI). In
case of sections adjacent to workstations, their nota-
tion is node-workstation-node (e.g. AW1A) to remark
that a vehicle occupying such a net section keeps it re-
served for coming back to the network after perform-
ing its loading/unloading job in workstation, since the
workstation capacity is limited to one vehicle. Structure
of the sub-page net is given by variant routes between
nodes. For instance, the transfer DS − W1 is further
defined on the sub-page DS TO W1 (Fig. 4) with 3
possible routes between nodes DS and W1, branching
off to two directions after reaching the node F (place
DSF ) or after reaching the node I (place FI).

System resources are modelled in the place named
EDGE RESOURCE of the colour set cEdge, where ev-
ery network section (edge), considered as a single in-
stance of a single resource type, is represented by one
value of a unique colour. Notation for sections is de-
noted by its nodes in alphabetical order (e.g. AB, BI
or CW2). The tokens are delivered to the processes ac-
cording to allocation and de-allocation of the sections
via transitions in the execution of a vehicle mission.

5.2 Implementation of Banker’s Algorithm

BA has been implemented by means of CPN ML, lan-
guage available in the CPN Tools. Detailed description
of its basic version A is to be found in [7]. Versions
B and C have been implemented in an analogical way.
This version of BA does not follow the algorithm de-
fined specifically for AGV model in [8].

To include the BA in the model, there are two steps
to carry out. At first, two places have been created:
PROCESS STATES keeps information about cur-
rent state of the system in the form of data structure
used by the BA and BANKER ALG DATA infor-
mation about allocated, currently available and later re-
quested resources. Both places are connected to every
transition, where an allocation or de-allocation opera-
tion is made. An example for the transition IB−>BA
in a net extract from the CPN model is in Fig. 5.

Secondly, the BA functions are called at every transi-
tion with an allocation request via its transition guard:
the BA evaluation of the system state creates another
condition for making the transition available and allow-
ing the request to be fulfilled.

5.3 Implementation of C/D-RUN Policy

To include the C/D-RUN policy in the CPN model, a
new place called CD−RUN RESOURCE is added
(Fig. 6). Its initial marking has been calculated accord-
ing to the procedure described in [3, 4] – for the opti-
mal bound, it contains the same initial marking as the
EDGE RESOURCE place with addition of one to-
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Fig. 3: Top page of the model.
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Fig. 4: Example of a subpage: vehicle transfer from docking station (DS) to workstation 1 (W1).

ken of colour AB.

Further details about construction of the model, imple-
mentation of both methods and analysis of the system
can be found in [16].

6 Results
The presented model has been run with both methods
of deadlock avoidance.

As the results in Tab. 1 show, the banker’s algorithm
restricts the state space of the controlled model much
less than the C/D-RUN DAP.

In addition for 4 and more vehicles, the analysis results
of the model with the C/D-RUN DAP have been the
same as the results for 3 vehicles in the system, while
all additional vehicles have been residing in the docking
station during the whole model development. It means
that the method does not allow movement of more than
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Fig. 5: Extract of a subpage: connection of Banker’s Algorithm to the CPN model.
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3 vehicles in the modelled AGV system at the same
time.

State space of the model with banker’s algorithm with
initial number of 4 vehicles or more can’t be calculated
because of restrictions of the CPN Tools. Instead of
that a series of 25 simulation replications of 1000 steps
have been done for each version of the algorithm. None
of the replications finished in a deadlock state and the
maximal number of active vehicles in one moment has
been 7 for the BA algorithms A and B and 10 for the
BA algorithm C.

Tab. 1: Comparing the methods in restriction of state
space (percentage of states from original state space)
for initial marking of 2 and 3 processes.

Method Ordered states in %
2 processes 3 processes

C/D-RUN DAP 52 12
BA / algorithm A or B 97 91

BA / algorithm C 99 98

However, calculation of the state space, and thus calcu-
lation in one step, when deciding on fulfillment of an
allocation request, takes more time in the model with
banker’s algorithms (see Tab. 2).

Tab. 2: Comparing computation time of state space for
initial marking of 3 vehicles.

Method No. of states Overall Time per
in SS time [s] 1 state [ms]

C/D-RUN 5012 18 3.6
BA / A 39469 2799 70.9
BA / B 39469 2815 71.3
BA / C 42488 3444 81.1

7 Conclusion
Main contribution of this paper is in description of a
coloured Petri net model of resource allocation system
based on a sample AGV system and in the comparison
of effectiveness of the C/D-RUN deadlock avoidance
policy (DAP) to the banker’s algorithm (BA). It shows
that the C/D-RUN DAP restricts the state space of the
system much more than the BA, but thanks to its nature
based on Petri net, it is about 20 times faster. However,
providing the calculation time of banker’s algorithm in
solving one allocation request in larger AGV systems is
acceptable, it is highly advisable to prefer this method
in their control applications over C/D-RUN DAP based
on Petri net.

The formalism of hierarchical coloured Petri nets has
shown to be suitable for performing the outlined task.
Petri nets natively provide the necessary state space
analysis and simulation. At the same time, construc-
tion of Petri net model with help of small number of
building elements is rather easy and smooth (especially
for experienced users), what is even reinforced by use
of colours and hierarchy in the chosen subclass of high-
level Petri nets. The environment of the CPN Tools, in
addition, allowed implementing the BA and integrating
it to the CPN model – thanks to the CPN ML. Flexibil-
ity of the approach has been utilized also by definition
of test configurations, where changes in model parame-
ters have been done easily and fast.

Result of this work can be considered in any application



area considering deadlock avoidance policies in control
of simulation models or real systems. Our future work
on this topic will focus on implementation of the BA in
a specialized application for simulation of large logistic
nodes called Villon [17].
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